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Supersymmetric gauge theories and lattice simulations

Supersymmetric gauge theories provided important insights,
lattice simulations can complement these findings, SUSY
broken on the lattice.

successful simulations: N = 1 and 4 supersymmetric
Yang-Mills theory; lower dimensional SUSY gauge theories

N = 1 supersymmetric Yang-Mills theory:

L =
1

4
FµνF

µν +
1

2
λ̄( /D + mg )λ

λ adjoint Majorana fermion

SUSY transformations: δAµ = −2i λ̄γµε, δλ = −σµνFµνε
SUSY can be restored by fine tuning mg :
chiral limit corresponds to SUSY limit
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Supersymmetric theories with scalar fields in 4 dimensions

Apart from N = 1 SYM, all other theories require scalar fields,
general theory space:

gauged theories with fermion and scalar fields, Yukawa
interactions, flat directions V (φ) = 0

N = 2 and 4 supersymmetric Yang-Mills: adjoint fermions
and adjoint scalar fields

SQCD: fermions in adjoint and fundamental representation,
complex scalar fields

fine tuning problem with scalar fields: order 10 parameters
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Lattice perturbation theory and weak coupling regime

Lattice perturbation theory with Wilson fermions
N = 2 supersymmetric Yang-Mills

perturbative relevant directions away from SUSY RG
trajectory [I. Montvay, Nucl.Phys. B445 (1995)]

additional phases of the theory have to be considered
(one-loop effective potential)

supersymmetric QCD

perturbative calculations of mass tuning and Yukawa couplings
[M. Costa, H. Panagopoulos,Phys.Rev.D 99 (2019) ],talk by Herodotos Herodotou

simulations and perturbative calculations in weak coupling
regime, [B. Wellegehausen, A. Wipf, Lattice2018], [GB, S. Piemonte, Lattice 2018]
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Witten index and fermion-boson cancellation

Witten index Z̃ = Tr
[
(−1)F e−RH

]
in SYM:

on the lattice: periodic fermion boundary conditions
(compactification radius R)

pairing of SUSY states: Witten index stable under volume
deformations

expect no phase transition, when shrinking one of the lattice
dimensions

R absence of phase transition in small limit provides signal for
SUSY.
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Compactified SYM on the lattice

fermion boundary conditions:
thermal → periodic

at small mg (large κ) no signal of
deconfinement

nearly flat effective Polyakov line
potential

similar cancellation of perturbative
PL potential expected for SQCD
[O. Aharony, et al. Nucl.Phys.B 499 (1997)]
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Nf = 1 supersymmetric QCD

add Nc ⊕ N̄c chiral matter superfield (Nc = 2)

SYM + quarks ψ and squarks Φi with covariant derivatives,
mass terms and

i
√

2g λ̄a
(

Φ†1T
aP+ + Φ2T

aP−
)
ψ

− i
√

2g ψ̄
(
P−T aΦ1 + P+T

aΦ†2
)
λa

+
g2

2

(
Φ†1T

aΦ1 − Φ†2T
aΦ2

)2
.

Expectation from continuum effective potential at Nf < Nc

“no vacuum” in chiral limit (Φ→∞) due to flat directions
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Simulations without scalar fields

SQCD without scalar fields = SU(2) gauge theory coupled to
1 adjoint Majorana + Nf fundamental Dirac
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Tuning of two different fermion masses possible in lattice
simulations. [GB, S. Piemonte, Phys.Rev.D 103 (2021)]
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Yukawa interactions

SQCD Yukawa interactions couple adjoint Majorana and
fundamental Dirac fermions.
Doubling of the matrix size, Pfaffian Pf(M) instead of determinant

1

2
(ψ̄, ψ, λ)M

ψ̄ψ
λ

 =
1

2
(ψ̄, ψ, λ)

 0 Df Y1

−DT
f 0 −Y T

2 CT

−Y T
1 CY2 CDa

ψ̄ψ
λ


Clover improvement added to Da and Df to match improved pure
fermion limit, tree level Symanzik improved action.
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Wilson scalar fields

fermion-boson cancellation requires same derivative operators
and masses

larger lattice artefacts, by smaller SUSY breaking with scalar
Wilson mass term

first test: tree level Yukawa and scalar coupling
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Scalar field divergence
Scalar field divergence in flat direction more relevant than
expected:

divergence already in rather heavy fermion mass regime

can be solved by adding large scalar mass
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Interesting regime not accessible at stronger couplings.
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Flat directions of scalar potential

Wilson fermions get additive mass renormalization, two regimes of
the simulations:

large scalar fields, corresponds to weak coupling regime:
smaller fermion mass

smaller scalar fields, larger gauge fluctuations: larger fermion
mass

Second phase with large scalar expectation values due to Wilson
fermions (lattice artefact). In order to reduce the effect: stout
smeared links in matter sector. Region with (mπ)F ∼ 0.6,
(mπ)A ∼ 0.3 can be reached (β = 1.7).
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Conclusions

severe fine tuning problem with scalar field

“Wilson scalars” might provide a better way to approach
relevant regime

Polyakov line effective potential and R dependence of
compactified theory provide signals for SUSY tuning

on the lattice: phase space reduced by additional lattice
artefact phases

SQCD with larger Nf or N = 2 SYM might reduce problem

discretizations without additive mass renormalization might
solve problem
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