Bayesian Inference for Contemporary Lattice Quantum Field Theory

Partially based on arXiv:2302.06550 10.5281/zenodo.7612101

Julien Frison 40th International Symposium on Lattice Field Theory, Fermilab, 04.08.2023

Overview

Introduction

Background Objectives Current methods New method

Bayesian formalism

The Bayes formula Applying the HMC Software Bayesian networks and plate notation

A few models

Data Bayesian Bootstrap Infering a covariance Multi-exponential model with correlations Model averaging Spectral function Conclusion

Background

Probabilistic Programming has made huge progress in the last decade [Hoffmann'2014], in large part thanks to LQCD [Duane'1987], combined with modern computing resources

> Widely applied to epidemiology, finance, pharmaceuticals, marketing, social sciences, ...

> LQCD still mostly uses statistical methods of early 20th century [Bernstein'27] [Aitken'35] [Doob'35] [Quenouille'49] [Efron'79]

Objectives

I want:

- > efficient learning of physical parameters and functions
- > well-defined probabilistic interpretation
- > unified and consistent framework
- > combining strengths of current methods
- > flexible model building with arbitrary assumptions
- > metrics to test any assumption

This talk

Mostly insist on unification and flexibility

Current methods

 ${\sf Bootstrap}/{\sf Resampling}$

Poor support of auto-correlations

Γ method

Gaussian approximations and linearisation

χ^2 fit

- > Gaussian likelihood
- > Covariance needs to be known in advance and precisely
- > Often unstable. No theoretical convergence toward smthing meaningful with finite data.

Akaike IC

- $>\,$ Requires a reliable knowledge of correlated χ^2
- > Needs data parametrisable by a regular model
- > Nb of models to explore quickly explode \Rightarrow computing time (imesbootstrap)

New method

Make it Bayesian from the start to the end!

> We directly get distributions and confidence intervals

- > Every assumption is packed into the model, which can be made arbitrarily complicated
- > Distance from model to truth can always be evaluated, with a robust criterion (KL)
- > The HMC (a second one) makes it doable in practice

Bayesian formalism

The Bayes formula

$$P(a|y, M) = \frac{P(y|a, M)P(a|M)}{P(y|M)}$$

Bayesian vocabulary parameter posterior distribution likelihood prior marginal distribution

Part of the family of *generative* machine-learning models thanks to the PPD:

$$P(y'|y, M) = \int P(y'|a, M) P(a|y, M) da$$

(2)

(1)

Applying the HMC

We do not need a close formula for P(a|y, M), we can just draw a_1, a_2, a_3, \ldots . Exactly what our good old HMC does!

$$P(a|y, M) = \frac{P(y|a, M)P(a|M)}{P(y|M)}$$

Bayesian vocabulary	LQCD analogue
parameter	configuration
posterior distribution	
likelihood	e^{-S}
negative log-likelihood	action (or $\chi^2)$
prior	
marginal distribution	partition function

(3)

Software

- I will show tests with PyMC
 In Python and simple to use, but several alternatives exist
- > Vectorisation and Automatic Differentiation (HMC forces) handled by PyTensor Made for somewhat complex ML methods & Deep Learning
- > The user only needs to write models, and it can be anything:
 - Likelihood function can be arbitrarily complicated
 - Does not have to be parametric:

Bayesian Bootstrap, Gaussian Processes, Bayesian Neural Networks, ...

Nor to have less parameters than data points

- Does not need to be the *true* model: Models are always an approximation, to be checked a posteriori on data (IC)
- Analytical computations only needed to speed up with marginalisation

> Runs on a laptop but scales with cluster/GPU

Bayesian networks and plate notation

- > Example: unidimensional Gaussian inference
- parameters/priors upwards, observable below can have many layers
- > Data: one number $Y_{obs} \times 1009$ configurations
- > μ uncertainty and σ are two different things
- The MLE gives us the usual point estimates: empirical mean and variance

A few models

Data

- > All the following models use a two-point function (CLS H101)
- > Not the only possible application in LQCD
- > Not an exhaustive list of models
- Show how many different things one can do from the same data within the same framework

Bayesian Bootstrap

- > Intuitively, Bootstrap feels "half-Bayesian"
- > Actually it is a Bayesian model [Rubin'81]
- > Simple example of non-parametric model (= ∞ params) irrelevant params are marginalised
- > Somewhat useful analogy to have a model of reference to compare with

DESY, | Bayesian Inference for Contemporary Lattice Quantum Field Theory | Julien Frison | 40th International Sympositim on Lattice Field Theory, Fermilab, 04.08.2023 Page 14

Infering a covariance (1)

- > Generalised Least Square is notoriously delicate in LQCD
- > The *sample* covariance is not the *true* covariance
- > We spend a lot of effort on evaluating the uncertainty on the mean but usually neglect the uncertainty on the covariance!
- In practice often leads to get badly conditioned or non-positive matrices
- Some regularisations are well-motivated but it does not propagate uncertainty, nor communicate with the model

Infering a covariance (2)

DESY. | Bayesian Inference for Contemporary Lattice Quantum Field Theory | Julien Frison | 40th International Symposium on Lattice Field Theory, Fermilab, 04.08.2023 Page 16

Multi-exponential model with correlations

Mixing correlated model (in Euclidian time) with marginalised Wishart prior...
 ... and auto-regressive model (auto-correlation between configurations)

$$y_{\tau}(t) = \rho_0 + \sum_{i=1}^r \rho_i y_{\tau-i}(t) + \xi_{\tau}(t), \qquad \langle \xi_{\tau}(t)\xi_{\tau}(t') \rangle \neq 0$$
(4)

Model averaging

There are now many ways to do model averaging (see [Neil] for ICs and more details)

One is to simply put everything into a **single model**:

Spectral function

- Bayesian Reconstruction model from [Rothkopf'21]
- > pproxequivalent to infinite multi-exponential
- does not include smoothing (Gaussian Processes being studied)
- > makes heavy use of positivity
- Applied to full correlator without t_{min} cut
 Ground state determined with high precision

Conclusion

Conclusion

- > I presented how a bayesian framework can provide well-grounded LQCD results with full propagation of all uncertainties
- > I demonstrated its application with many different models
- > Unifies things which were not obviously related
 - Bootstrap (i.e. non-gaussianity)
 - Covariance regularisation
 - auto-correlations
 - χ^2 fits
 - Model averaging
 - Inverse problem
 - ...and more that I have not covered
- > Model-building is only limited by your imagination
- > You can adapt this code to your needs: [10.5281/zenodo.7612101]

Thanks for your attention!

Backup slides

Trivial-vs-exp models for covariance

Exponential

LKJ-exp sampling

Covariance MAP

Regularisation

DESY. | Bayesian Inference for Contemporary Lattice Quantum Field Theory | Julien Frison | 40th International Symposium on Lattice Field Theory, Fermilab, 04.08.2023 Page 27