INTRODUCTION	Method & fits	RESULTS	SUMMARY
0	000	00000000	0000000

Spectroscopy of heavy-light mesons

L. Gayer, S.M. Ryan (Trinity College Dublin), D.J. Wilson (Cambridge University)

Lattice 2023, FermiLab, August 1st 2023

The spectrum of B, $B_s \& B_c$ mesons: motivation

- Heavy quarks provide a rich environment for spectroscopy with many and unexpected exotic states discovered already.
- Completing the story in heavy quark spectroscopy:
 - Charmonium: JHEP1207 (2012) 126, JHEP 1612 (2016) 089.
 - Open charm: JHEP 05 (2013) 021 & JHEP12 (2016) 089.
 - Bottomonium: JHEP02 (2021) 213.
- Unlike charm sector only a handful of states determined experimentally in any of *B*, B_s , B_c : map the spectrum of excited and exotic states to $J \le 4$ in a lattice calculation.
- Fruitful scattering analyses in *Dπ*, *DK* [JHEP 10 (2016) 011, JHEP 07 (2021) 123, JHEP 02 (2021) 100]. Similar picture in *Bπ* etc?

INTRODUCTION	METHOD & FITS	Results	Summary
O		00000000	0000000

LATTICE DETAILS

- Symanzik-improved anisotropic gauge action with tree-level tadpole-improved coefficients and N_f = 2 + 1.
 Anisotropic clover fermion action with stout-smeared spatial links.
- $\xi = a_s/a_t = 3.5$; $a_s \approx 0.12 \text{ fm}$, $a_t^{-1}(m_\Omega) = 5.67(4) \text{ GeV}$.
- $20^3 \times 128$ volume; $m_{\pi} \sim 396$ MeV. 16^3 , 24^3 volumes available for volume dependence study.
- Distillation for quark propagation.
- Operators of definite momenta constructed with up to 3 derivatives.

٨	A ₁	A_2	Ε	<i>T</i> ₂	<i>T</i> ₁
Λ^+	18	10	26	36	44
Λ^{-}	18	10	26	36	44

• Mass-dependent anisotropy tuning for heavy quarks.

INTRODUCTION	Method & fits	Results	SUMMARY
O	O●O	00000000	0000000

LATTICE DISPERSION RELATIONS

- Fermion action: mass-dependent tuning of m_q and ξ : tuned at η_b .
- Dispersion relations in heavy-light sector $(a_t E)^2 = (a_t M)^2 + \left(\frac{2\pi}{\xi L/a_c}\right)^2 n^2$.

INTRODUCTION	METHOD & FITS	Results	Summary
O	OO●	00000000	0000000

RECIPE FOR (MESON) SPECTROSCOPY

- Build a correlation matrix of two-point functions

$$C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0 \rangle = \sum_n \frac{Z_i^n Z_j^{n\dagger}}{2E_n} e^{-E_n t}$$

- Solve generalised eigenvalue problem $C_{ij}(t)v_i^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_i^{(n)}$
 - eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_n t} [1 + O(e^{-\Delta E_t})]$ yield principal correlators
 - eigenvectors: $Z_i^{(n)} = \sqrt{2E_n}e^{E_nt_0/2}v_j^{(n)\dagger}C_{ji}(t_0)$ related to overlaps helps identify continuum spin.

Results *B*, *B*_s, *B*_c mesons

Caveat Emptor

- Spectra determined from single-hadron operators.
- Relatively heavy (~400MeV) pions
- Single lattice spacing, single volume

INTRODUCTION	Method & fits	Results	SUMMARY
O	000	0●0000000	0000000

The lattice B meson spectrum

INTRODUCTION	Method & fits	RESULTS	SUMMARY
O	000	00000000	0000000

The lattice B_s meson spectrum

INTRODUCTION	Method & Fits	Results	Summary
O	000	00000000	0000000

The lattice B_c spectrum

INTRODUCTION	Method & Fits	Results	Summary
O	000	00000000	0000000

VOLUME DEPENDENCE: A STUDY OF B MESONS

INTRODUCTION	Method & Fits	Results	Summary
O	000	00000●000	0000000

The B meson spectrum

INTRODUCTION	Method & fits	Results	SUMMARY
O	000	000000●00	0000000

The B_s meson spectrum

INTRODUCTION	Method & fits	RESULTS	Summary
O	000	0000000●0	0000000

The lattice B_c spectrum

INTRODUCTION	Method & fits	Results	Summary
O	000	00000000	0000000

HYBRIDS: LIGHTEST SUPERMULTIPLETS

- Evidence of lightest hybrid supermultiplets.
- 1⁻: mixtures of spin-singlet, spin-triplet.

- A number of near-threshold states in positive parity B and Bs spectrum
- Elastic $B\pi$, A_1^+ , I = 3/2: weakly repulsive interaction. I = 1/2 underway.

INTRODUCTION METHOD & FITS	Results	Summary
O 000	00000000	O€00000

SUMMARY & OUTLOOK

• A study of heavy meson spectroscopy extended to heavy-light sector.

this work (MeV)		experiment - PDG (MeV)
39(2)	$m_{B^*} - m_B$	45.21 ± 0.21
38.0(8)	$m_{B_s^*} - m_{B_s}$	$48.6^{+1.81}_{-1.5}$
905.79(71)	$m_{B_c} - m_{B_s}$	$907.75 \pm 0.37 \pm 0.27$
602(3)	$m_{B_c}(2S) - m_{B_c}(1S)$	598(1)

- Results for the B, Bs and Bc meson spectra presented:
 - Dispersion relations are consistent between heavy and heavy-light sectors, for parameters tuned once at η_b .
 - Rotation breaking effects are small.
 - Evidence of a hybrid supermultiplet in *B*, *B*_s, *B*_c at energy scale approx 1.3 GeV.
 - similar characteristics in charmonium, open-charm and light mesons.
- The study can be extended to larger volumes and lighter pion masses.
- Paving the way for investigation of studies in $B\pi$, BK and heavy tetraquarks.

INTRODUCTION METHOD & FITS	Results	Summary
O 000	00000000	O€00000

SUMMARY & OUTLOOK

• A study of heavy meson spectroscopy extended to heavy-light sector.

this work (MeV)		experiment - PDG (MeV)
39(2)	$m_{B^*} - m_B$	45.21 ± 0.21
38.0(8)	$m_{B_s^*} - m_{B_s}$	$48.6^{+1.81}_{-1.5}$
905.79(71)	$m_{B_c} - m_{B_s}$	$907.75 \pm 0.37 \pm 0.27$
602(3)	$m_{B_c}(2S) - m_{B_c}(1S)$	598(1)

- Results for the B, Bs and Bc meson spectra presented:
 - Dispersion relations are consistent between heavy and heavy-light sectors, for parameters tuned once at η_b .
 - Rotation breaking effects are small.
 - Evidence of a hybrid supermultiplet in *B*, *B*_s, *B*_c at energy scale approx 1.3 GeV.
 - similar characteristics in charmonium, open-charm and light mesons.
- The study can be extended to larger volumes and lighter pion masses.
- Paving the way for investigation of studies in $B\pi$, BK and heavy tetraquarks.

Thanks for listening!

INTRODUCTION	Method & Fits	Results	Summary
O	000	00000000	00€0000

THE LATTICE DISPERSION RELATION

- Fermion action: mass-dependent tuning of m_q and ξ
- $M_{\eta_b}^{latt} = M_{\eta_b}^{expt}$ and a relativistic dispersion relat ion recovered.

$$(a_t E)^2 = (a_t M)^2 + \left(\frac{2\pi}{\xi L/a_s}\right)^2 n^2.$$

- $n \le (2, 0, 0)$ in fits; no significant $(a_{sp})^4$ term.
- Rest, kinetic masses consistent.
- Heavy-light dispersion relations determined using these tuned parameters.

INTRODUCTION	Method & Fits	Results	Summary
O	000	00000000	00000000

EXTENDING SIMILAR WORK - OPEN CHARM FOR $J \leq 4$

JHEP12 (2016) 089

INTRODUCTION	Method & fits	Results	SUMMARY
O	000	00000000	0000000

IS THERE A HEAVY-LIGHT HYBRID SUPERMULTIPLET AS IN D?

JHEP05 (2013) 021