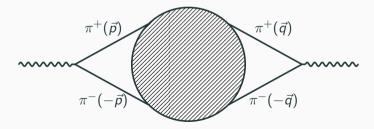
The mixing of two-pion and vector-meson states using staggered fermions

Fabian Frech (for the Budapest-Marseille-Wuppertal collaboration) August 1, 2023

University of Wuppertal

Introduction

- High precision computation of anomalous magnetic moment of the muon a_μ
- Contribution of $\pi\pi$ states (HVP)
- Investigate mixing of $\pi\pi$ and ρ (γ) states using group theory applied on the staggered symmetry group [Lahert et al. (2021))]



The staggered symmetry group

- The staggered is action is invariant under certain transformations (symmetry group $\mathcal{G})$
 - 1. Shift S_{μ} in a given direction μ by one lattice spacing
 - 2. **Rotation** $R_{\mu\nu}$ in the $\mu\nu$ -plane by $\frac{\pi}{2}$
 - 3. Spatial inversion (parity transformations) I_S
 - 4. Charge conjugation C_0
 - 5. Taste transformation Ξ_{μ}
- \bullet Restriction of ${\mathcal G}$ by restriction to a given time slice
- No temporal shifts and rotation
- Symmetry group ${\mathcal H}$
- Irreps of *H* correspond to different quantum numbers of states (momentum, spin, parity, charge conjugation quantum number, taste)
 [Kilcup/Sharpe (1987), Golterman/Smit (1984)]

- Consider taste singlet ρ -meson at rest
- Which two-pion-states have the same quantum number and how large is their contribution?
- We choose the two-pion state

$$\pi^+\pi^- - \pi^-\pi^+$$

in order to have the correct charge conjugation quantum number c = -1

• Reducible $\pi\pi$ -state can be decomposed in irreps:

$$D^{\pi}(\xi = \xi_1, p = \vec{p_1}) \otimes D^{\pi}(\xi = \xi_2, p = \vec{p_2}) = n(\xi_1, \xi_2, \vec{p_1}, \vec{p_2}; \rho)D^{\rho}(\xi = 0, \vec{p} = 0) \oplus ...,$$
if

$$\xi_1 = \xi_2, \quad \vec{p_1} = -\vec{p_2}, \quad \vec{p_1} \neq \vec{0}.$$

with the multiplicity computed using the characters

$$n(\xi, \vec{p}; \rho) = \frac{1}{|\mathcal{H}|} \sum_{R, I_s, C_0, \xi_4} \chi_{\rho}^*(R, I_s) \chi_{2\pi}^{\xi_{\mu}, \vec{\rho}}(R, I_s, \vec{S}, \Xi_{\mu})$$

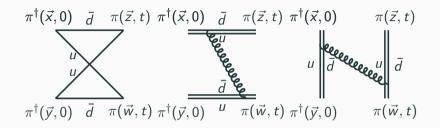
Constructing the ρ

- Basic vectors $\left|\rho_{\mu}^{\alpha\beta}\right\rangle$ of ρ representation can be computed using Clebsch-Gordon coefficients
- α and β label the taste and momentum orbit

$$\left|
ho_{\mu}^{lphaeta}
ight
angle = \sum_{ec{p}\in\{ec{p}^{lpha}\}}\sum_{\xi\in\{\xi^{eta}\}}c_{ec{p},\xi}^{
ho\mu}\pi(ec{p},\xi)\pi(-ec{p},\xi)\left|0
ight
angle$$

- Symmetry group is finite, CG coefficients can be computed on a desktop PC in a few seconds using Wigner's theorem [Sakata (1974)]
- Example:

$$\left| \rho_{x}^{1\bar{5}} \right\rangle = \frac{1}{\sqrt{2}} \left[\pi(e_{x},\bar{5}), \pi(-e_{x},\bar{5}) \right] \left| 0 \right\rangle \quad \left(\bar{5} = (1,1,1,1)^{T} \right)$$



- The last diagram does not contribute due to antisymmetry in x and y
- Total correlation function:

$$C_{\pi\pi}^{AB}(|\vec{p}|,|\vec{q}|) = \sum K_{\vec{p},\vec{q}}^{A,B}(\Pi_d - 2\Pi_c)$$

• Extract different energy states from the two-pion correlators

$$C(t_0 + \Delta t)v = \lambda C(t_0)v$$

• Solve eigenvalue problem of

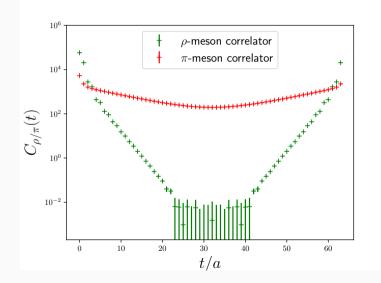
$$M = C^{-0.5}(t_0) \cdot C(t_0 + \Delta t) \cdot C^{-0.5}(t_0)$$

for given t_0 and Δt (e.g. 1 and 2) and compute eigenvalues for all Δt

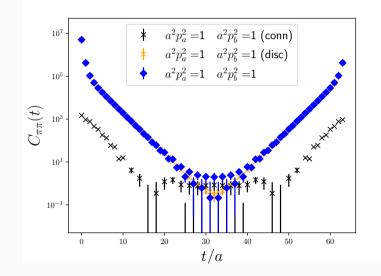
• Provides orthogonal eigenvectors, which helps with state identification

- Symanzik improved gauge action, 4stout one-link staggered fermions $(N_f=2+1+1)$
- $32^3 \times 64$ box, $\beta = 3.7000$, $m_l = 0.00205349$
- Connected diagram : sequential inversion on each time slice (\$\mathcal{O}\$ (#tastes \$\times\$ #momenta \$\times\$ \$N_t\$))
- Preconditioning of Ø by precalculation of eigenvectors, optimized number of eigenvectors, time is still dominated by the inversions

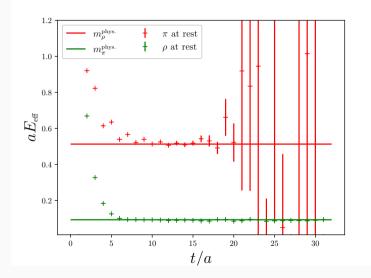
Correlation functions ρ and π meson



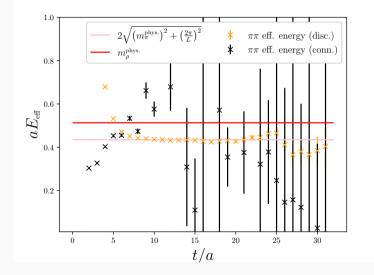
Correlation functions $\pi\pi$ -states



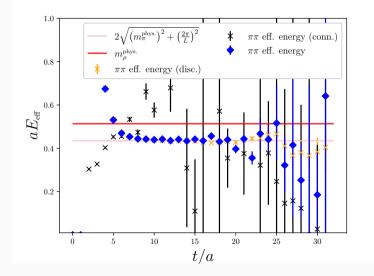
Energy extraction ρ and π meson



Energy extraction $\pi\pi$ -states



Energy extraction $\pi\pi$ -states



Conclusion and Outlook

- Conclusion
 - Derivation of a framework for the mixing of $\pi\pi$ and ρ
 - Implementation of $\pi\pi$ -correlators at $p \neq 0$
 - First tests on small lattices
- Outlook
 - Including all tastes and higher momenta (up to $\|ec{p}\|^2=4$)
 - Computation of off-diagonal elements (esp. $(\pi\pi, \rho)$)
 - Extract states with GEVP
 - Get rid of N_t -scaling and apply to larger and finer lattices
 - Reconstruct the tail of the vector-vector correlator in $g_\mu-2$