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SGR = ∫ d4x κ −det g R, Z = ∫ d[g] eiSGR(g)

• Wick rotate  (or, complex metric )t → − itE −det g → − i det gE

SGR → − i∫ d4xE κ det gE RE ≡ iSGR,E, ZE = ∫ d[gE] e−SGR,E(gE)

• drop subscript  (work exclusively with Euclidean signature)E

• GR action (no cosmological constant) with κ = c4/(16πGN) ∼ 1035 fm−2

SGR = − ∫ d4x κ det g R, Z = ∫ d[g] e−SGR(g)

   Euclidean path integral for GR

• for , generate realistic snapshots of spacetime with probability  SGR ≥ 0 p(g) = e−SGR(g)



• small, dynamic  on background flat spacetime h(x) η = diag(1,1,1,1)
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gμν(x) = ημν + hμν(x) , |hμν | ≪ 1

R = ∂μνhμν − ∂2tr h + 𝒪(h2)

   … weak-field limit

SGR = − ∫ d4x κ det g R

• at ,  a total derivative, so leading contribution to  is 𝒪(h) det g R ℒGR 𝒪(h2)

• to leading order in ,h

ℒ(2)
GR =

κ
2 ( 1

2
(∂ρhμν)2 − ∂ρhμν∂νhρμ −

1
2

(∂μtr h)2 + ∂νhμν∂μtr h )

det g = 1 +
tr h
2

+ 𝒪(h2)

’t Hooft and Veltman, 1974
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   … history of path integral quantized GR
• Misner proposed, with Minkowski metric, as approach to quantum gravity 


• Hawking et al. revived with Euclidean metric


- positive action conjecture


- used to calculate black hole entropy/area law, 


- positive action conjecture proven


• issues


- nonrenormalizable


- complex metric potentially problematic


• weak-field limit with static background

𝒮 = A /4 Hartle and Hawking, 1976

Misner, 1957

’t Hooft and Veltman, 1974; Goroff and Sagnotti, 1985

York, 1972; Gibbons, Hawking, and Perry, 1978

Gibbons and Pope, 1979; Schoen and Yau, 1979

Donoghue, 1995; Burgess, 2004

Witten, 2021

gμν = ημν + hμν , |hμν | ≪ 1

’t Hooft and Veltman, 1974

- flat background avoids potential complex metric issues (just Wick rotate)


- effective theory, hence nonrenormalizability



• path integral quantized, Euclidean, weak-field GR


- discretize


- gauge fix


- positive action conjecture


• preliminary results


- discretization and finite volume effects


- temperature dependence


• summary
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   Outline
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∂ν hαβ = δ( fn)
ν hαβ + 𝒪(an)

   … discretize

• finite volume and nth order forward finite difference approximation, write δ( fn)

∫ d4x = a4 ∑
x

+ 𝒪(FV)

• discrete, Euclidean weak-field GR action is

SGR = − a4 ∑
x

ℒ(2, fn)(x) + 𝒪(h3) + 𝒪(an) + 𝒪(FV) discretisation

finite volume

weak-field

SGR = ∫ d4x ℒ(2)(x) + 𝒪(h3)

• lattice spacing enters simulation via input value for a2κ

- low energy effective theory at scale  


- must have  , or equivalently, 

μ = a−1

μ ≪ mPl a ≫ ℓP ∼ 10−20 fm

ℒ(2, fn)
GR =

κ
2 ( 1

2
(δ( fn)

ρ hμν)2 − δ( fn)
ρ hμνδ

( fn)
ν hρμ −

1
2

(δ( fn)
μ tr h)2 + δ( fn)

ν hμνδ
( fn)
μ tr h )

and
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   … gauge fix

• GR has 2 physical degrees of freedom,  has 16 components

-  is symmetric (16 - 6 = 10)

- gauge fixing (10 - 4 = 6)


- 4 constraints from Bianchi identity 

h
h

∇μ(Rμν −
1
2

Rgμν) = 0

• gauge fix to harmonic gauge

∂μhμν −
1
2

∂νh = 0

h00 h01 h02 h03

⋅ h11 h12 h13

⋅ ⋅ h22 h23

⋅ ⋅ ⋅ h33

SGR = ∫ d4x ℒ(2, fn)(x) + 𝒪(h3, an, FV)

- choose to constrain diagonals

- dynamic spacetime parametrized by hαβ , α < β



SGR = − κ∫V
det g R + 2κ∫∂V

det ̂g ( ̂gμ
ν∂μNν +

1
2

̂gνρNμ∂μgνρ)
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   … constrain spacetime on the boundary

• if  positive definite 


- generate realistic snapshots of spacetime with 


- also required for 


• it’s not, a problem known since the 1970s

SGR

prob(h) = e−SGR(h)

δSGR = 0 ⇒ 2Rμν − Rgμν = 16πTμν



SGR = − κ∫V
det g R + 2κ∫∂V

det ̂g ( ̂gμ
ν∂μNν +

1
2

̂gνρNμ∂μgνρ)
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• if  positive definite 


- generate realistic snapshots of spacetime with 


- also required for 


• it’s not, a problem known since the 1970s


• solution is positive action conjecture 

SGR

prob(h) = e−SGR(h)

δSGR = 0 ⇒ 2Rμν − Rgμν = 16πTμν

All 4D Riemannian asymptotically Euclidean manifolds have , with  iff flat.SGR ≥ 0 SGR = 0

   … constrain spacetime on the boundary



SGR = − κ∫V
det g R + 2κ∫∂V

det ̂g ( ̂gμ
ν∂μnν +

1
2

̂gνρnμ∂μgνρ)

10

̂g = 1 ̂n ⋅ ∂ ̂g
∂V

= 0

̂g = g
∂V

• if  positive definite 


- generate realistic snapshots of spacetime with 


- also required for 


• it’s not, a problem known since the 1970s


• solution is positive action conjecture 

SGR

prob(h) = e−SGR(h)

δSGR = 0 ⇒ 2Rμν − Rgμν = 16πTμν

All 4D Riemannian asymptotically Euclidean manifolds have , with  iff flat.SGR ≥ 0 SGR = 0

• implemented analytically via surface term (e.g. Gibbons-Hawking-York)


- constrains asymptotic behaviour of metric


• instead of adding term to , impose asymptotic behaviour explicitly on metricSGR
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observe violations: perhaps because…


• conjecture applies asymptotically,  


• but I impose in finite volume


Since prob = , this is problematic. Therefore, constrain  such that

g
∂V

= 1 + 𝒪(1/ V )

e−SGR h

Require  and , and should observe  for all g
∂V

= 1 ̂n ⋅ ∂g
∂V

= 0 R(x) ≤ 0 x

Proof uses  for all asymptotic Euclidean 4D Riemannian manifolds.R(x) ≤ 0

 and  , g
∂V

= 1 ̂n ⋅ ∂g
∂V

= 0

Schoen and Yau, 1979

and also require  for all .R(x) ≤ 0 x
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Markov chain updates (initially flat) with probability p(h) = e−SGR(h)

for t=0,…,Nt-1:

for x=0,…,Nx-1:


for y=0,…,Ny-1:

for z=0,…,Nz-1: 


for =0,1,2:

   for = +1,…,3:


      (t,x,y,z) = “jiggled (t,x,y,z)”

      

gauge fix

constrain nearby s so  and 


if S_GR( )  0:


   dS_GR = S_GR( ) - S_GR( )


   if exp(-dS_GR) > random(0,1):


       

α
β α

h̃αβ hαβ

h g |∂V = 1 ̂n ⋅ ∂g |∂V = 0

h̃ ≥

h̃ h

h = h̃

   … sketch of GR update code

enforce ; 

1-10% acceptance

R(x) ≤ 0

Markov chain update

jiggle spacetime
h00 h01 h02 h03

⋅ h11 h12 h13

⋅ ⋅ h22 h23

⋅ ⋅ ⋅ h33
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• for QCD, , and can unambiguously define nearby


• what is nearby for:   ?


- Planck length  gives order one ,  


- for lattice spacing ,    (single precision ok)


- choose  randomly from

Uμ ∈ SU(3)

hαβ → h̃αβ = hαβ + ϵαβ

ℓP SGR |ϵαβ | ∼ ℓP /a

a ∼ 0.1 fm |ϵαβ | ∼
ℓP

a
∼ 10−19

ϵαβ

ϵαβ

0 ℓP /a−ℓP /a

Uμ → Ũ μ = eiεataUμ  for |εa | ≪ 1

   … how much to jiggle ?h
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• Planck length jiggles give most efficient approach to thermalization


• larger jiggles, acceptance too unlikely 


• smaller jiggles, too many updates needed to thermalize

S G
R

/6
4

(6a)4, a = 0.17 fm, R(f1)

ℓP /(10a)
ℓP /(5a)
ℓP /a
5ℓP /a
10ℓP /a

   … how much to jiggle ?h

max |ϵαβ |
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   … curved spacetime configurations

r ∼ 10 m

• thermalization after about 1000 sweeps

• for this , spacetime has 

• curvature from nonzero temperature

• spacetimes satisfy GR sanity checks, symmetries of 

μ = a−1 avg(R) ∼ − 10−2 m−2

Γμ
νρ and Rμ

νρσ

sweep /106

S(2, f1)
GR /(NtN3

s ) vs sweep : a = 0.17 fm, 6 × 33
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   … autocorrelations

•  sweeps  save every 100  bin 1000 16 configurations

• about 1000x worse than quenched QCD (factor of 10–100 from requiring positive action)

•  requires about 10x sweeps to thermalise but about half the bin size

1.6 × 106 → → →

f 2

𝒜(lag) =
∑N

i=1 (Oi − meani(O))(Oi+lag − meani(O))

var(O) N − 1

100 %

10 %

𝒜(lag) vs lag : f1, a = 0.17 fm, 6 × 33

error vs bin size : f1, a = 0.17 fm, 6 × 33
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   … GR discretization effects

• nonrenormalizability complicates continuum extrapolation


- difficult to run observables to common scale 


- difficult to disentangle running from discretization effects


• estimate size at fixed lattice spacing using multiple discretizations


-  


-   …


- observe 14% difference between  and  for , 


- if , this is an estimate of  effects


• how do  errors scale in vacuum GR?


- no GR-related IR scale


- possible lattice scales are  and , so maybe ?

μ = a−1

R( f1)(a, μ) = R(0, μ) + 𝒪(a)
R( f 2)(a, μ) = R(0, μ) + 𝒪(a2)

R( f1) R( f 2) a = 0.17 fm 64

𝒪(a2) ≪ 𝒪(a) 𝒪(a)

𝒪(an)

(aNs)−1 (aNt)−1 𝒪(N−1
s , N−1

t )
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   … GR finite volume effects

• might be able to extrapolate to infinite volume

• limited statistics 

a6(aNs)3, a = 0.17 fm, T = 193 MeV

poor statistics,


~10-30 measurements
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• rate of decay  implies scale, 


• infinite volume radius of curvature, 

exp(−ΛL) Λ = 247(78) MeV ≈ T
r = 8.86(3) m

fit(Ns) = a − be−cNs

χ2/dof = 7.0/5

a = 0.8089(52) [1.0(5)]
b = 0.076(20) [0.5(5)]
c = 0.213(67) [0.17(8)]

Bayesian fit:

   … scale of GR finite volume effects
a6(aNs)3, a = 0.17 fm, T = 193 MeV

poor statistics,


~10-30 measurements
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   … GR temperature dependence

• relativistic thermodynamics (for static ideal fluid), 


• quantum corrections to Newtonian gravity decrease with 

• suggests 

T g00 = constant
T

∂TR < 0

aNt(a6)3, a = 0.17 fm, L = 1.02 fm

poor statistics,


~10-30 measurements

Tolman, 1930

Brandt, Frenkel, McKeon, Sakoda, 2023
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• preliminary lattice implementation of weak-field, Euclidean GR

- low energy effective theory of quantum gravity

- complementary to analytic, perturbative efforts (both weak-field)


• needs further study/understanding

- autocorrelations/statistics

- discretisation effects


• working on coupling to QCD vacuum

- if gravity quantum, coupling too small for machine precision, PI factorizes

- if gravity classical


‣ back reaction of quantum theory on a classical background (believe novel)

‣ no-go theorem enhanced cross-talk


   Summary and outlook

see, e.g., Oppenheim, 2021



Thank you.
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⇒ for xρ ∈ ∂V, hμν(x) = 0 for μ, ν ≠ ρ

• constrain induced metric on boundary

g
∂V

= (
1 0 0
0 1 0
0 0 1)
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μ ∂V
ρ

ν

   … constrain spacetime on the boundary

μ

hμν(x + a ̂ρ ) = hμν(x) = 0 for μ, ν ≠ ρ

- for 1st order forward finite difference,

• constrain induced metric to asymptote 
to Euclidean metric on ,  ∂V ̂ρ ⋅ ∂ g

∂V
= 0

ρ ∂V

ν
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• edges and corners of hypercube have D < 3


• on edges and in corners, constraint imposed on lower-D ∂V

∂V
̂n

• with spherical symmetry  always 3D∂V

μ

∂V

ν

   … constrain spacetime on the boundary
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• positive action conjecture “if spacetime asymptotes to flat, then ”


- demanding  doesn’t ensure asymptotic flatness


- without asymptotic flatness, Einstein field equations


• increased curvature in bulk without boundary constraint

SGR ≥ 0
SGR ≥ 0

δSGR = 0 ⇏

(6a)4, a = 0.17 fm, R( f1)
S G

R
(R

(f
1)

)
64

configuration

unconstrained
constrained

   … constrain spacetime on the boundary
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• local violations of positive action conjecture are (at least in part) due to finite volume

   … positive action constraint

R( f1)(x) ≤ 0 acceptance vs spacetime volume

min(Nt , Ns)
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• Minor impact on autocorrelation from lattice spacing

   … positive action constraint

R( f1)(x) ≤ 0 acceptance vs a : 64

min(Nt, Ns)

ac
ce

pt
an

ce
%

a /fm



• path integral quantised GR

- fine as low energy EFT for quantum gravity

- historically useful beyond weak-field with nontrivial background metric, 

e.g. black hole area-entropy law
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   Add QCD and look for interplay

• to avoid pathologies in coupling classical GR to quantum theory of QCD

- couple GR to quantum fluctuations of QCD, not to expectation values


-  GR must live in the path integral and respond to QCD fluctuations⇒

2Rμν − Rgμν = 16πTμν

e.g., Oppenheim (2021)

classical quantum

• my motivation was preparation for next step
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No-go theorem references taken from Oppenheim (2021)
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det gℒ = ℒGR + ℒQCD +
tr h
2

ℒQCD + …

• expected QCD and GR interaction via cross-term

• cross-term negligible: , , and 


• however, to couple classical and quantum theories, leading order terms are linked by 

contributions to 

tr hℒQCD ∼ 𝒪(10−17) ℒGR ∼ 𝒪(1) ℒQCD ∼ 𝒪(10)

SQCD + SGR

prob( , ) U h = exp [−(SQCD(U) + SGR(h))]
• as path integral samples paths in  space, QCD and GR collaborate in 

their contributions to action
(U, h)

   … interaction of GR and QCD
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• temperature study of GR + QCD simulation


- what happens to spacetime across QCD confining phase transition

   … phenomenological applications

• effect of GR on QCD entanglement

T (V )
μν = −

Λ
16π

gμν

- LHS without QCD should give  for spacetime without matterT (V )
μν

2Rμν − Rgμν = 16πTμν

• Einstein field equations 

- add QCD and compare LHS to  from LQCDTμν

• extent of impact of QCD vacuum on curvature, with  as proxy for age of universeT


