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Euclidean path integral for GR

e GR action (no cosmological constant) with k = c4/(167rGN) ~ 10% fm~2

SGr = Jd4x Ky/—detg R, 7 = Jd[g] e156r(8)

e Wick rotate t = — 1t (or, complex metric \/—detg — — i\/@)
SGR = — i[d4xg K\/@ Ry = 15GR g Zp = Jd[gE] e ~Scr.£(8E)
e drop subscript E (work exclusively with Euclidean signature)
SGr = — Jd4x1< detg R, 7 = Jd[g] ¢ —S6r(8)

o for Sgr > 0, generate realistic snapshots of spacetime with probability p(g) = e™cr(&)



... weak-tield limit
Sep = — Jd‘*m detg R
e small, dynamic h(x) on background flat spacetime = diag(1,1,1,1)
8uX) =1, +h,(x),  |h,| <1
e to leading orderinh,

trh 5
\/detg =1 +7+ O(h*)

R=0,h — 0*trh+ O(h?

uv'‘uv

at O(h), v/detg R a total derivative, so leading contribution to £y is O(h?)

't Hooft and Veltman, 1974

o X l(ah ¥ —0 h 0h —l(atrh)2+ah 0 trh
GR o \ o P w s viur



... history of path integral quantized GR

* Misner proposed, with Minkowski metric, as approach to quantum gravity Misner, 1957

 Hawking et al. revived with Euclidean metric

- positive action Conjectu re York, 1972; Gibbons, Hawking, and Perry, 1978

- used to calculate black hole entropy/area law, & = A/4 Hartle and Hawking, 1976

- positive action conjecture proven Gibbons and Pope, 1979; Schoen and Yau, 1979

® |ssues

- nonrenormalizable ’t Hooft and Veltman, 1974; Goroff and Sagnotti, 1985

- complex metric potentially problematic  witten, 2021

e weak-field limit with static background 't Hooft and Veltman, 1974

g//tl/ = ;/]//”/ + hﬂya |hﬂy| << 1

- flat background avoids potential complex metric issues (just Wick rotate)

- effective theory, hence nonrenormalizability  Donoghue, 1995: Burgess, 2004
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* path integral quantized, Euclidean, weak-field GR
discretize
gauge fix
positive action conjecture
« preliminary results
discretization and finite volume effects

temperature dependence

* summary



... discretize

Scr = [d4x ZLI(x) + Oh>)

 finite volume and nth order forward finite difference approximation, write D

(1177 v uvp

1 1
. m _ K (5(5p(fn)hﬂy)2 — 5, 5 — 5(5ﬁf")ﬂ’ B2+ 8Un §Ung b >

GR o)

e discrete, Euclidean weak-field GR action is

 |attice spacing enters simulation via input value for a“k

low energy effective theory at scale y = a™

Ser = — a’ Z LIy + O(h7) + O(a™) + O(FV) discretisation

finite volume

2

1

- must have u < mp, , or equivalently, a > #p ~ 1072 fm



... gauge fix
Scr = Jd‘*x FEI(x) + O(h°, a", FV)

e GR has 2 physical degrees of freedom, h has 16 components
- h is symmetric (16 - 6 = 10)
- gauge fixing (10 - 4 = 6)

1
- 4 constraints from Bianchi identity V# <RW — ERg”V> =0

e gauge fix to harmonic gauge

1
Ol = 50,1 =0

- choose to constrain diagonals
dynamic spacetime parametrized by /1,5, a <

hOl h02 h03
h12 h13
h23

\

)



... constrain spacetime on the boundary

Sar = —K’J detg R -
1%

o if Sgr positive definite
generate realistic snapshots of spacetime with prob(k) = e ~Scr(ht)

also required for 6Sqg = 0 = 2R, — Rg,, = 1627,

e it's not, a problem known since the 1970s



... constrain spacetime on the boundary

Sar = —KJ detg R -
1%

o if Sgr positive definite
generate realistic snapshots of spacetime with prob(h) = e ~Scr(ht)

also required for 6Sqg = 0 = 2R, — Rg,, = 1627,

* it's not, a problem known since the 1970s

e solution is positive action conjecture

All 4D Riemannian asymptotically Euclidean manifolds have Sgr > 0, with Sgr = 0 iff flat.



g — 1 n - 0A
\ 7
¢=l,,
/ : \
SGr = —KJ \/detg R + 2KL detg <§Q‘aMHV+5§vpnﬂdﬂgw>
v 1%

o if Sgr positive definite
- generate realistic snapshots of spacetime with prob(h) = e ~Scr(ht)

- also required for 05qg =0 = 2R, — Rg,, = 62T,

* it's not, a problem known since the 1970s

e solution is positive action conjecture

All 4D Riemannian asymptotically Euclidean manifolds have Sgr > 0, with Sgr = 0 iff flat.

* implemented analytically via surface term (e.g. Gibbons-Hawking-York)

- constrains asymptotic behaviour of metric

e instead of adding term to Sgg, impose asymptotic behaviour explicitly on metric
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Proof uses R(x) < O for all asymptotic Euclidean 4D Riemannian manifolds.

Schoen and Yau, 1979

Require g ‘ . 1 andn-og ‘ b 0, and should observe R(x) < 0 for all x

observe violations: perhaps because...

e conjecture applies asymptotically, g b 1+ @(1/\/\_/)

e butlimpose in finite volume

Since prob = e 7>k, this is problematic. Therefore, constrain ki such that

g‘ =1andn-odg av=0'

oV

and also require R(x) < 0O for all x.
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... sketch of GR update code

Markov chain updates (initially flat) with probability p(h) = e ~Scr(D)

for t=0,..,Nt-1:
for x=0,..,Nx-1:
for y=0,..,Ny-1:
for z=0,..,Nz-1:

for a=0,1,2:

jiggle spacetime for f=a+l,.., 3:
(hoo hop  hey h03\ -
hy g g haﬂ(trerr z) = “Jiggled haﬂ(tley'z)”
h, 58
ey gauge fix

constrain nearby hs so gl,,=1 and n-dg|,, =0

enforce R(x) < 0; €&—— if S GR(%) > 0
1-10% acceptance B

" dS GR = S GR(h) - S GR(h)
Markov chain update 1f exp(-dS GR) > random(0,1):

h=nh

12



... how much to jiggle h?

« for QCD, U, € SU(3), and can unambiguously define nearby

— ,lett! a
Uﬂ—>Uﬂ—€ Uﬂfor|8|<<1
* whatis nearby for: h,5 — %aﬁ = Nyp+ €457

Planck length £p gives order one Sgg, |€,5| ~ Cpla

for lattice spacing a ~ 0.1 fm, |€,4] ~ £ ~ 107" (single precision ok)
a

choose €,, randomly from

13



... how much to jiggle h?

0.9

0.8
0.7 +
0.6

Sep /6%

03
02
0.1 H

e Planck length jiggles give most efficient approach to thermalization

(6a)*, a = 0.17 fm, RV

05
04

I I I I
(Yo e i T PALCATS
T | |
0 50 100 150 200
configuration

* larger jiggles, acceptance too unlikely

e smaller jiggles, too many updates needed to thermalize

max | €,

¢p/(10a)

¢l (5a)

£pla

5Cpla

10¢p/a
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... curved spacetime configurations

S((}Zlifl)/(Nth) vs sweep : a = 0.17fm, 6 x 3°

1.2 | | | | | |

09
0.8
0.7
0.6
0.5
04
03
0.2
0.1

VP 0 0.2 04 0.6 0.8 1

500 1000 1500 2000 2500 3000 3500 4000

/10°
thermalization after about 1000 sweeps SWEEP

for thisuy =a™', spacetime has avg(R) ~ — 107> m™2
curvature from nonzero temperature

spacetimes satisfy GR sanity checks, symmetries of I}, and R},

1.2 1.4 1.6

/<r~10m
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... autocorrelations

od(lag) vs lag: f1, a =0.17fm, 6 x 3°
error vs bin size : f1, a =0.17{m, 6 X 33

“ | | | | | |

100 %-

0.78 - error ——+— I

0.775 L il

0.77 ﬂﬂ 1
|

o765 [

0.76 |- L

10%-_

0755 - B el
| | | | | |

0 200 400 600 800 1000 1200 1400

0 200 400 600 800 1000 1200

>V (0, — mean (0))(O, 1

var(O/N — 1

e 1.6 X 10° sweeps — save every 100 — bin 1000 — 16 configurations

— mean;(0))

A (lag) =

e about 1000x worse than quenched QCD (factor of 10-100 from requiring positive action)

e f2 requires about 10x sweeps to thermalise but about half the bin size “



... GR discretization effects

* nonrenormalizability complicates continuum extrapolation
- difficult to run observables to common scale 4 = a™!

- difficult to disentangle running from discretization effects

e estimate size at fixed lattice spacing using multiple discretizations
- RYY(a,p) = R0, u) + O(a)
- RY2(a,u) = RO, u) + O(a?) ...
- observe 14% difference between RYD and RY? fora = 0.17 fm, 6*

- if O(a®) < O(a), this is an estimate of O(a) effects

e how do @O(a") errors scale in vacuum GR?

- no GR-related IR scale

- possible lattice scales are (aNS)_1 and (aNt)_l, so maybe @(NS_I,N[I)?

17



?)

S&I /(N

... GR finite volume effects

0.81

0.8

0.79

0.78

0.77

0.76

0.75

a6(aN,)’, a = 0.17 fm, T = 193 MeV

poor statistics,

i __~1_O—30_m_e,afsurem.énts . ) |:p ) o + o oo

OO A R B e S S -

0 2 4 6 3 10 12 14 16

N

* might be able to extrapolate to infinite volume
* |imited statistics
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2)

Sei " /(N

... scale of GR finite volume effects

a6(aN,)’, a = 0.17 fm, T = 193 MeV

0.82 | ! ! ! 5 : |

poor statistics,

g1 | Poorstatisies,

0.8 ~1O'3O measurements

079 T
078 R S — -
o7 L 4P A N N A
on Ll B
A . T
074 |/ B S — R . — -

0.73 ? 5 f | ? ;
o2 | g
0.71 | | | | | | |

fit(N,) = a — be~Ns

Bayesian fit:

y2/dof = 7.0/5

a = 0.8089(52) [1.0(5)]
b =0.076(20) [0.5(5)]
c =0.213(67) [0.17(8)]

e rate of decay exp(—AL) implies scale, A = 247(78) MeV ~ T

e infinite volume radius of curvature, r = 8.86(3) m
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... GR temperature dependence

aN(a6)’, a =0.17fm, L = 1.02 fm
0.925 ; , ! ? l

092+ T ? S N

0915 F o — e —— -

oot ||

0.905 T SN S T -

S&ID (N, N3)

ol T

os| %
poor statistics, = []]

0.89 o B o |
~10-30 measurements

0.1 0.12 0.14 0.16 0.18 0.2 0.22

1/N;

e relativistic thermodynamics (for static ideal fluid), Ty /gy = constant Tolman, 1930

e guantum corrections to Newtonian gravity decrease with T Brandt, Frenkel, McKeon, Sakoda, 2023

e suggests 0;R <0
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Summary and outlook

e preliminary lattice implementation of weak-tield, Euclidean GR
- low energy effective theory of quantum gravity
- complementary to analytic, perturbative efforts (both weak-field)

* needs further study/understanding
- autocorrelations/statistics
- discretisation effects

e working on coupling to QCD vacuum
- if gravity quantum, coupling too small for machine precision, Pl factorizes
- if gravity classical
~ back reaction of quantum theory on a classical background (believe novel)
> no-go theorem enhanced cross-talk

see, e.g., Oppenheim, 2021

21



Thank you.
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... constrain spacetime on the boundary

e constrain induced metric on boundary

‘ (1 0 O)
gl =010 P oV
N0 01 !
= for x, € dV, h,(x) =0 for y,v #p . U
e constrain induced metric to asymptote
to Euclidean metricon dV, p:-0g b 0
- for 1st order forward finite difference, P | oV

B+ ap) = Iy, (x) = O for v # p
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... constrain spacetime on the boundary

e with spherical symmetry 0V always 3D

/
’
’
’
’
’
’
’

e edges and corners of hypercube have D < 3

e on edges and in corners, constraint imposed on lower-D 0V

oV



... constrain spacetime on the boundary

6a)*, a = 0.17 fm, RYD

1 | | | |
0.8 —
S 0.6 |- .
AR
g
O 04 L i
02 unconstrained ——— -
constrained ———
0 | | |
0 50 100 150 200
configuration

e positive action conjecture “if spacetime asymptotes to flat, then Sggr > 0”
- demanding Sgr = 0 doesn’t ensure asymptotic flatness

- without asymptotic flatness, 6Sgr = 0 & Einstein field equations

e increased curvature in bulk without boundary constraint



.. positive action constraint

RYV(x) < 0 acceptance vs spacetime volume
| | | | | | |

[

acceptance %
O = NN W A WU NN 0 \ OO
|
H
|

)
L
N
)
@)\
<
o0
\O
—
-

min(N,, N,)

* |ocal violations of positive action conjecture are (at least in part) due to finite volume
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... positive action constraint

RYVD(x) < 0 acceptance vs a : 6%

7 T T TTI T T TTI I T TTI I T TTTm T T TTI T T TTI I IIIIIII|

P

O
S 1
D]
Q
o
s
& 55 L |
Q
Q
(v}

5—% |

4.5 ] IIIIIII| ] IIIIIII| ] IIIIIII| ] IIIIIII| ] IIIIIII| ] IIIIIII| ] IIIIIII|

le-08 1e-06 1e-04 1e-02 1e+00 1le+02 1le+04 1e+06

al/fm

e Minor impact on autocorrelation from lattice spacing



Add QCD and look for interplay

e path integral quantised GR
- fine as low energy EFT for quantum gravity
- historically useful beyond weak-field with nontrivial background metric,
e.g. black hole area-entropy law

* my motivation was preparation for next step

* to avoid pathologies in coupling classical GR to quantum theory of QCD
e.g., Oppenheim (2021)

2R, — Rg,, = 16xT,

classical quantum

- couple GR to quantum fluctuations of QCD, not to expectation values

- = GR must live in the path integral and respond to QCD fluctuations
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interaction of GR and QCD

e expected QCD and GR interaction via cross-term

trh
\/detgff — gGR+ gQCE +73QCD

e cross-term negligible: trhZocp ~ O(107"), L ~ 6(1), and Zocp ~ O(10)

* however, to couple classical and quantum theories, leading order terms are linked by

contributions to Socp + Sgr

prob(U, h) = EXp [— <SQCD(U) + SGR(h)>]

e as path integral samples paths in (U, h) space, QCD and GR collaborate in
their contributions to action
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... phenomenological applications

o extent of impact of QCD vacuum on curvature, with T as proxy for age of universe

e temperature study of GR + QCD simulation

- what happens to spacetime across QCD confining phase transition

e Einstein field equations

2R, — Rg,, = 16xT,

- LHS without QCD should give T/S//) for spacetime without matter

- add QCD and compare LHS to T, from LQCD

o effect of GR on QCD entanglement
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