

en stenska essen Hint Korstanisti Rij Henrik Korstanist

SECONDERESENTATION INCOMENTS

CARDING CONTINUES.

Fine grinding localized updates via gauge equivariant flows in the 2D Schwinger model

> 31. July 2023 Lattice 2023

Fermilab - Virtual Contribution - 16:40

Jacob Finkenrath

Table of Content

Motivation

- Critical slowing down and MCMC-algorithms
 - ✤ Acceptance rate
 - Flow Proposal

Localization

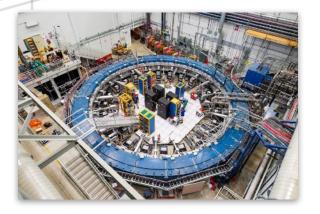
- Fixed boundaries
- Fine graining flows
 - ✤ Maps
 - Topological loss
 - ✤ MCMC-strategie

Results

- Fine-grain -updates
- Topological transitions
- Comparison with other Global Correction approaches

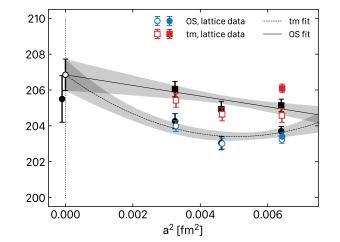
Conclusion and Outlook

Motivation



Critical slowing down

- towards fine lattice spacing, autocorrelation increases proportional to the inverse of the lattice spacing
- In gauge theories, this is even more severe due to topological freezing
 - Currently not possible to simulate a < 0.04 fm with periodic BC



How to fix ? Concept of MCMC:

1. Propose U' according to $T_0(U \to U')$ 2. Accept-reject $P_{acc}(U \to U') = \min\left[1, \frac{\tilde{\rho}(U)\rho(U')}{\rho(U)\tilde{\rho}(U')}\right]$

Works if:

- (1.) proposal can decorrelate/ has high topological tunnelling rate
- (2.) Acceptance rate is high

Acceptance rate

Acceptance step:

$$P_{acc}(U \to U') = \min\left[1, \frac{\tilde{\rho}(U)\rho(U')}{\rho(U)\tilde{\rho}(U')}\right]$$

Distributions $(\tilde{\rho}(U)\rho(U'))/(\rho(U)\tilde{\rho}(U'))$ log-normal distributed for the acceptance rate follows

$$P_{acc} = \operatorname{erfc}\{\sqrt{\sigma^2(\Delta S)/8}\}$$

with

$$\Delta S = \ln\{\rho(U')\} - \ln\{\rho(U)\} + \ln\{\tilde{\rho}(U)\} - \ln\{\tilde{\rho}(U')\}$$

Creutz, Phys. Rev. D38 (1988) 1228–1238

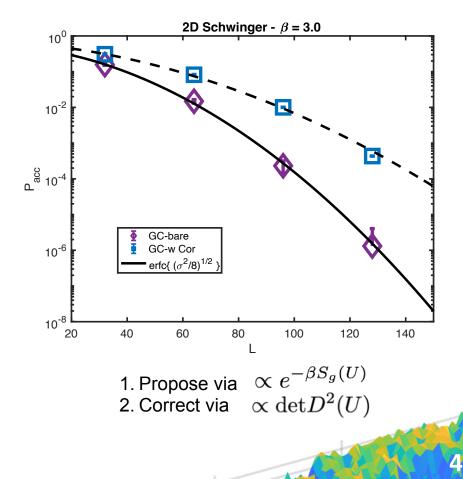
How to control the variance $\sigma^2(\Delta S)$

- Reduce degrees of freedom within the proposal
 e.g. Domain decomposition

BERGISCHE UNIVERSITÄT WUPPERTAL

Boltzmann weight

$$\rho(U) = \det D^2(U) e^{-\beta S_g(U)}$$



Proposal

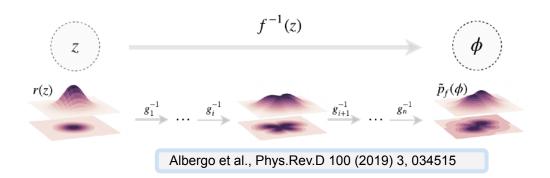
Propose U' according to

$$T_0(U \to U')$$

Allow topological tunneling

- One choice: trivialising flows
 - start with uniform distribution $r(U_0)$
 - Flow back to target distribution using coupling
 - layers $f^{-1}(U_0) \to U$

Flow distribution is given by the Jacobian over the coupling layers $\tilde{\rho}(U) = r(f(U)) \cdot \left| \det \frac{\partial f(U)}{\partial U} \right|$



WUPPERTAL

Idea: train coupling layers: $\min \left(\sigma^2(\Delta S)\right)$

* Train Networks: $\ \widetilde{\rho}(U) pprox \rho(U)$

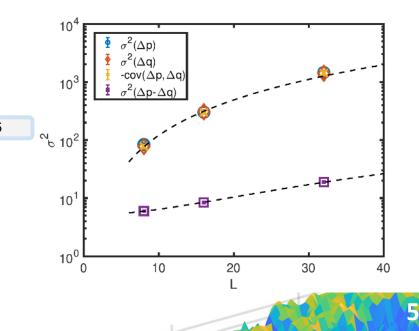
Kanwar et al., Phys.Rev.Lett.125 (2020) 12, 121601	Albergo et al., Phys.Rev.D 100 (2019) 3, 034515
Boyda et al., Phys.Rev.D 103 (2021) 7, 074504	Albergo et al., arXiv:2101.08176

Volume fluctuations

Localized models:

$$\sigma^{2}(S) = \langle S^{2} \rangle - \langle S \rangle^{2} = V(a_{0} + a_{1}e^{-d} + a_{2}e^{-\sqrt{2}d} + \dots)$$

✤ Variance scales with the volume, acceptance rate is rapidly 0



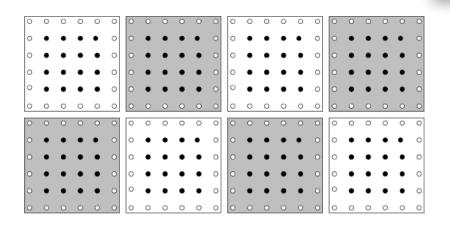
Localization: Domain Decomposition

Idea: Decomposition of lattice into domain

Separate action into:

$$S_{global} = \sum_{blk} S_{local} + I(S_{global}, S_{local})$$

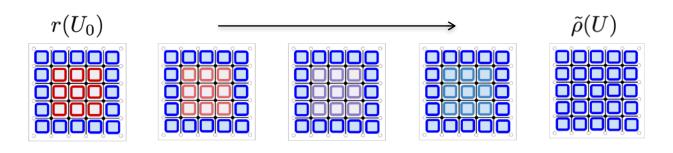
Decomposition straightforward for ultra local lattice actions

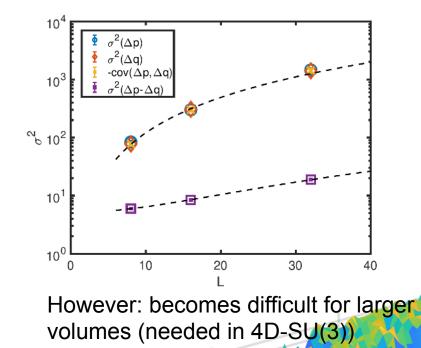


Taken from: M. Luscher, CPC 165 (2005) 199-220

Domain Decomposition of normalizing flow

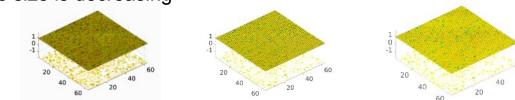
 update only links/variables inside blocks by creating maps of active links within each block



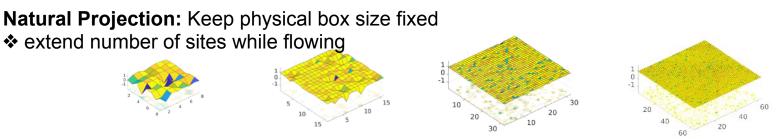


Fine graining flows

Standard Map: Keep L/a fixed
Physical lattice size is decreasing



Flow maps:



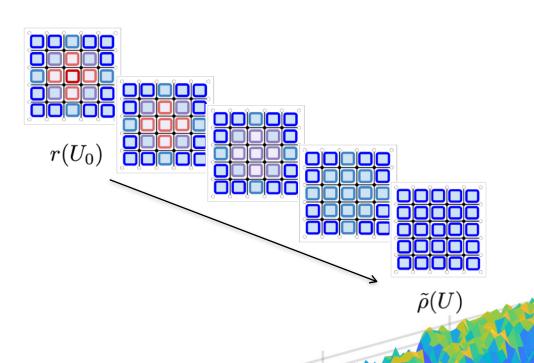
Idea: Effective coarse to fine graining

- like multi-tempering approaches
 - successfully applied in 4D-SU(N)

C. Bonati et al., PRD 99, 054503 (2019)

Here: use local flow transformations

- needs adjustments/modifications
 - Maps: localization of updates
 - Training conditions / loss function
- Train for topological tunneling

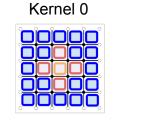


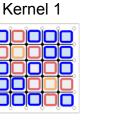
Training techniques

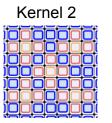
Localized update:

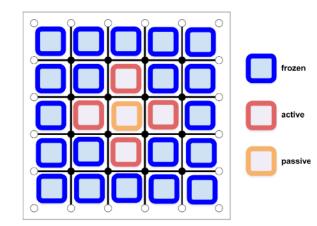
Center symmetric update

- only randomise all 4 links of center plaquette
- in 2D use a max. compact map
 - ✦ active to passive ratio = 4:1









BERGISCHE UNIVERSITÄT WUPPERTAL



In line with Kanwar et al., Phys.Rev.Lett.125 (2020) 12, 121601

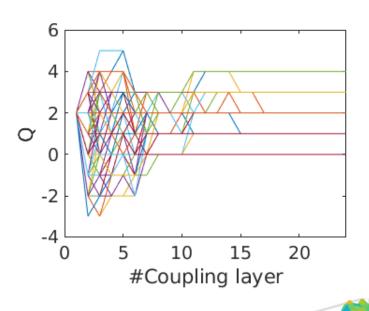
Modification of the loss-function: Training for topological transitions

by modification of the loss-function

$$L = \ln(\tilde{\rho}(U')/\rho(U')) \cdot |Q(U') - Q(U)|$$

Train transitions using only four uniformed links Correlations need to be smeared out

Correlations need to be smeared of
 otherwise fancy plaquette update



WUPPERTAL

Grinding the fine graining

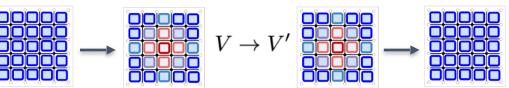
Graining needs change of update procedure:

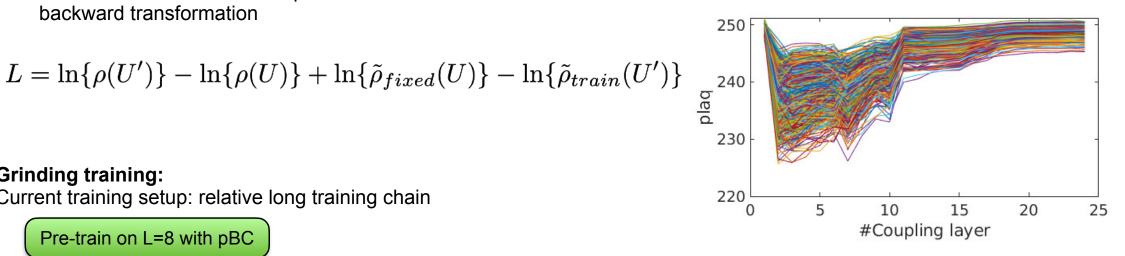
Requires back transformation before the update Currently: for training fix backward transformation

a second second

- and update occasionally
- Allows for new loss-function
 - Works in combination with topo. loss and fixed backward transformation

$$f(U) = V$$





-

 $f^{-1}(V') = U'$

Grinding training:

Current training setup: relative long training chain

Retrain on L=16 with fixed ρ

Build up chain via intermediate loss

Fine tune with updated

ρ

FOR 5269

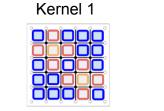
Fine Graining Flows

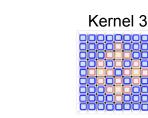
BERGISCHE UNIVERSITÄT WUPPERTAL

♦ Updates at β = 11.25
♦ Kernel 1-3 used Use 3x[1, 3, 2] + 2 with shifts

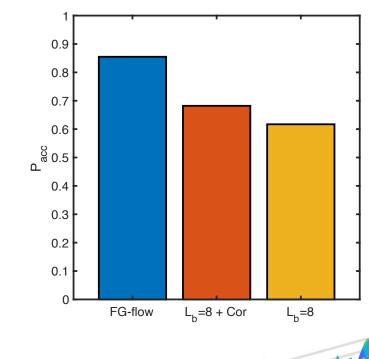
.

FO





1000



5

10

Local updates also increase block determinants acceptance rate

$$P_{acc}^{(b)}(U \to U') = \min\left[1, \frac{\det(D^b(U'))^2}{\det(D^b(U))^2}\right]$$

Kernel 2

Using an Fine Grain - flow update within a L=16 box
 Acceptance rates of Pacc ~ 0.85 can be reached

Flow updates within L=8 box is reaching Pacc ~ 0.6 %

Results: Tunneling rate

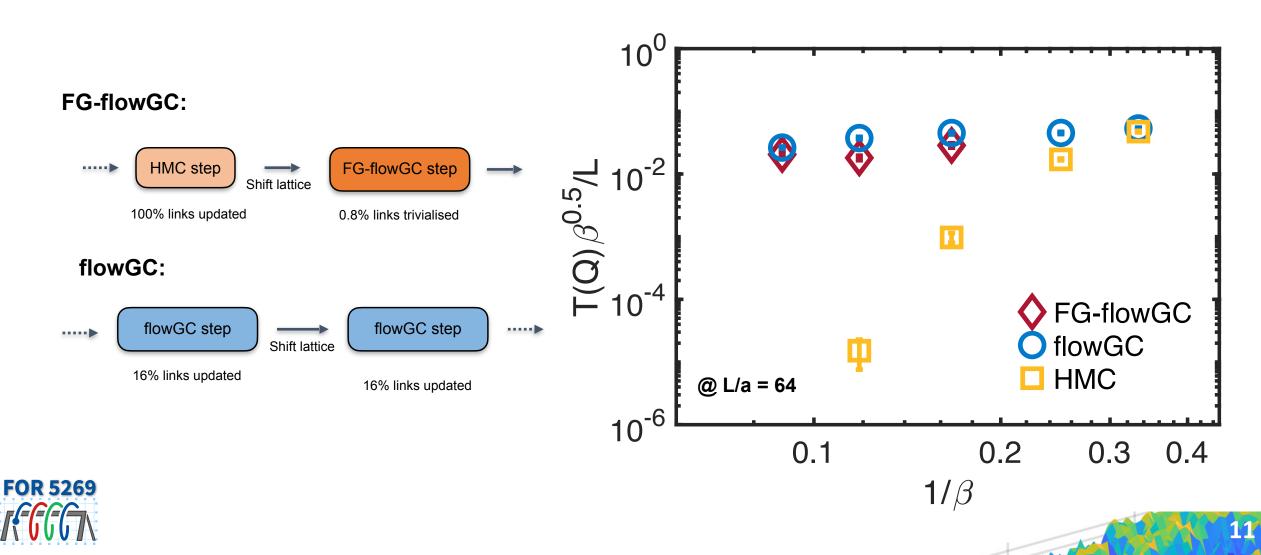
1 and a state

BERGISCHE UNIVERSITÄT WUPPERTAL

Tunneling rate:

$$T(Q) = \langle |Q_i - Q_{i+1}| \rangle$$

Flow enables simulations beyond beta > 6.0



Global Corrections with Fermions

Recursive Domain Decomposition

Action with fermions:

$$\rho(U) = Z^{-1} \left(\prod_{j}^{N_f} \det D_j(U) \right) e^{-\beta_g(U)}$$

1 ...

with $\det D(U)$ is a *localised* action

* distance interaction decays with $cov(x,y) \propto \exp\{-m_{PS}|x-y|\}$

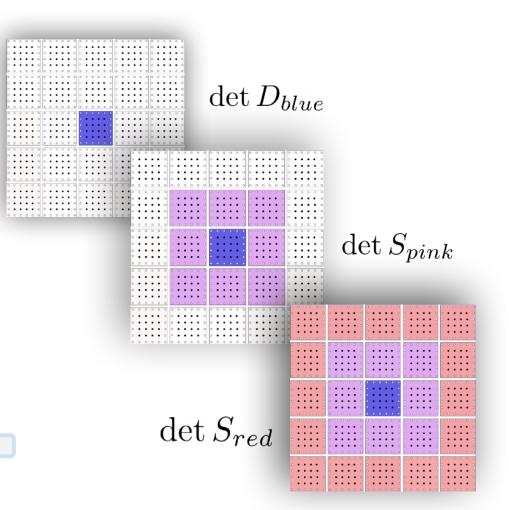
Idea: using exact decomposition of fermion action:

$$\det D = \det S_{red} \cdot \det S_{pink} \cdot \det D_{blue}$$

`

effective long range decomposition of the fermion determinant

M. Luscher, CPC 165 (2005) 199-220	J.F. et al., CPC 184 (2013) 1522-1534
M. Cè et al., Phys.Rev.D 93 (2016) 9, 094507	M. Cè et al., Phys.Rev.D 95 (2017) 3, 034503

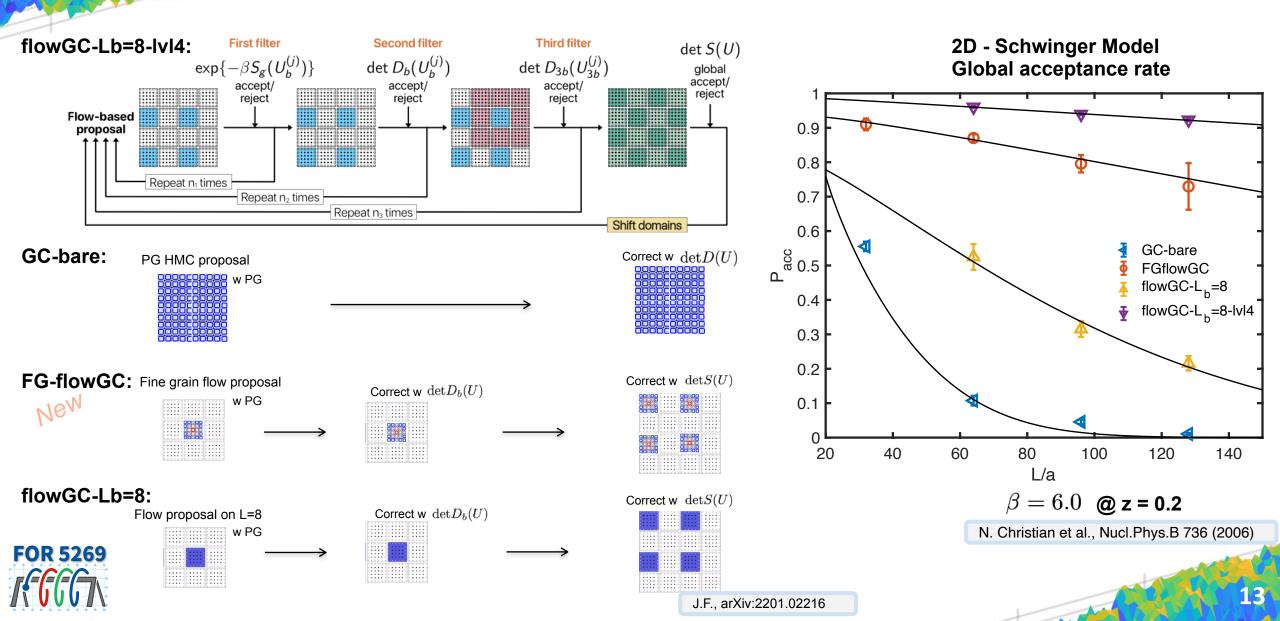


12

Correction steps With Fermions

A state of the sta

Fermion Corrections via hierarchical Filter and flow-based pure gauge updates



Conclusion

How to design proposals with topological tunnelling ?

Fine graining updates in 2D-U(1)

- Aller

Use flow maps to smooth out defect

- currently grinding task to train
- Minimal change of degrees of freedom

Leads to

 higher acceptance rate within the fermion correction step

✤Leads to topological decoupling

Next step:

- ✤ improve training procedure, less grinding …
- ✤ apply procedure to 4D-SU(3)

