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1 Introduction

We present a new take on low-mode averaging, where the
dimension of the low-mode subspace is increased by exploi-
ting local coherence of low modes. The fraction of the quark
propagator captured by this subspace can easily be volume
averaged or sampled excessively and reaches gauge variance
with lower computational cost than using the stochastic esti-
mator. The remainder piece can be sampled stochastically by
solving the Dirac equation.

2 Observable of interest

We are interested in the two-point connected vector cor-
relator needed to evaluate HVP contribution to the muon
g − 2, given by

G(t) =
1

3|Ω|
3∑

k=1

∑

y∈Ω

∑

x⃗∈Λ3

Ck(y0 + t, x⃗|y), (1)

Ck(x|y) = trCD

[
γkD

−1(x|y)γkD−1(y|x)
]
. (2)

→ Usually Ω ⊂ Λ with |Ω| ≈ O(10− 100)

→ Ideally Ω = Λ (full lattice volume average =⇒ gauge
noise reached)

3 Ensembles

We studied the CLS Nf = 2 ensembles [2] listed below.

Name Size [L3 × T ] Pion mass a [fm] # configs
D5d 243 × 48 439 MeV 0.0658(10) 100
F7 483 × 96 268 MeV 0.0658(10) 100

4 Quark propagator

We can evaluate the quark propagator in different ways, i.e.

D−1(x|y) ≈ 1

Nst

Nst∑

r=0

ψ[r](x)η[r](y)
†, (stochastic)

D−1(x|y) =
12V∑

i=1

1

λi
γ5ξi(x)ξi(y)

†. (spectral)

(stochastic) is an all-to-all propagator by solving Dψ[r] = η[r]
for every source.

(spectral) is obtained using the eigenmodes of the Hermitian
Dirac operator Q = Dγ5, i.e. Qξi = λiξi.

The goal is to decompose the propagator according to the
variance of G(t) into two pieces,

D−1(x|y) = D−1
L (x|y) +D−1

H (x|y). (4)

5 Low-mode averaging

Low-mode averaging (LMA) [6,7] is a technique to decom-
pose the propagator in the following way:

D−1
L (x|y) =

Ns∑

i=1

1

λi
γ5ξi(x)ξi(y)

†, (5a)

D−1
H (x|y) = PD−1(x|y). (5b)

and is has found many applications in precise lattice calculati-
ons over the years, including the HVP of the muon g−2 [1,3,4].

• P is the projector away from the low-mode subspace

• We need to determine Ns exact low-modes of Q = Dγ5

−Ns ≈ O(1000) on large lattices [1,3,4]

− Very expensive to determine O(1000) low modes

+ Beneficial, since eigenmodes can be recycled for other ob-
servables

• Predominantly used in physical pion mass scenarios

− Huge memory and storage demands

• Low-mode piece of observables is calculated exactly, since
the subspace dimension is only O(1000)

• Many different ways to calculate remainder terms (X,HH),
see eq. (6)

6 Local coherence

The property of local coherence [5, 8] says that low modes
have similar local properties, i.e. only a few block-projected
low modes may represent many low modes very well (see
Figure 1).
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Figure 1: Block decomposition (left) and local coherence of low modes
(right). The y-axis shows the percentage of how well the N-th low mode
(x-axis) is represented by a basis of only a few Ns block-projected modes.

7 Method

Key idea: Multiply the LMA-subspace dimension by the num-
ber of blocks (motivated by local coherence of low modes).
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low modes ξi
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Number
of low modes
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Figure 2: Schematic of the method.

+Ns ≈ O(100) on large lattices

+ Significantly cheaper than LMA, since we need only a
fraction of the low modes

+ Small memory and storage requirements

• Low-mode piece of observables is sampled excessively
using 100 − 1000 stochastic sources, since the subspace
dimension can go up to O(106) or larger

− Remainder terms (X,HH) can be estimated exact-
ly/stochastically depending on subspace size

+The stochastic noise on the remainder is smaller than the
stochastic noise on the sum

8 Results

Using the decomposition of the quark propagator, eq. (4), for
the two-point connected vector correlator, we find

G(t) = GLL(t) +GX(t) +GHH(t), (6)

and we study the contribution of each of the three terms,
depending on the number of blocks, Nb, and the number of
low modes, Ns.
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Figure 3: Contributions to the value of the correlator G(t), eq. (6), on D5d
lattice using different number of low modes Ns and different number of
blocks Nb. The black solid line is the sum of the three terms.
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Figure 4: The relative size of the variances on each component (LL, X, HH)
compared with their sum when estimated stochastically. Note the large
cancellation in the variance on the sum (solid black line) due to large
covariances. The block sizes (L3× T ) are; 1st row: no blocking (LMA), 2nd
row: 12× 12× 12× 24, 3rd row: 4× 4× 4× 4.
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Figure 5: Contributions to the variance (left) and value (right) of the
two-point vector correlator on F7. The block sizes (L3 × T ) are; left:
6× 6× 6× 6, right: no blocking (LMA).

In Figure 6, we see the variance of the correlator, equation (1),
with LMA and using the new method. For the evaluation of the
X- and HH-term, we use in all cases the same statistics (i.e.
same cost, but cost of determination of low-modes not
counted!).
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Figure 6: Comparison of variances of the pure stochastic, LMA and
blocked LMA estimators. D5d (left) and F7 (right) with Ns = 128, 100 low
modes and Nst = 32, 96 stochastic spin-diluted wall-sources, respectively.

9 Conclusion

•GLL is much cheaper to sample; needs only inversions of
the little Dirac operator A =⇒ sample excessively

•GHH has a small variance, when subspace is blocked (more
blocks → smaller variance) =⇒ sampled with low statistics

•GX is expensive to sample and has large variance, domi-
nates the total variance =⇒ still under investigation,
but if the LL-subspace is driven very large, we observe a
reduction of variance for this term (bottom rightmost plot in
Figure 4)

• On D5d: we see small improvement over the stochastic
and the traditional LMA-estimator with same cost

• On F7: we see no improvement
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