Hadronic vacuum polarization: comparing lattice QCD and data-driven results in systematically improvable ways

Laurent Lellouch

CPT Marseille
CNRS \& Aix-Marseille U.
for the BMW and DHMZ collaborations (in preparation)

Motivation

Significant tensions between lattice and data-driven (DD) results for HVP

- $\left[\Delta a_{\mu}^{\text {LO-HVP }}\right]_{\text {lat-DD }} \sim 2.1 \sigma{ }_{\text {[BMw20, wP }}{ }^{21]}$
- Simpler $\left[\Delta a_{\mu, \text { win }}^{\text {LO-HP }}\right]_{\text {at-DD }} \gtrsim 4 \sigma$ [Observable proposed in RBC/UKacD' 1 s]

\rightarrow origin of tensions?
\rightarrow comparison not trivial

Primary observables

- Lattice: compute with simulations

$$
C(t)=\frac{a^{3}}{3 e^{2}} \sum_{i=1}^{3} \sum_{\vec{x}}\left\langle J_{i}(\vec{x}, t) J_{i}(0)\right\rangle
$$

w/ $\frac{J_{\mu}}{e}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d-\frac{2}{3} \bar{s} \gamma_{\mu} s+\frac{2}{3} \bar{c} \gamma_{\mu} c-\frac{1}{3} \bar{b} \gamma_{\mu} b+\frac{2}{3} \bar{\tau} \gamma_{\mu} t$
$a_{\mu(, \text { win })}^{\text {LO-HVP }}, \hat{\Pi}\left(Q^{2}\right), \ldots$ are weigthed sums of $C(t)$ over t

- Data-driven: measure

$$
R(s) \equiv \frac{\sigma\left(e^{+} e^{-}(s) \rightarrow \text { hadrons }(+\gamma)\right)}{4 \pi \alpha^{2}(s) /(3 s)}
$$

$a_{\mu(, \text { win })}^{\text {LO-HP }}, \hat{\Pi}\left(Q^{2}\right), \ldots$ are weigthed integrals of $R(s)$ over s

[PDG compilation]

$$
C(t)=\frac{1}{24 \pi^{2}} \int_{0}^{\infty} d s \sqrt{s} R(s) e^{-|t| \sqrt{s}}
$$

- R-ratio \longrightarrow lattice: "straightforward"
\rightarrow integrate R-ratio
- Lattice \longrightarrow R-ratio: inverse Laplace transform
\rightarrow ill-posed problem

Requirements for comparison methodology

- Very few HVP quantities computed on lattice w/:
- all contributions to $C(t)$: flavors, various contractions, QED and SIB corrections
- all limits taken: $a \rightarrow 0, L \rightarrow \infty, M_{\pi} \rightarrow M_{\pi}^{\phi}, \ldots$
- None w/ correlations among lattice HVP observables
- None w/ uncertainties on these correlations (important for checking stability of inverse problem)
\rightarrow Want approach that:
- provides useful information w/ limited lattice input
- can be systematically improved w/ more lattice input
- can (eventually) incorporate physical constraints
- includes measure of agreement of lattice \& R-ratio results w/ comparison hypothesis
- accounts for all correlations in lattice and R-ratio observables ...
- ... including uncertainties on these
- Here use BMW'20: $a_{\mu}^{\text {LO-HVP }}, a_{\mu, \text { win }}^{\text {LO-HVP }} \& \delta\left(\Delta_{\text {had }}^{(5)} \alpha\right) \equiv \Delta_{\text {had }}^{(5)} \alpha\left(-1 \rightarrow-10 \mathrm{GeV}^{2}\right)$ (preliminary)

Lattice covariances: method

- Uncertainties and correlations critical for comparisons
- Use extension of BMW error method with stat resampling and syst histogram w/ flat and AIC weights [BMw 08, , 15 , '20, see also Neil etal 23 , Pinto e tal ${ }^{23]}$
\rightarrow for observables $\left\{a_{j}\right\}=\left\{a_{\mu}^{\text {LO-HVP }}, a_{\mu, \text { win }}^{\text {LO-HVP }}, \delta\left(\Delta_{\text {had }}^{(5)} \alpha\right), \cdots\right\}$

$$
\begin{aligned}
H\left(\left\{a_{j}\right\}\right)=\sum_{\psi^{\text {corr }},\left\{\psi_{j}^{\text {aic }}, \psi_{j}^{\text {fiat }}\right\}} & \mathcal{N}_{N_{\mathcal{O}}}\left[\left\{a_{j}\right\},\left\{\overline{a_{j}}\right\}\left(\psi^{\text {corr }},\left\{\psi_{j}^{\text {aic }}, \psi_{j}^{\text {flat }}\right\}\right), C^{\text {stat }}\left(\psi^{\text {corr }},\left\{\psi_{j}^{\text {tat }}, \psi_{j}^{\text {aic }}\right\}\right)\right] \\
& \times \Pi_{j} \omega_{j}\left(\psi^{\text {corr }}, \psi_{j}^{\text {aic }}, \psi_{j}^{\text {fiat }}\right)
\end{aligned}
$$

w/

$$
\left.\omega_{j}\left(\psi^{\text {corr }}, \psi_{j}^{\text {aic }}, \psi_{j}^{\text {flat }}\right)\right)=\frac{\operatorname{aic}\left(\psi^{\text {corr }}, \psi_{j}^{\text {aic }}, \psi_{j}^{\text {flat }}\right)}{\sum_{\psi_{j}^{\text {aic }}} \operatorname{aic}\left(\psi^{\text {corr }}, \psi_{j}^{\text {aic }}, \psi_{j}^{\text {flat }}\right)}
$$

- Build matrix from 1D distributions
- Separate stat. \& syst. by solving ($\lambda=2$)

$$
\begin{aligned}
C & =C^{\text {stat }}+C^{\text {syst }} \\
C_{\lambda} & =\lambda C^{\text {stat }}+C^{\text {syst }}
\end{aligned}
$$

- $\delta\left(\Delta_{\text {had }}^{(5)} \alpha\right)$ largely uncorrelated w/ other two observables
- Uncertainties and correlations of $a_{\mu}^{\text {LO.HVP }} \& a_{\mu, \text { win }}^{\text {LO.HV }}$ contributions (units of 10^{-10})

- Double peak \rightarrow consider 1σ \& 2σ intervals

Uncertainties on lattice covariances

- Uncertainties on covariance matrix can compromise the inverse problem
- Stat error estimated from bootstrap on only 48 jackknife samples (sufficient for this study)
- Syst from:
- For: ud, s, QED, SIB connected, and disconnected
\rightarrow get uncertainties from 1 or 2σ quantiles
$\rightarrow 0$ or 100% correlations in $a \rightarrow 0$ uncertainties of $T=a_{\mu}^{\mathrm{LO}-\mathrm{HVP}}$ and $W=a_{\mu, \text { win }}^{\mathrm{LO}-\mathrm{HV}}$, w/ $C=T-W$

$$
C_{T W}=C_{T W}^{\text {other }}+\left[\begin{array}{cc}
(d W)^{2}+(d C)^{2} & \{0,1\} \times(d W)^{2} \\
\{0,1\} \times(d W)^{2} & (d W)^{2}
\end{array}\right]_{\text {cont }}
$$

- Similarly for c
\Rightarrow in units of 10^{-20} :

$$
\begin{array}{ll}
C_{\text {lat }}^{1 \sigma, 0 \%}=\left[\begin{array}{cc}
30.13(4.88) & -0.05(0.03) \\
-0.05(0.03) & 1.95(0.47)
\end{array}\right] & C_{\text {lat }}^{2 \sigma, 0 \%}=\left[\begin{array}{cc}
34.04(16.80) & 0.32(0.05) \\
0.32(0.05) & 1.12(0.07)
\end{array}\right] \\
C_{\text {lat }}^{1 \sigma, 100 \%}=\left[\begin{array}{cc}
30.13(4.88) & 1.56(0.03) \\
1.56(0.03) & 1.95(0.47)
\end{array}\right] & C_{\text {lat }}^{2 \sigma, 100 \%}=\left[\begin{array}{cc}
34.04(16.80) & 1.94(0.05) \\
1.94(0.05) & 1.12(0.07)
\end{array}\right]
\end{array}
$$

Testing lattice

- 1-by-1 comparisons

Observable	lattice [BMW '20]	data-driven	diff.	\% diff.	σ	p-value [\%]
$a_{\mu}^{\text {LO-HVP }} \times 10^{10}$	$707.5(5.5)$	$694.0(4.0)$	$13.5(6.8)$	$1.9(1.0)$	2.0	4.7
$a_{\mu, \text { win }}^{\text {LO-HVP }} \times 10^{10}$	$236.7(1.4)$	$229.2(1.4)$	$7.5(2.0)$	$3.2(0.8)$	3.8	0.01
$\delta\left(\Delta_{\text {had }}^{(5)} \alpha\right) \times 10^{4}$	$48.67(0.32)$	$48.02(0.32)$	$0.65(0.45)$	$1.3(0.9)$	1.4	15

\Rightarrow excess in $\left[\Delta\left(a_{\mu}^{\mathrm{LO}-\mathrm{HVP}}-a_{\mu, \text { win }}^{\mathrm{LO}-\mathrm{HVP}}\right)\right]_{\mathrm{lat}-\mathrm{DD}} \sim 6.0(7.9) \times 10^{-10}$

- Simultaneous comparisons w/ correlations

$$
\chi^{2}\left(a_{j}\right)=\sum_{j, k}\left[a_{j}^{\text {lat }}-a_{j}\right]\left[C_{\text {lat }}^{-1}\right]_{j k}\left[a_{k}^{\text {lat }}-a_{k}\right]+\sum_{j, k}\left[a_{j}^{\mathrm{R}}-a_{j}\right]\left[C_{\mathrm{R}}^{-1}\right]_{j k}\left[a_{k}^{\mathrm{R}}-a_{k}\right]
$$

\# observ.	$\chi^{2} /$ dof	p-value [\%]
2	$14.4 / 2-18.8 / 2$	$0.002-0.017$
3	$14.4 / 3-18.8 / 3$	$0.009-0.63$

- Some dilution compared to $a_{\mu, \text { win }}^{\text {LO.HVP }}$ alone, but still significant tension

Consequences for lattice $C(t)$

\Rightarrow SD:ID:LD windows: [using KNT148 compilation]

- 10\%:33\%:57\% for $a_{\mu}^{\text {LO.HVP }}$
- $70 \%: 29 \%: 1 \%$ for $\delta\left(\Delta_{\text {had }}^{(5)} \alpha\right)$
+ tensions and agreements above
\Rightarrow excess in $C(t)$ for $t \sim[0.4,1.5]$ fm
\Rightarrow probably for $t \gtrsim 1.5 \mathrm{fm}$
\Rightarrow possible suppression for $t \lesssim 0.4 \mathrm{fm}$ (mainly based on preliminary $\delta\left(\Delta_{\text {had }}^{(5)} \alpha\right)$)
- Chop a_{j}^{R} into contributions $a_{j b}^{\mathrm{R}}$ from same \sqrt{s}-intervals I_{b} for all j

$$
a_{j}^{\mathrm{R}}=\sum_{b} a_{j b}^{R}
$$

- To accommodate lattice results $a_{j}^{\text {lat }}$, allow common rescaling of $a_{j b}^{\mathrm{R}}$, for all j, in certain I_{b}

$$
a_{j}^{\text {lat }}=\sum_{b}\left(1+\delta_{b}\right) a_{j b}^{\mathrm{R}}
$$

\rightarrow simplest interpretation: R-ratio rescaled in I_{b}
\rightarrow however, constrains shape of R-ratio modification in limited way
$\rightarrow \Phi$ deformation may be allowed

- If $N_{j} \geq N_{b}$, system (over-)constrained
- Solve via weighted avg or χ^{2} minimization
\rightarrow compatible results
- None of these rescalings allowed by measured R-ratio

Testing R-ratio: results

Consider $a_{j}=a_{\mu}^{\text {LO-HVP }}, a_{\mu, \text { win }}^{\text {LO-HVP }}$ (2 observables) $w / a_{j}=\delta\left(\Delta_{\text {had }}^{(5)} \alpha\right)$ (3 observables)
$\rightarrow 2$ observables $\quad \rightarrow 3$ observables $\quad \rightarrow$ largest / $\quad 0$ smallest syst. var. p-value

- Stat and syst uncertainties on lattice covariance matrices do not change overall picture
- Summary of modifications of R-ratio allowed by lattice results ...

Testing R-ratio: results summary

Modifications to measured R-ratio that could explain lattice results are:

- possible in ρ-peak interval $[0.63,0.92] \mathrm{GeV}$ for $2 \& 3$ observables
\rightarrow requires rescaling of observables in that interval by $\sim(5.0 \pm 1.5) \%$
- disfavored in interval below ρ-peak, $\left[\sqrt{s_{\mathrm{th}}}, 0.63 \mathrm{GeV}\right]$
- but possible in $\left[\sqrt{S_{\mathrm{th}}}, \sqrt{s_{\max }}\right] \mathrm{w} / \sqrt{S_{\max }}: 0.96 \rightarrow 3.0 \mathrm{GeV}$ that include ρ-peak, for 2 \& 3 observables
\rightarrow rescalings $\sim(4 \pm 1) \% \rightarrow(3 \pm 1) \%$ for $\sqrt{s_{\max }} \nearrow$
- possible in $\left[\sqrt{S_{\text {min }}}, \infty\left[\mathrm{w} / \sqrt{S_{\text {min }}}: 0.63 \rightarrow 1.8 \mathrm{GeV}\right.\right.$, for 2 observables \rightarrow rescalings $\sim(3 \pm 1) \% \rightarrow(32 \pm 9) \%$ for $\sqrt{s_{\text {min }}}$
- but disfavored in $[3.0 \mathrm{GeV}, \infty[$, for $2 \& 3$ observables
- and adding $\delta\left(\Delta_{\text {had }}^{(5)} \alpha\right)$ constraint eliminates the possibility of rescalings in $\left[\sqrt{s_{\text {min }}}, \infty\left[\mathrm{w} / \sqrt{S_{\text {min }}}: 0.96 \rightarrow 3.0 \mathrm{GeV}\right.\right.$ that do not include ρ-peak

Conclusions

- Presented flexible method for comparing lattice QCD and data-driven HVP results
- Find that discrepancies/agreements between lattice and data-driven results for $a_{\mu}^{\text {LO-HVP }}, a_{\mu, \text { win }}^{\text {LO.HVP }}$ and $\delta\left(\Delta_{\text {had }}^{(5)} \alpha\right)$:

On lattice side, result, from:

- a $C(t)$ that is enhanced in $t \sim[0.4,1.5] \mathrm{fm}$
- also probably for $t \gtrsim 1.5 \mathrm{fm}$
- w/ possible suppression for $t \lesssim 0.4 \mathrm{fm}$ (mainly based on preliminary $\delta\left(\Delta_{\text {had }}^{(5)} \alpha\right)$)

On data-driven side, could be explained by:

- enhancing measured R -ratio around ρ-peak
- or in any larger interval including ρ-peak
- Lattice and measured R-ratio correlations critical for drawing such conclusions

Conclusions

- Important to check that uncertainties on uncertainties and correlations do not spoil picture, especially for inverse problem
\rightarrow checked here for lattice stat and syst uncertainties
\rightarrow must do so for measured R-ratio uncertainties
- Also important not to share results between 2 approaches before they are final (mutual blinding)
- W/ more HVP observables, many generalizations possible, also including Φ constraints
- However, limit on independent HVP observables in data-driven and lattice approaches (not shown)
- Same methods can be used to combine determinations of lattice and data-driven results for HVP observables, once differences are understood
- No problems w/ EWP fits in case of 3-observable comparisons (not shown)
- Windows proprosed in RBC/UKQCD arXiv:1801.07224
- Discussed in context of detailed comparison in Colangelo et al arXiv:2205.12963
- Consequences of rescaling of measured R-ratio studied in Crivellin et al arXiv:2003.04886, Keshavarzi et al arXiv:2006.12666, de Rafael arXiv:2006.13880, Malaescu et al arXiv:2008.08107
- Consequences of lattice $a_{\mu}^{\text {LO-HVP }}$ on $\pi^{+} \pi^{-}$contributions to R-ratio w/ Φ constraints in Colangelo et al arXiv:2010.07943
- Use of Backus-Gilbert method for reconstruction of smeared R-ratio from lattice $C(t)$ in Hansen et al arXiv:1903.06476, Alexandrou et al arXiv:2212.08467
- Proposal for comparing measured R-ratio and lattice $C(t)$ via spectral-width sumrules in Boito et al arXiv:2210.13677
- ... (many other references for reconstructing spectral functions from lattice correlators)

