Hadronic vacuum polarization: comparing lattice QCD and data-driven results in systematically improvable ways

Laurent Lellouch

CPT Marseille CNRS & Aix-Marseille U.

for the BMW and DHMZ collaborations (in preparation)

T.

Laurent Lellouch

Lattice 2023, Fermilab, Aug. 1 2023

Motivation

Significant tensions between lattice and data-driven (DD) results for HVP

- $[\Delta a_{\mu}^{ ext{LO-HVP}}]_{ ext{lat-DD}}\sim 2.1\sigma$ [BMW'20, WP'21]
- Simpler $[\Delta a_{\mu,{
 m win}}^{
 m LO-HVP}]_{
 m lat-DD}\gtrsim4\sigma$ [Observable proposed in RBC/UKQCD'18]

- \rightarrow origin of tensions?
- \rightarrow comparison not trivial

Primary observables

Lattice: compute with simulations

$$\mathcal{C}(t) = rac{a^3}{3e^2}\sum_{i=1}^3\sum_{ec{x}}\left\langle J_i(ec{x},t)J_i(0)
ight
angle$$

 $\mathbf{w} / \frac{J_{\mu}}{\theta} = \frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d - \frac{2}{3} \bar{s} \gamma_{\mu} s + \frac{2}{3} \bar{c} \gamma_{\mu} c - \frac{1}{3} \bar{b} \gamma_{\mu} b + \frac{2}{3} \bar{t} \gamma_{\mu} t$

 $a_{\mu(,\text{win})}^{\text{LO-HVP}}$, $\hat{\Pi}(Q^2)$, ... are weighted sums of C(t) over t

Data-driven: measure

$$R(s) \equiv rac{\sigma(e^+e^-(s)
ightarrow ext{hadrons}(+\gamma))}{4\pi lpha^2(s)/(3s)}$$

 $a_{\mu(,\text{win})}^{\text{LO-HVP}}$, $\hat{\Pi}(Q^2)$, ... are weigthed integrals of R(s) over s

[PDG compilation]

Lattice \leftrightarrow R-ratio

$$C(t) = \frac{1}{24\pi^2} \int_0^\infty ds \sqrt{s} R(s) \, e^{-|t|\sqrt{s}}$$

[Bernecker et al '11]

- R-ratio —> lattice: "straightforward"
 - \rightarrow integrate R-ratio
- Lattice \longrightarrow R-ratio: inverse Laplace transform
 - \rightarrow ill-posed problem

Requirements for comparison methodology

- Very few HVP quantities computed on lattice w/:
 - all contributions to C(t): flavors, various contractions, QED and SIB corrections
 - all limits taken: $a \to 0, L \to \infty, M_{\pi} \to M_{\pi}^{\phi}, \ldots$
- None w/ correlations among lattice HVP observables
- None w/ uncertainties on these correlations (important for checking stability of inverse problem)
- → Want approach that:
 - provides useful information w/ limited lattice input
 - can be systematically improved w/ more lattice input
 - can (eventually) incorporate physical constraints
 - includes measure of agreement of lattice & R-ratio results w/ comparison hypothesis
 - accounts for all correlations in lattice and R-ratio observables
 - ... including uncertainties on these

• Here use BMW'20: $a_{\mu}^{\text{LO-HVP}}$, $a_{\mu,\text{win}}^{\text{LO-HVP}}$ & $\delta(\Delta_{\text{had}}^{(5)}\alpha) \equiv \Delta_{\text{had}}^{(5)}\alpha(-1 \rightarrow -10 \text{ GeV}^2)$ (preliminary)

Lattice covariances: method

- Uncertainties and correlations critical for comparisons
- Use extension of BMW error method with stat resampling and syst histogram w/ flat and AIC weights [BMW '08, '15, '20, see also Neil et al '23, Pinto et al '23]

 \rightarrow for observables $\{a_j\} = \{a_{\mu}^{\text{LO-HVP}}, a_{\mu,\text{win}}^{\text{LO-HVP}}, \delta(\Delta_{\text{had}}^{(5)}\alpha), \cdots \}$

 $\begin{aligned} H(\{a_j\}) &= \sum_{\psi^{\text{corr}}, \{\psi_j^{\text{flat}}, \psi_j^{\text{flat}}\}} \quad \mathcal{N}_{\mathcal{N}_{\mathcal{O}}}[\{a_j\}, \{\overline{a_j}\}(\psi^{\text{corr}}, \{\psi_j^{\text{flat}}, \psi_j^{\text{flat}}\}), C^{\text{stat}}(\psi^{\text{corr}}, \{\psi_j^{\text{flat}}, \psi_j^{\text{alc}}\})] \\ &\times \Pi_j \omega_j(\psi^{\text{corr}}, \psi_j^{\text{alc}}, \psi_j^{\text{flat}}) \end{aligned}$

w/

$$\omega_{j}(\psi^{\text{corr}},\psi^{\text{aic}}_{j},\psi^{\text{flat}}_{j})) = \frac{\operatorname{aic}(\psi^{\text{corr}},\psi^{\text{aic}}_{j},\psi^{\text{flat}}_{j})}{\sum_{\psi^{\text{aic}}_{j}}\operatorname{aic}(\psi^{\text{corr}},\psi^{\text{aic}}_{j},\psi^{\text{flat}}_{j})}$$

- Build matrix from 1D distributions
- Separate stat. & syst. by solving ($\lambda = 2$)

$$egin{array}{rcl} C &= & C^{ ext{stat}} + C^{ ext{syst}} \ C_{\lambda} &= & \lambda \ C^{ ext{stat}} + C^{ ext{syst}} \end{array}$$

Lattice covariances: results

- $\delta(\Delta_{had}^{(5)}\alpha)$ largely uncorrelated w/ other two observables
- Uncertainties and correlations of $a_{\mu}^{\text{LO-HVP}}$ & $a_{\mu,\text{win}}^{\text{LO-HVP}}$ contributions (units of 10⁻¹⁰)

• Double peak \rightarrow consider 1 σ & 2 σ intervals

Uncertainties on lattice covariances

- Uncertainties on covariance matrix can compromise the inverse problem
- Stat error estimated from bootstrap on only 48 jackknife samples (sufficient for this study)
- Syst from:
 - For: ud, s, QED, SIB connected, and disconnected
 - ightarrow get uncertainties from 1 or 2σ quantiles
 - \rightarrow 0 or 100% correlations in $a \rightarrow$ 0 uncertainties of $T = a_{\mu}^{\text{LO-HVP}}$ and $W = a_{\mu,\text{win}}^{\text{LO-HVP}}$, w/ C = T W

$$C_{TW} = C_{TW}^{\text{other}} + \begin{bmatrix} (dW)^2 + (dC)^2 & \{0,1\} \times (dW)^2 \\ \{0,1\} \times (dW)^2 & (dW)^2 \end{bmatrix}_{\text{con}}$$

• Similarly for c

 \Rightarrow in units of 10⁻²⁰:

$$C_{\text{lat}}^{1\sigma,0\%} = \begin{bmatrix} 30.13(4.88) & -0.05(0.03) \\ -0.05(0.03) & 1.95(0.47) \end{bmatrix} \qquad C_{\text{lat}}^{2\sigma,0\%} = \begin{bmatrix} 34.04(16.80) & 0.32(0.05) \\ 0.32(0.05) & 1.12(0.07) \end{bmatrix}$$
$$C_{\text{lat}}^{1\sigma,100\%} = \begin{bmatrix} 30.13(4.88) & 1.56(0.03) \\ 1.56(0.03) & 1.95(0.47) \end{bmatrix} \qquad C_{\text{lat}}^{2\sigma,100\%} = \begin{bmatrix} 34.04(16.80) & 1.94(0.05) \\ 1.94(0.05) & 1.12(0.07) \end{bmatrix}$$

• 1-by-1 comparisons

Observable	lattice [BMW '20]	data-driven	diff.	% diff.	σ	p-value [%]
$a_{\mu}^{\text{LO-HVP}} imes 10^{10}$	707.5(5.5)	694.0(4.0)	13.5(6.8)	1.9(1.0)	2.0	4.7
$a_{\mu,\mathrm{win}}^{\mathrm{LO-HVP}} imes10^{10}$	236.7(1.4)	229.2(1.4)	7.5(2.0)	3.2(0.8)	3.8	0.01
$\delta(\Delta_{ m had}^{(5)}lpha) imes 10^4$	48.67(0.32)	48.02(0.32)	0.65(0.45)	1.3(0.9)	1.4	15

 $\Rightarrow~$ excess in $[\Delta(a_{\mu}^{ ext{LO-HVP}}-a_{\mu, ext{win}}^{ ext{LO-HVP}})]_{ ext{lat-DD}}\sim 6.0(7.9) imes 10^{-10}$

• Simultaneous comparisons w/ correlations

$$\chi^2(a_j) = \sum_{j,k} \left[a_j^{\mathsf{lat}} - a_j
ight] [C_{\mathsf{lat}}^{-1}]_{jk} \left[a_k^{\mathsf{lat}} - a_k
ight] + \sum_{j,k} \left[a_j^{\mathsf{R}} - a_j
ight] [C_{\mathsf{R}}^{-1}]_{jk} \left[a_k^{\mathsf{R}} - a_k
ight]$$

# observ.	χ^2/dof	p-value [%]
2	14.4/2 - 18.8/2	0.002 - 0.017
3	14.4/3 - 18.8/3	0.009 - 0.63

• Some dilution compared to $a_{\mu,\text{win}}^{\text{LO-HVP}}$ alone, but still significant tension

Consequences for lattice C(t)

⇒ SD:ID:LD windows: [using KNT'18 compilation]

- 10%:33%:57% for $a_{\mu}^{\text{LO-HVP}}$
- 70%:29%:1% for δ(Δ⁽⁵⁾_{had}α)

+ tensions and agreements above

- \Rightarrow excess in C(t) for $t \sim [0.4, 1.5]$ fm
- \Rightarrow probably for $t \gtrsim 1.5 \, \text{fm}$
- \Rightarrow possible suppression for $t \leq 0.4 \, \text{fm}$ (mainly based on preliminary $\delta(\Delta_{had}^{(5)} \alpha)$)

Testing R-ratio: methodology

• Chop a_j^{R} into contributions a_{jb}^{R} from same \sqrt{s} -intervals I_b for all j

$$a_j^{\mathsf{R}} = \sum_b a_{jb}^{\mathsf{R}}$$

To accommodate lattice results a^{jat}_j, allow common rescaling of a^R_{jb}, for all j, in certain I_b

$$a_{j}^{ ext{lat}} = \sum_{b} (1+\delta_{b}) a_{jb}^{\mathsf{R}}$$

- \rightarrow simplest interpretation: R-ratio rescaled in I_b
- → however, constrains shape of R-ratio modification in limited way
- $\rightarrow \Phi$ deformation may be allowed
- If $N_j \ge N_b$, system (over-)constrained
- Solve via weighted avg or χ² minimization
 → compatible results
- None of these rescalings allowed by measured R-ratio

Testing R-ratio: results

Consider $a_j = a_{\mu}^{\text{LO-HVP}}$, $a_{\mu,\text{win}}^{\text{LO-HVP}}$ (2 observables) w/ $a_j = \delta(\Delta_{\text{had}}^{(5)} \alpha)$ (3 observables)											
📥 2 observables	🔫 3 observa	bles	- la	rgest /	-O- smallest	syst. var. p-value					
	[0.63, 0.92]				—						
	$[\sqrt{s_{\text{th}}}, 0.63]$				=	*=					
	$[\sqrt{s_{\rm th}}, 0.96]$		☆	\$,▼							
	$[\sqrt{s_{\rm th}}, 1.10]$			☆ 👆 🔻	=						
	$[\sqrt{s_{\rm th}}, 1.80]$				=						
	$[\sqrt{s_{\rm th}}, 3.00]$			△	=						
	[0.63, ∞[⊽ ₹^	_ 						
	[0.96, ∞[Δ							
	[1.10, ∞[<u></u>	-	Δ	_	-					
	[1.80, ∞[-	△▲		_					
	[3.00, ∞[
[√ <i>S</i> _{th} , 0.0	_	-⊽₹-	△▲	_ <u>_</u>							
100	10 ¹	10-4	10-2	100	10 ¹	10 ²					
√ <i>5</i> [GeV]		p-value			δ_1 [%]						

- Stat and syst uncertainties on lattice covariance matrices do not change overall picture
- Summary of modifications of R-ratio allowed by lattice results ...

Testing R-ratio: results summary

Modifications to measured R-ratio that could explain lattice results are:

• possible in *ρ*-peak interval [0.63, 0.92] GeV for 2 & 3 observables

 \rightarrow requires rescaling of observables in that interval by $\sim (5.0\pm1.5)\%$

- disfavored in interval below ρ -peak, $[\sqrt{s_{th}}, 0.63 \, \text{GeV}]$
- but possible in [$\sqrt{s_{th}}$, $\sqrt{s_{max}}$] w/ $\sqrt{s_{max}}$: 0.96 \rightarrow 3.0 GeV that include ρ -peak, for 2 & 3 observables
 - ightarrow rescalings \sim (4 \pm 1)% ightarrow (3 \pm 1)% for $\sqrt{s_{ ext{max}}}$ earrow
- possible in $[\sqrt{s_{\text{min}}}, \infty] \text{ w}/\sqrt{s_{\text{min}}} : 0.63 \rightarrow 1.8 \text{ GeV}$, for 2 observables $\rightarrow \text{rescalings} \sim (3 \pm 1)\% \rightarrow (32 \pm 9)\% \text{ for } \sqrt{s_{\text{min}}} \nearrow$
- but disfavored in [3.0 GeV, ∞ [, for 2 & 3 observables
- and adding $\delta(\Delta_{had}^{(5)}\alpha)$ constraint eliminates the possibility of rescalings in $[\sqrt{s_{min}}, \infty[w/\sqrt{s_{min}} : 0.96 \rightarrow 3.0 \text{ GeV} \text{ that do not include } \rho\text{-peak}]$

- Presented flexible method for comparing lattice QCD and data-driven HVP results
- Find that discrepancies/agreements between lattice and data-driven results for $a_{\mu}^{\text{LO-HVP}}$, $a_{\mu,\text{win}}^{\text{LO-HVP}}$ and $\delta(\Delta_{\text{had}}^{(5)}\alpha)$:

On lattice side, result, from:

- a C(t) that is enhanced in $t \sim [0.4, 1.5]$ fm
- also probably for $t \ge 1.5 \, \text{fm}$
- w/ possible suppression for $t \leq 0.4$ fm (mainly based on preliminary $\delta(\Delta_{had}^{(5)}\alpha)$)

On data-driven side, could be explained by:

- enhancing measured R-ratio around ρ-peak
- or in any larger interval including ρ -peak
- Lattice and measured R-ratio correlations critical for drawing such conclusions

- Important to check that uncertainties on uncertainties and correlations do not spoil picture, especially for inverse problem
 - \rightarrow checked here for lattice stat and syst uncertainties
 - \rightarrow must do so for measured R-ratio uncertainties
- Also important not to share results between 2 approaches before they are final (mutual blinding)
- W/ more HVP observables, many generalizations possible, also including constraints
- However, limit on independent HVP observables in data-driven and lattice approaches (not shown)
- Same methods can be used to combine determinations of lattice and data-driven results for HVP observables, once differences are understood
- No problems w/ EWP fits in case of 3-observable comparisons (not shown)

Some references to related work on HVP

- Windows proprosed in RBC/UKQCD arXiv:1801.07224
- Discussed in context of detailed comparison in Colangelo et al arXiv:2205.12963
- Consequences of rescaling of measured R-ratio studied in Crivellin et al arXiv:2003.04886, Keshavarzi et al arXiv:2006.12666, de Rafael arXiv:2006.13880, Malaescu et al arXiv:2008.08107
- Consequences of lattice a^{LO-HVP}_μ on π⁺π⁻ contributions to R-ratio w/ φ constraints in Colangelo et al arXiv:2010.07943
- Use of Backus-Gilbert method for reconstruction of smeared R-ratio from lattice *C*(*t*) in Hansen et al arXiv:1903.06476, Alexandrou et al arXiv:2212.08467
- Proposal for comparing measured R-ratio and lattice C(t) via spectral-width sumrules in Boito et al arXiv:2210.13677
- ... (many other references for reconstructing spectral functions from lattice correlators)