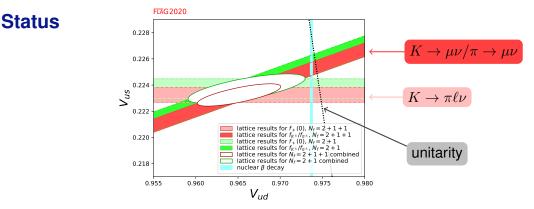


Radiative corrections to neutron decay: the $\gamma - W$ box diagram using Lattice QCD

Tanmoy Bhattacharya, Rajan Gupta, Santanu Mondal, Jun-Sik Yoo*, Boram Yoon

The International Symposium on Lattice Field Theory 2023, Fermilab, US Aug 4, 2023 arxiv: 2305.03198

UNCLASSIFIED

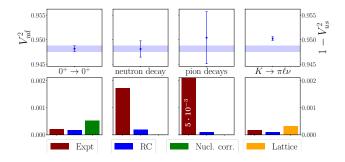


Two anomalies (deviations from black line showing $\Delta_{\rm CKM}=0$):

- 1. kaon decays and LQCD show $\sim 2\sigma$ tension with unitarity
- 2. including superallowed β decays brings the discrepancy to $\sim 4\sigma$

Is this a hint of BSM physics?

$|V_{ud}|$ and $|V_{us}|$ are the targets of our calculation



- $|V_{ud}|$ extracted from β decays of pions, neutrons, and nuclei Current: $|V_{ud}|^2 = 0.94809(27)$ dominated by $0^+ \rightarrow 0^+ \beta$ decays
- $|V_{us}|^2 = 0.05040(36)$ from kaon decays $(K \to \pi e \bar{\nu}_e, K \to \mu \bar{\nu}_\mu)$
- + $|V_{ub}|^2 pprox (2\pm 0.4) imes 10^{-5}$ is tiny, no impact on the unitarity test
- Uncertainty in $\Delta_{\rm CKM}$ has comparable contributions from $|V_{ud}|$ and $|V_{us}|$

Status of $|V_{ud}|^2$, and improvements in experiments

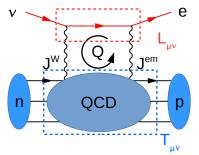
- $|V_{ud}|$ extracted from neutron β decay Current: $|V_{ud}|^2 = 0.9487(22)_{\mathrm{RC}}(37)_{\tau_n}(68)_{\lambda}$ from UCN τ @LANL Current: $|V_{ud}|^2 = 0.9467(22)_{\mathrm{RC}}(86)_{\tau_n}(68)_{\lambda}$ from PDG avg.
- $|V_{us}|^2 = 0.04976(25)$ from kaon semileptonic decays $(K \to \pi e \bar{\nu}_e)$
- Anticipate error in $\lambda = g_A/g_V$ will decrease from $\sim 0.05\%$ to $\sim 0.01\%$: uncertainty in Δ_{CKM} goes from (68) to $(14)_{\lambda}$
- Anticipate error in τ_n will decrease from ~ 0.34 sec to ~ 0.15: uncertainty in Δ_{CKM} goes from (37) to (16)_{τ_n}

Impact of Improvements in $\lambda \equiv g_A/g_V$, au_n and RC on Δ^{CKM}

When	$ V_{ud} ^2$	Δ^{CKM}
Current	$0.9487(22)_{\rm RC}(37)_{\tau_{\rm n}}(68)_{\lambda}$	2σ
Future λ Meas.	$0.9487(22)_{\rm RC}(37)_{\tau_{\rm n}}(14)_{\lambda}$	$\sim 3\sigma$
Future τ_n Meas.	$0.9487(22)_{\rm RC}(16)_{\tau_{\rm n}}(14)_{\lambda}$	$\lesssim 5\sigma$
Updates on RC	$0.9487(7)_{\rm RC}(16)_{\tau_{\rm n}}(14)_{\lambda}$	$\sim 5\sigma$

Table: To find $\Delta^{CKM} = |V_{ud}|^2 + |V_{us}|^2 - 1$, $|V_{us}|^2 = 0.04976(25)$ was used. Future λ measurement was assumed to be 0.01% precision, and future τ_n measurement uncertainty is assumed to be .15s. Our updates on RC is the best possible uncertainty without improvement in OPE.

The calculation: $\gamma - W$ Box Diagram



Uncertainty in radiative correction in $|V_{ud}|$ dominated by $\gamma - W$ box diagram!

• Δ_{np} given by the product of leptonic, $L^{\mu\nu}$, and hadronic, $T_{\mu\nu}$, parts

$$\Delta_{\rm np} = \int_0^{+\infty} dQ^2 \int_{-Q}^Q dQ_0 \frac{1}{Q^4} \frac{1}{Q^2 + m_W^2} L^{\mu\nu}(Q, Q_0) T^{VA}_{\mu\nu}(Q, Q_0)$$

• Lattice QCD needed for $T^{\mu\nu}$ in $0.1 < Q^2 < 2 {\rm GeV}^2$

$$T_{\mu\nu}^{VA} = \frac{1}{2} \int d^4x \, e^{iQ \cdot x} \langle N_f(p) | T \left[J_{\mu}^{em}(0,0) J_{\nu}^{W,A}(\vec{x},t) \right] | N_i(p) \rangle$$

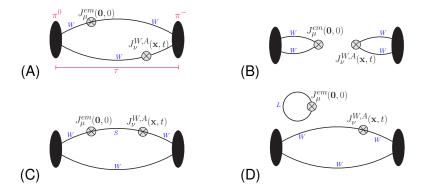
UNCLASSIFIED

$\gamma - W$ Box Diagram – Contd.

- The uncertainty in the integral over Q^2 is dominated by $T^{\mu\nu}$, especially in the $0 < Q^2 \lesssim 2 \text{ GeV}^2$ regime where QCD gives large corrections
- The best estimates in the literature combine robust theoretical information on the behavior of the integrand at $Q^2 \sim 0$, where it is determined by the nucleon elastic form factors, and at large $Q^2 \gtrsim 2 \,\mathrm{GeV}^2$, where operator product expansion and perturbation theory are reliable
- Lattice QCD calculations aim to reduce the uncertainty in the non-perturbative region, $0.1 < Q^2 \lesssim 2 \text{ GeV}^2$. This is currently being *approximated* using models

We are determining the RC to pion/kaon/neutron decay

RC to pion decay:



- No signal degradation with source-sink separation \longrightarrow No excited state error
- Much simpler contractions to construct correlation functions
- · charged kaon decay can be computed using the same contractions

Steps in the calculation

- Fix lattice to Coulomb gauge
- Generate wall source propagators at source and sink times (p = 0) (labeled W)
- Diagram (A): Spin-color contraction of Ws from source and sink with current insertion on 2 different quark lines
- Diagram (C): Compute additional propagator S from J^{em}_μ point. Perform contractions of W and S propagators at site (x, t) with insertion of J^{W,A}_ν
- Diagram (D): Calculate stochastic estimate of disconnected quark loop L with the insertion of the electromagnetic current. Calculate the correlation of loop L with the 3-point function with insertion of $J_{\nu}^{W,A}$ at point (x, t).

- $\mathcal{M}_H(Q^2)$ is calculated from $H^{VA}_{\mu\nu} = \langle n(p)^{s'} | T \left[J^{em}_{\mu}(0,0) J^{W,A}_{\nu}(\vec{x},t) \right] | p(p)^s \rangle$
- The relevant hadronic tensor is:

$$T^{VA}_{\mu\nu} = \frac{1}{2} \int d^4x \, e^{iQ \cdot x} P \langle n(\boldsymbol{p}=0,s) | T \left[J^{em}_{\mu}(0,0) J^{W,A}_{\nu}(\vec{x},t) \right] | p(\boldsymbol{p}=0,s') \rangle$$

We use the spin projector $P = (1 + \gamma_4)/2$ for neutron decay

• The spin-independent part of $T^{VA}_{\mu\nu}$ has only one term

$$T^{VA}_{\mu\nu} = i\epsilon_{\mu\nu\alpha\beta}q^{\alpha}p^{\beta}T_3 + \dots$$

• Knowing T_3 as a function of Q^2 , the γW -box correction is given by

$$\Box_{\gamma W}^{VA} = \frac{3\alpha_e}{2\pi} \int \frac{dQ^2}{Q^2} \frac{m_W^2}{m_W^2 + Q^2} \mathcal{M}_H(Q^2)$$

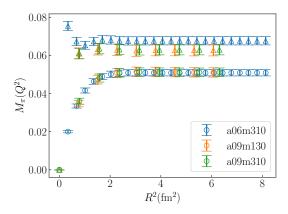
8 clover-on-HISQ Ensembles used for pion and kaon decay

- Interpolated to the physical pion mass using results at $M_{\pi} \approx 310, 220, 130 \text{ MeV}$
- Performed continuum extrapolation from $a \approx 0.15, 0.12, 0.09, 0.06$ fm

EnsID	а	M_{π}^{val}	$L^3 \times T$	$m_{\pi}L$	τ/a	R^2	N _{conf}
	[fm]	[MeV]			/	$[fm^2]$	cong
a06m310	0.0582(04)	319.6(2.2)	$48^3 \times 144$	4.52	62	5.42	168
a09m130	0.0871(06)	138.1(1.0)	$64^3 \times 96$	3.90	40	6.07	45
a09m220	0.0872(07)	225.9(1.8)	$48^3 \times 96$	4.79	40	6.07	93
a09m310	0.0888(08)	313.0(2.8)	$32^3 \times 96$	4.51	40	6.31	156
a12m220	0.1184(09)	227.9(1.9)	$32^3 \times 64$	4.38	30	5.61	150
a12m220L	0.1189(09)	227.6(1.7)	$40^3 \times 64$	5.49	30	5.65	150
a12m310	0.1207(11)	310.2(2.8)	$24^3 \times 64$	4.55	30	5.83	179
a15m310	0.1510(20)	320.6(4.3)	$16^3 \times 48$	3.93	24	9.12	80

Table: Values of a, M_{π}^{sea} from [Bazavov et al., 2013] and M_{π}^{val} from [Gupta et al., 2018]

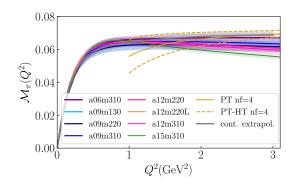
$\mathcal{M}_H(Q^2)$ as a function of integration radius R



- $\mathcal{M}_H(Q^2) =$ $-\frac{1}{6}\frac{1}{F_+^H}\frac{\sqrt{Q^2}}{m_H}\int d^4x\omega(t,\vec{x})\epsilon_{\mu\nu\alpha0}x_{\alpha}\mathcal{H}^{VA}_{\mu\nu}(t,\vec{x})$
- $\int d^4x$ is done within a finite radius R on lattice
- Result saturates at some radius *R*

Figure: triangle marker $Q^2=.317 {\rm GeV}^2$ and circle marker $Q^2=3.0 {\rm GeV}^2$

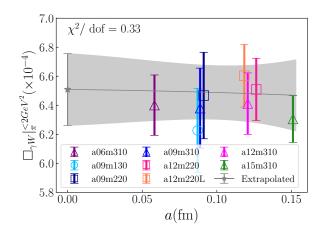
Q^2 -dependence of $\mathcal{M}_H(Q^2)$ for the pion



- For Q² ≥ 2GeV², results from coarse (large *a*) ensembles were farther away from the PT result
- Taking the continuum limit $(a \rightarrow 0)$ with $\alpha_s(a^{-1})$, the PT result and continuum extrapolation overlap already for $2\text{GeV}^2 < Q^2 < 3\text{GeV}^2$
- The surplus in the low-Q² regime compensates for deficiency in high-Q² for coarse ensembles

 \rightarrow small *a*-dependence of the integral

Integrated box contribution below $Q^2 \leq 2 \mathbf{GeV}^2$



Leading a- and $m_{\pi}\text{-}\text{dependence}$ (in $\chi\text{PT})$ is expected to be

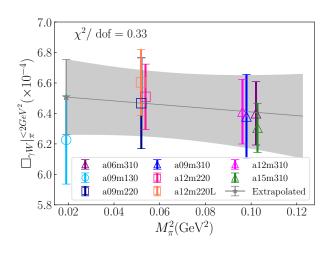
$$\Box_{\gamma W}^{VA}|_{\pi}^{Q^2 \le 2\text{GeV}^2}(m_{\pi}, a) = c_0 + c_1 m_{\pi}^2 + c_2 a \alpha_s(a^{-1}) \quad (1)$$

After extrapolation to physical point

$$\Box_{\gamma W}^{VA}|_{\pi}^{Q^2 \leq 2 \text{GeV}^2} = 6.51(25) \times 10^{-4}$$
 (2)

Mild dependence on a and M_{π}

Integrated box contribution for pion



Our lattice result at physical point

 $\Box_{\gamma W}^{VA}|_{\pi}^{Q^2 \le 2\text{GeV}^2} = 0.651(25) \times 10^{-3}$

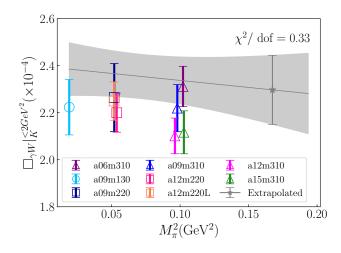
is combined with pQCD result

$$\Box_{\gamma W}^{VA}|^{Q^2 > 2 \text{GeV}^2} = 2.159(6)(7) \times 10^{-3}$$

 $\Rightarrow \quad \Box^{VA}_{\gamma W}|_{\pi} = 2.810(26) \times 10^{-3}$

cf.) $\Box_{\gamma W}^{VA}|_{\pi} = 2.830(11)(26) \times 10^{-3}$ [Xu Feng, et al., PRL (2020)]

Integrated box contribution for kaon



PT for $Q^2 > 2 \text{GeV}^2$ gives

$$\Box_{\gamma W}^{VA}|^{Q^2 > 2\text{GeV}^2} = 2.159(6)(7) \times 10^{-3}$$

Lattice result at physical point for $Q^2 \leq 2 {\rm GeV}^2$

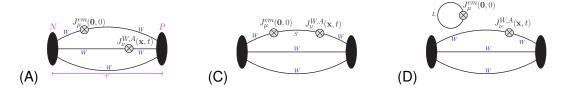
 $\Box_{\gamma W}^{VA}|_{K}^{Q^{2} \leq 2 \mathrm{GeV}^{2}} = 0.230(15) \times 10^{-3}$

Combining with PT for $Q^2 > 2 {\rm GeV}^2$

 $\Rightarrow \quad \Box_{\gamma W}^{VA}|_{K} = 2.389(17) \times 10^{-3}$

cf.) $\Box_{\gamma W}^{VA}|_{K} = 2.437(44) \times 10^{-3}$ [Xu Feng, et al., PRD (2021)]

RC to neutron decay:



- No diagram B
- S2N falls exponentially for nucleon correlators
- Excited state effects can be significant
- Spin projector $P = (1 + \gamma_4)/2$ cancels spin dependent terms in $T_{\mu\nu}^{VA}$
- Requires much larger statistics

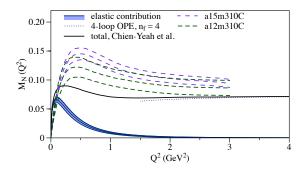
Ensembles being simulated for neutron decay

- Carried out neutron γW box measurement on 3 different HISQ-Clover ensembles
- Different lattice spacing can be used for continuum extrapolation ($a \rightarrow 0$)
- Results from various values of m_{π} are interpolated to the physical pion mass

EnsID	а	M_{π}^{val}	$L^3 \times T$	$m_{\pi}L$	τ/a		N _{conf}
	[fm]	[MeV]				$[fm^2]$	
a12m220	0.1184(09)	227.9(1.9)	$32^3 \times 64$	4.38	10	5.61	365
a12m310	0.1207(11)	310.2(2.8)	$24^3 \times 64$	4.55	10	5.83	898
a15m310	0.1510(20)	320.6(4.3)	$16^3 \times 48$	3.93	8	9.12	1168

Table: The three HISQ-Clover lattice ensembles used in this work. The values of a, M_{π}^{sea} and M_{π}^{val} are reproduced from Ref. [Gupta et al., 2018].

Comparison of $\mathcal{M}_H(Q^2)$ for the neutron



(Preliminary)

- In Q² ≥ 2GeV² regime, results from coarse (large *a*) ensembles tend towards perturbation theory results
- Tendency to reproduce the quasielastic peak near $\sim .1 GeV^2.$

Summary

- Computed electroweak γW-box corrections to the semileptonic pion decay and kaon decay on 8 ensembles. Results published (accepted in PRD)
 - $\Box^{VA}_{\gamma W}|_{\pi} = 2.810(26) \times 10^{-3}$
 - $\Box^{\dot{V}A}_{\gamma W}|_{K} = 2.389(17) \times 10^{-3}$
- Preliminary analysis of radiative correction to neutron decay shows signal
- Increasing statistics and the number of ensembles
- Goal: Provide precision results for RC to pion, kaon, neutron decays to improve the extraction of $|V_{ud}|^2$ and $|V_{us}|^2$

Acknowledgement

- We thank MILC collaboration for sharing HISQ lattices.
- The calculations used the CHROMA software suite
- We thank DOE for allocations at NERSC and OLCF
- We thank USQCD for allocations at JLAB
- We thank Institutional Computing at Los Alamos National Laboratory for allocations.
- T. Bhattacharya, R. Gupta, S. Mondal, J. Yoo and B.Yoon were partly supported by the LANL LDRD program.

Appendix

Two ways to probe BSM physics:

Two ways to probe Beyond the Standard Model (BSM) physics:

- 1. Directly produce new particles in high energy experiments
- look for tiny deviations from the SM predictions = Confront precision measurements with accurate predictions of the SM

Improve the theoretical input to test the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

• The SM has only one-type of charged-current interactions

$$\mathcal{L}_{CC} = \frac{g}{2\sqrt{2}} W^+_{\mu} \overline{U}_i \gamma^{\mu} (1 - \gamma_5) (V_{\text{CKM}})_{ij} D_j + \text{h.c.}, \qquad \begin{array}{c} U = (\bar{u}, \bar{c}, \bar{t}) \\ D^T = (d, s, b) \end{array}$$

• Unitarity of $\mathit{V}_{\rm CKM}$ would imply no BSM physics

$$\Delta_{\rm CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = 0$$

UNCLASSIFIED

$|V_{ud}|^2$ from neutron decay: $\delta |V_{ud}|^2 \approx (8 \rightarrow 3) \times 10^{-4}$

• $|V_{ud}|^2$ from neutron decay is given by the master formula

$$|V_{ud}|^2 = \left(\frac{G_{\mu}^2 m_e^5}{2\pi^3} f\right)^{-1} \frac{1}{\tau_n (1+3g_A^2)(1+\text{RC})} = \frac{5099.3(4)\text{s}}{\tau_n (1+3g_A^2)(1+\text{RC})}$$

 τ_n : free neutron lifetime

 g_A : axial coupling obtained from the neutron β decay (asymmetry parameter A)

 G_{μ} : Fermi constant extracted from muon decays,

- f = 1.6887(1) is a phase space factor
- Experimental Proposal: $\delta \tau_n \approx 0.1 \text{ sec}, \, \delta A/A \approx 0.1 \, \%$.
- Theory Proposal: reduce uncertainty in RC to the 10% level, ie, by a factor of two

This will test the SM up to scales of 15 TeV, which are inaccessible at the LHC

- $\mathcal{M}_H(Q^2)$ can be calculated from $H^{VA}_{\mu\nu} = \langle \pi^0(p) | T \left[J^{em}_\mu(0,0) J^{W,A}_\nu(\vec{x},t) \right] | \pi^-(p) \rangle$
- The relevant hadronic tensor is:

$$T^{VA}_{\mu\nu} = \frac{1}{2} \int d^4x \, e^{iQ\cdot x} \langle \pi^0(p) | T \left[J^{em}_{\mu}(0,0) J^{W,A}_{\nu}(\vec{x},t) \right] | \pi^-(p) \rangle$$

• The spin-independent part of $T^{VA}_{\mu\nu}$ has only one term

$$T^{VA}_{\mu\nu} = i\epsilon_{\mu\nu\alpha\beta}q^{\alpha}p^{\beta}T_3 + \dots$$

• Knowing T_3 as a function of Q^2 , the γW -box correction is given by

$$\Box_{\gamma W}^{VA} = \frac{3\alpha_e}{2\pi} \int \frac{dQ^2}{Q^2} \frac{m_W^2}{m_W^2 + Q^2} \mathcal{M}_H(Q^2)$$

Radiative correction to β -decay

• The theoretical error in $|V_{ud}|$, is dominated by the uncertainty in the RC, which is expressed as the sum of three terms

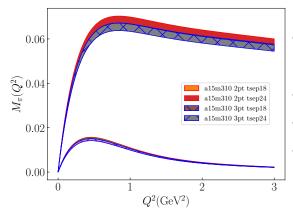
$$\mathrm{RC} = \frac{\alpha_{\mathrm{em}}}{2\pi} \left\{ \bar{g}(E_m) + 4\ln\frac{m_Z}{m_p} + \Delta_{\mathrm{np}} \right\}$$

- The first two terms dominate the RC but have very small uncertainties:
 - $\bar{g}(E_m)$, where E_m is the electron endpoint energy, arises from the emission of soft photons, integrated over the allowed phase space
 - $\ln(m_Z/m_p)$ encodes perturbative short-distance γ - $Z_{\rm boson}$ loop effects
 - Together they give 0.036, or about 95% of RC
- $\alpha_{\rm em}\Delta_{\rm np}/(2\pi) \sim 0.002$: This non-perturbative long distance effect is comparatively small, but its estimated uncertainty, $\sim 20\%$, dominates the theory error budget.

Lattice QCD is the only known *controlled* method to determine Δ_{np} at the 10% level and to reach $\delta |V_{ud}|^2 \le 3 \times 10^{-4}$

UNCLASSIFIED

$\mathcal{M}_H(Q^2)$ using 2-, 3-, 4-pt correlation functions



•
$$\mathcal{M}_{H}\left(Q^{2}\right) =$$

 $-\frac{1}{6}\frac{1}{F_{+}^{H}}\frac{\sqrt{Q^{2}}}{m_{H}}\int d^{4}x\omega(t,\vec{x})\epsilon_{\mu\nu\alpha0}x_{\alpha}\mathcal{H}_{\mu\nu}^{VA}(t,\vec{x})$
• $\mathcal{H}_{\mu\nu} = \frac{2m_{\pi}C_{4pt}}{C_{2pt}}$
• Combine with prefactor $F_{+}^{\pi} = \frac{C_{3pt}}{C_{2pt}}$

• ratio $\mathcal{H}_{\mu\nu}/F_{+}^{\pi} = \frac{2m_{\pi}C_{4pt}}{C_{3pt}}$ has better S2N due to cancellation of correlated fluctuations.

Determination of $|V_{ud}|$

•
$$\Gamma_{\pi\ell 3} = \frac{G_{\mu}^2 |V_{ud}|^2 m_{\pi}^5 |f_{+}^{\pi}(0)|^2}{64\pi^3} (1+\delta) I_{\pi}$$

• χ PT result: $\delta = 0.0334(10)_{\text{LEC}}(3)_{\text{HO}}$

•
$$\delta = \frac{\alpha_e}{2\pi} \left[\bar{g} + 3\ln\frac{m_Z}{m_p} + \ln\frac{m_Z}{m_W} + \tilde{a}_g \right] + \delta_{HO}^{QED} + 2\Box_{\gamma W}^{VA}$$

- Earlier result on lattice: $\delta = 0.0332(1)_{\gamma W}(3)_{HO}$ [Xu Feng, et al., PRL (2020)]
- Our preliminary result: $\delta = 0.0332(1)_{\gamma W}(3)_{HO}$

Bazavov, A. et al. (2013).

Lattice QCD ensembles with four flavors of highly improved staggered quarks. *Phys. Rev.*, D87(5):054505.

Gupta, R., Jang, Y.-C., Yoon, B., Lin, H.-W., Cirigliano, V., and Bhattacharya, T. (2018).

Isovector Charges of the Nucleon from 2+1+1-flavor Lattice QCD.

Phys. Rev., D98:034503.

