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Status
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nuclear  decay

unitarity

K → πℓν

K → µν/π → µν

Two anomalies (deviations from black line showing ∆CKM = 0):
1. kaon decays and LQCD show ∼ 2σ tension with unitarity
2. including superallowed β decays brings the discrepancy to ∼ 4σ

Is this a hint of BSM physics?
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|Vud| and |Vus| are the targets of our calculation
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• |Vud| extracted from β decays of pions, neutrons, and nuclei
Current: |Vud|2 = 0.94809(27) dominated by 0+ → 0+ β decays

• |Vus|2 = 0.05040(36) from kaon decays (K → πeν̄e, K → µν̄µ)
• |Vub|2 ≈ (2± 0.4)× 10−5 is tiny, no impact on the unitarity test
• Uncertainty in ∆CKM has comparable contributions from |Vud| and |Vus|
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Status of |Vud|2, and improvements in experiments

• |Vud| extracted from neutron β decay
Current: |Vud|2 = 0.9487(22)RC(37)τn(68)λ from UCNτ@LANL
Current: |Vud|2 = 0.9467(22)RC(86)τn(68)λ from PDG avg.

• |Vus|2 = 0.04976(25) from kaon semileptonic decays (K → πeν̄e)

• Anticipate error in λ = gA/gV will decrease from ∼ 0.05% to ∼ 0.01%:
uncertainty in ∆CKM goes from (68) to (14)λ

• Anticipate error in τn will decrease from ∼ 0.34 sec to ∼ 0.15:
uncertainty in ∆CKM goes from (37) to (16)τn
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Impact of Improvements in λ ≡ gA/gV , τn and RC on ∆CKM

When |Vud|2 ∆CKM

Current 0.9487(22)RC(37)τn(68)λ 2σ

Future λ Meas. 0.9487(22)RC(37)τn(14)λ ∼ 3σ

Future τn Meas. 0.9487(22)RC(16)τn(14)λ ≲ 5σ

Updates on RC 0.9487(7)RC(16)τn(14)λ ∼ 5σ

Table: To find ∆CKM = |Vud|2 + |Vus|2 − 1, |Vus|2 = 0.04976(25) was used. Future λ
measurement was assumed to be 0.01% precision, and future τn measurement uncertainty is
assumed to be .15s. Our updates on RC is the best possible uncertainty without
improvement in OPE.
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The calculation: γ −W Box Diagram
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Uncertainty in radiative correction in
|Vud| dominated by γ −W box diagram!

• ∆np given by the product of leptonic, Lµν , and hadronic, Tµν , parts

∆np =

∫ +∞

0
dQ2

∫ Q

−Q
dQ0

1

Q4

1

Q2 +m2
W

Lµν(Q,Q0)T
V A
µν (Q,Q0)

• Lattice QCD needed for Tµν in 0.1 < Q2 < 2GeV2

T V A
µν =

1

2

∫
d4x eiQ·x⟨Nf (p)|T

[
Jem
µ (0, 0)JW,A

ν (x⃗, t)
]
|Ni(p)⟩
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γ −W Box Diagram – Contd.

• The uncertainty in the integral over Q2 is dominated by Tµν , especially in the
0 < Q2 ≲ 2 GeV2 regime where QCD gives large corrections

• The best estimates in the literature combine robust theoretical information on the
behavior of the integrand at Q2 ∼ 0, where it is determined by the nucleon elastic
form factors, and at large Q2 ≳ 2GeV2, where operator product expansion and
perturbation theory are reliable

• Lattice QCD calculations aim to reduce the uncertainty in the non-perturbative
region, 0.1 < Q2 ≲ 2 GeV2. This is currently being approximated using models

We are determining the RC to pion/kaon/neutron decay
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RC to pion decay:
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• No signal degradation with source-sink separation −→ No excited state error
• Much simpler contractions to construct correlation functions
• charged kaon decay can be computed using the same contractions
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Steps in the calculation

• Fix lattice to Coulomb gauge
• Generate wall source propagators at source and sink times (p = 0) (labeled W )
• Diagram (A): Spin-color contraction of Ws from source and sink with current

insertion on 2 different quark lines
• Diagram (C): Compute additional propagator S from Jem

µ point. Perform
contractions of W and S propagators at site (x, t) with insertion of JW,A

ν

• Diagram (D): Calculate stochastic estimate of disconnected quark loop L with the
insertion of the electromagnetic current. Calculate the correlation of loop L with
the 3-point function with insertion of JW,A

ν at point (x, t).
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• MH(Q2) is calculated from HV A
µν = ⟨n(p)s′ |T

[
Jem
µ (0, 0)JW,A

ν (x⃗, t)
]
|p(p)s⟩

• The relevant hadronic tensor is:

T V A
µν =

1

2

∫
d4x eiQ·xP ⟨n(p = 0, s)|T

[
Jem
µ (0, 0)JW,A

ν (x⃗, t)
]
|p(p = 0, s′)⟩

We use the spin projector P = (1 + γ4)/2 for neutron decay
• The spin-independent part of T V A

µν has only one term

T V A
µν = iϵµναβq

αpβT3 + . . .

• Knowing T3 as a function of Q2, the γW -box correction is given by

□V A
γW =

3αe

2π

∫
dQ2

Q2

m2
W

m2
W +Q2

MH(Q2)
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8 clover-on-HISQ Ensembles used for pion and kaon decay

• Interpolated to the physical pion mass using results at Mπ ≈ 310, 220, 130 MeV
• Performed continuum extrapolation from a ≈ 0.15, 0.12, 0.09, 0.06 fm

EnsID a Mval
π L3 × T mπL τ/a R2 Nconf

[fm] [MeV] [fm2]

a06m310 0.0582(04) 319.6(2.2) 483 × 144 4.52 62 5.42 168
a09m130 0.0871(06) 138.1(1.0) 643 × 96 3.90 40 6.07 45
a09m220 0.0872(07) 225.9(1.8) 483 × 96 4.79 40 6.07 93
a09m310 0.0888(08) 313.0(2.8) 323 × 96 4.51 40 6.31 156
a12m220 0.1184(09) 227.9(1.9) 323 × 64 4.38 30 5.61 150
a12m220L 0.1189(09) 227.6(1.7) 403 × 64 5.49 30 5.65 150
a12m310 0.1207(11) 310.2(2.8) 243 × 64 4.55 30 5.83 179
a15m310 0.1510(20) 320.6(4.3) 163 × 48 3.93 24 9.12 80

Table: Values of a, M sea
π from [Bazavov et al., 2013] and Mval

π from [Gupta et al., 2018]
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MH(Q
2) as a function of integration radius R
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• MH
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∫
d4xω(t, x⃗)ϵµνα0xαHV A

µν (t, x⃗)

• ∫ d4x is done within a finite radius R on
lattice

• Result saturates at some radius R
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Q2-dependence of MH(Q
2) for the pion

0 1 2 3
Q2(GeV2)

0.00

0.02

0.04

0.06

0.08

M
π
(Q

2
)

a06m310

a09m130

a09m220

a09m310

a12m220

a12m220L

a12m310

a15m310

PT nf=4

PT-HT nf=4

cont. extrapol.

• For Q2 ≳ 2GeV2, results from coarse
(large a) ensembles were farther away
from the PT result

• Taking the continuum limit (a → 0) with
αs(a

−1), the PT result and continuum
extrapolation overlap already for
2GeV2 < Q2 < 3GeV2

• The surplus in the low-Q2 regime
compensates for deficiency in high-Q2

for coarse ensembles
→ small a-dependence of the integral
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Integrated box contribution below Q2 ≤ 2GeV2
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Leading a- and mπ-dependence
(in χPT) is expected to be

□V A
γW |Q2≤2GeV2

π (mπ, a)

= c0 + c1m
2
π + c2aαs(a

−1) (1)

After extrapolation to physical point

□V A
γW |Q2≤2GeV2

π = 6.51(25)× 10−4 (2)

Mild dependence on a and Mπ
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Integrated box contribution for pion
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Our lattice result at physical point

□V A
γW |Q2≤2GeV2

π = 0.651(25)× 10−3

is combined with pQCD result

□V A
γW |Q2>2GeV2

= 2.159(6)(7)× 10−3

⇒ □V A
γW |π = 2.810(26)× 10−3

cf.) □V A
γW |π = 2.830(11)(26)× 10−3

[Xu Feng, et al., PRL (2020)]
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Integrated box contribution for kaon
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PT for Q2 > 2GeV2 gives

□V A
γW |Q2>2GeV2

= 2.159(6)(7)×10−3

Lattice result at physical point for
Q2 ≤ 2GeV2

□V A
γW |Q2≤2GeV2

K = 0.230(15)× 10−3

Combining with PT for
Q2 > 2GeV2

⇒ □V A
γW |K = 2.389(17)× 10−3

cf.) □V A
γW |K = 2.437(44)× 10−3

[Xu Feng, et al., PRD (2021)]
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RC to neutron decay:
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• No diagram B
• S2N falls exponentially for nucleon correlators
• Excited state effects can be significant
• Spin projector P = (1 + γ4)/2 cancels spin dependent terms in T V A

µν

• Requires much larger statistics
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Ensembles being simulated for neutron decay

• Carried out neutron γW box measurement on 3 different HISQ-Clover ensembles
• Different lattice spacing can be used for continuum extrapolation (a → 0)
• Results from various values of mπ are interpolated to the physical pion mass

EnsID a Mval
π L3 × T mπL τ/a R2 Nconf

[fm] [MeV] [fm2]

a12m220 0.1184(09) 227.9(1.9) 323 × 64 4.38 10 5.61 365
a12m310 0.1207(11) 310.2(2.8) 243 × 64 4.55 10 5.83 898
a15m310 0.1510(20) 320.6(4.3) 163 × 48 3.93 8 9.12 1168

Table: The three HISQ-Clover lattice ensembles used in this work. The values of a, M sea
π and

Mval
π are reproduced from Ref. [Gupta et al., 2018].
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Comparison of MH(Q
2) for the neutron

elastic contribution
4-loop OPE, nf = 4
total, Chien-Yeah et al.

a15m310C
a12m310C

M
N

 (Q
2 )

0

0.05

0.10

0.15

0.20

Q2 (GeV2)
0 1 2 3 4

(Preliminary)
• In Q2 ≳ 2GeV2 regime, results from

coarse (large a) ensembles tend
towards perturbation theory results

• Tendency to reproduce the quasielastic
peak near ∼ .1GeV2.
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Summary

• Computed electroweak γW -box corrections to the semileptonic pion decay and
kaon decay on 8 ensembles. Results published (accepted in PRD)
– □V A

γW |π = 2.810(26)× 10−3

– □V A
γW |K = 2.389(17)× 10−3

• Preliminary analysis of radiative correction to neutron decay shows signal
• Increasing statistics and the number of ensembles

• Goal: Provide precision results for RC to pion, kaon, neutron decays to improve
the extraction of |Vud|2 and |Vus|2
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Two ways to probe BSM physics:
Two ways to probe Beyond the Standard Model (BSM) physics:
1. Directly produce new particles in high energy experiments
2. look for tiny deviations from the SM predictions =

Confront precision measurements with accurate predictions of the SM

Improve the theoretical input to test the unitarity of the
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

• The SM has only one-type of charged-current interactions

LCC =
g

2
√
2
W+

µ U i γ
µ(1− γ5) (VCKM)ij Dj + h.c. ,

U = (ū, c̄, t̄)
DT = (d, s, b)

• Unitarity of VCKM would imply no BSM physics

∆CKM ≡ |Vud|2 + |Vus|2 + |Vub|2 − 1 = 0
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|Vud|2 from neutron decay: δ|Vud|2 ≈ (8 → 3)× 10−4

• |Vud|2 from neutron decay is given by the master formula

|Vud|2 =
(
G2

µm
5
e

2π3
f

)−1
1

τn(1 + 3g2A)(1 + RC)
=

5099.3(4)s

τn(1 + 3g2A)(1 + RC)

τn: free neutron lifetime
gA: axial coupling obtained from the neutron β decay (asymmetry parameter A)
Gµ: Fermi constant extracted from muon decays,
f = 1.6887(1) is a phase space factor

• Experimental Proposal: δτn ≈ 0.1 sec, δA/A ≈ 0.1 % .
• Theory Proposal: reduce uncertainty in RC to the 10% level, ie, by a factor of two

This will test the SM up to scales of 15 TeV, which are inaccessible at the LHC
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• MH(Q2) can be calculated from HV A
µν = ⟨π0(p)|T

[
Jem
µ (0, 0)JW,A

ν (x⃗, t)
]
|π−(p)⟩

• The relevant hadronic tensor is:

T V A
µν =

1

2

∫
d4x eiQ·x⟨π0(p)|T

[
Jem
µ (0, 0)JW,A

ν (x⃗, t)
]
|π−(p)⟩

• The spin-independent part of T V A
µν has only one term

T V A
µν = iϵµναβq

αpβT3 + . . .

• Knowing T3 as a function of Q2, the γW -box correction is given by

□V A
γW =

3αe

2π

∫
dQ2

Q2

m2
W

m2
W +Q2

MH(Q2)
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Radiative correction to β−decay

• The theoretical error in |Vud|, is dominated by the uncertainty in the RC, which is
expressed as the sum of three terms

RC =
αem

2π

{
ḡ(Em) + 4 ln

mZ

mp
+∆np

}
• The first two terms dominate the RC but have very small uncertainties:

– ḡ(Em), where Em is the electron endpoint energy, arises from the emission of soft
photons, integrated over the allowed phase space

– ln(mZ/mp) encodes perturbative short-distance γ-Zboson loop effects
– Together they give 0.036, or about 95% of RC

• αem∆np/(2π) ∼ 0.002: This non-perturbative long distance effect is comparatively
small, but its estimated uncertainty, ∼ 20%, dominates the theory error budget.

Lattice QCD is the only known controlled method to determine
∆np at the 10% level and to reach δ|Vud|2 ≤ 3× 10−4
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MH(Q
2) using 2-, 3-, 4-pt correlation functions
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• MH

(
Q2
)
=

−1
6

1
FH
+

√
Q2

mH

∫
d4xω(t, x⃗)ϵµνα0xαHV A

µν (t, x⃗)

• Hµν =
2mπC4pt

C2pt

• Combine with prefactor F π
+ =

C3pt

C2pt

• ratio Hµν/F
π
+ =

2mπC4pt

C3pt
has better S2N

due to cancellation of correlated
fluctuations.
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Determination of |Vud|

• Γπℓ3 =
G2

µ|Vud|2m5
π |fπ

+(0)|2
64π3 (1 + δ)Iπ

• χPT result: δ = 0.0334(10)LEC(3)HO

• δ = αe
2π

[
ḡ + 3 ln mZ

mp
+ ln mZ

mW
+ ãg

]
+ δQED

HO + 2□V A
γW

• Earlier result on lattice: δ = 0.0332(1)γW (3)HO [Xu Feng, et al., PRL (2020)]

• Our preliminary result: δ = 0.0332(1)γW (3)HO
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