Nucleon Electromagnetic Form Factors at Large Momentum from Lattice QCD

Sergey Syritsyn (Stony Brook University) with M. Engelhardt, J. Green, S. Krieg, A. Pochinsky, J. Negele (Lattice Hadron Physics collaboration)

LATTICE 2023, Aug 1, 2023
Outline

- Nucleon vector form factors at large momentum
- Challenges for large-Q^2 hadron structure on lattice
- Preliminary results and comparison to experiment & phenomenology
- Examining systematic effects
- Summary and Outlook
Nucleon Elastic E&M Form Factors

Elastic e−p amplitude

$$\langle P + q | \bar{q} \gamma^\mu q | P \rangle = \bar{U}_{P+q} \left[F_1(Q^2) \gamma^\mu + \frac{F_2(Q^2) i \sigma^{\mu\nu} q_\nu}{2M_N} \right] U_P$$

Sachs Electric

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2} F_2(Q^2)$$

Magnetic

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Elastic e−p cross-section

- $G_{E,M}$ from ϵ-dep. at fixed $\tau(Q^2)$
 - "Rosenbluth separation"
- dominated by G_M at large Q^2
- 2γ corrections at $Q^2 \approx 1$ GeV²

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{Mott}}{1 + \tau} \left[G_E^2 + \frac{\tau}{\epsilon} G_M^2 \right]$$

$$\tau = \frac{Q^2}{4M_N^2}$$

$$\epsilon = \left[1 + 2(1 + \tau) \tan^2 \frac{\theta}{2} \right]^{-1}$$

Polarization transfer: polarized e−beam

+ detect polarization of recoil nucleon
 (alt.: transverse asymmetry on pol. target)

- G_E/G_M ratio (only small radiative corrections)

$$P_t/P_l \propto G_E/G_M$$
Recent/Ongoing Experiments

Projected new precision on proton & neutron form factors

Experiments at JLab@12GeV
- Hall A (HRS, SBS):
 G_{Mp} @ $Q^2 \leq 17.5$ GeV2
 G_{Ep}/G_{Mp} @ $Q^2 \leq 15$ GeV2
 G_{Mn} @ $Q^2 \leq 18$ GeV2
 G_{En}/G_{Mn} @ $Q^2 \leq 10.2$ GeV2
- Hall B (CLAS12):
 G_{Mn} @ $Q^2 \leq 14$ GeV2
- Hall C:
 G_{En}/G_{Mn} @ $Q^2 \leq 6.9$ GeV2
Recent/Ongoing Experiments

Projected new precision on proton & neutron form factors

New G_{Mp} data from Hall A
[Christy et al, PRL'22]
Nucleon Form Factors: Open Questions

- **Are model descriptions of the nucleon viable?**
 Nucleon models disagree beyond explored range.

- **Role of diquark correlations in elastic scattering?**
 Neutron & proton G_E/G_M at/above $Q^2 = 8 \text{ GeV}^2$

- **Scale of transition to perturbative QCD?**
 (F_2/F_1) scaling at large Q^2: $Q^2 F_{2p}/F_{1p} \propto \log^2(Q^2/\Lambda^2)$

- **What are contributions from u and d flavors?**
 Proton and neutron data needed in wide Q^2 range

[Research Mgmt. Plan for SBS(JLab Hall A)]

Dyson-Schwinger Eqns: quarks & $0^+, 1^+$ diquarks
($\alpha \approx$ rate of transition const.quarks \rightarrow pQCD with Q^2)

[Cloet, Roberts, Prog.Part.Nucl.Phys 77:1 (2014)]
Challenges at Large Q^2

- Discretization effects:
 \[(V_\mu)_I = [\bar{q} \gamma_\mu q] + c_V a \partial_\nu [\bar{q} i \sigma_{\mu\nu} q] \propto Q \]

- Stochastic noise grows faster with T [Lepage’89]:
 - Signal: $\langle N(T)\bar{N}(0) \rangle$
 - Noise: $\langle |N(T)\bar{N}(0)|^2 \rangle - |\langle N(T)\bar{N}(0) \rangle|^2$
 - Signal/Noise

 \[e^{-E_NT} \quad e^{-3m_\pi T} \quad e^{-(E_N - \frac{3}{2}m_\pi)T} \]

- Excited states: boosting "shrinks" the energy gap
 \[E_1 - E_0 = \sqrt{M_1^2 + \vec{p}^2} - \sqrt{M_2^2 + \vec{p}^2} < M_1 - M_0 \]
 - N(\~1500): $pN \rightarrow 1.5$ GeV $\Rightarrow \Delta E = 500 \rightarrow 300$ MeV

- Quark-disconnected contributions:
 - negligible ($\lesssim 1\%$) at $Q^2 \leq 1$ GeV2, unknown at large Q^2

- Large p_N: no reliable EFT/ChPT for m_π, lattice size-extrapolation

\textit{Large statistics required to suppress MC noise in lattice correlators}
Minimize $E_{in, out}$ for target Q^2:

$Q^2 = (p_{in} - p_{out})^2 - (E_{in} - E_{out})^2$

Back-to-back $Q^2 = 4p^2$

For $(Q^2)_{max} = 10 \text{ GeV}^2 (E_N \approx 1.9 \text{ GeV})$

$|p| = \frac{1}{2} \sqrt{Q^2_{max}} \approx 1.6 \text{ GeV}$

Nucleon momentum \sim Brillouin zone

$$\langle N\bar{N} \rangle^{-1}(p) \equiv -i\gamma^\mu \bar{\psi}^{\text{lat}} + m_N$$

$$p^{\text{lat}}_\mu = k_\mu + O(k^3)$$

\Rightarrow expect $O(a^2)$ corrections

from lattice nucleon spinor

"Brick-Wall" frame

lattice kinematics for $Q^2 \approx 10 \text{ GeV}^2$
Present QCD Calculation Parameters

- $N_F = 2+1$ clover-improved Wilson fermion ensembles (JLab / W&M / LANL / MIT)
- Lattice spacing $a \approx 0.073 \div 0.091$ fm
- Light quark masses approaching physical: $m_\pi = 170 \div 280$ MeV
- Large physical volume $L \gtrsim 3.7 (m_\pi)^{-1}$
- Source-sink separation $t_{\text{sep}} = 0.51 \div 1.09$ fm
- Momentum smearing, AMA sampling
- Estimate disconnected contributions

2022/23:
- MC Statistics ~250k on D6 ($48^3 \times 96$), E5 ($48^3 \times 128$)
- Disconnected contractions on D6 (1000+ configs)

Made possible by new nVidia A100 clusters
- Perlmutter [NERSC]
- Juwels-Booster [Fz. Juelich]

Many thanks to the QUDA team!
[K. Clark, R.Babich, R.Brower, M.Wagner, E.Weinberg, and many others]
E5: $m_\pi = 272$ MeV, spacing $a = 0.073$ fm, 266k MC samples

Effective energy and 2-state fits

$$E_{eff} = \frac{1}{a} \log \frac{C_{N\bar{N}}(t)}{C_{N\bar{N}}(t + a)}$$

Dispersion relation

Dashed lines: cont. $E^2(p) = E^2(0) + p^2$
Lattice Nucleon Energy & Dispersion Relation (D6)

D6: $m\pi = 166$ MeV, spacing $a = 0.091$ fm, 261k MC samples

Effective energy and 2-state fits

$E_{eff} = \frac{1}{a} \log \frac{C_{NN}(t)}{C_{NN}(t + a)}$

Dispersion relation
Dashed lines: cont. $E^2(p) = E^2(0) + p^2$
Nucleon Matrix Element & Form Factor Fits (D5)

2-state fit \(t_{\text{sep}} = 0.73 \pm 1.09 \text{ fm} \) \((8a \div 12a)\); energies fixed from 2-state fits to \(\langle N\bar{N} \rangle \)

PRELIMINARY

Sergey Syritsyn

Nucleon Form Factors at High \(Q^2 \) from LQCD

LATTICE 2023, Aug 1, Fermilab
Nucleon Form Factors

- 2-state fits to extract the ground state
- discrepancy $x(2..2.5)$ for $Q^2 > 2 GeV^2$: exc.states? discretization? quark mass

PRELIMINARY

- No disconnected diagrams
Proton F_2/F_1 Ratio

- Lattice data: 2-state fits
- Phenomenology curves: [Alberico et al, PRC79:065204 (2008)]
- Comparison to experimental data (black points)

![Graph showing $Q^2 F_2/F_1$ vs. $Q^2 [\text{GeV}^2]$ with various curves and data points.](image)

-algorithms

[Alberico:2009]

- D5 ($m_\pi = 278$ MeV, $a=0.094$ fm)
- E5 ($m_\pi = 272$ MeV, $a=0.073$ fm)
- D6 ($m_\pi = 166$ MeV, $a=0.091$ fm)

No disconnected diagrams

PRELIMINARY

- BJY - pQCD (2003)
Proton G_E/G_M Ratio

- Lattice data: 2-state fits
- Phenomenology curves: [Alberico et al, PRC79:065204 (2008)]
- Comparison to experimental data (black points)

Earlier calculation: (a=0.074 fm, $m_\pi=470$ MeV)
Feynman-Hellman method
[Chambers et al (CSSM), PRD96: 114509]
Neutron G_{En}/G_{Mn} Ratio

- Lattice data: 2-state fits
- Phenomenology curves: [Alberico et al, PRC79:065204 (2008)]
- Comparison to experimental data (black points)

Q^2 [GeV2]

(\mu_{E}/G_{M})_n$

[Alberico]
D5 ($m_\pi = 278$ MeV, $a=0.094$ fm)
E5 ($m_\pi = 272$ MeV, $a=0.073$ fm)
D6 ($m_\pi = 166$ MeV, $a=0.091$ fm)

[No disconnected diagrams] PRELIMINARY
Light-Flavor Decomposition (Proton)

\[Q^4 F_{1u} \]

\[Q^4 F_{2u} \]

\[(2.5) \cdot Q^4 F_{1d} \]

\[(-0.75) \cdot Q^4 F_{2d} \]

\[d \text{ quark} \times 2.5 \]

\[d \text{ quark} \times 0.75 \]

Robust estimator from nucleon-current correlators:

avoid lattice correlators fits to $\sim \Sigma \exp(-Et)$

$$\begin{align*}
\text{Re} \langle p' \hat{x} | J_t | p \hat{x} \rangle &\propto \cosh \frac{\lambda' + \lambda}{2} G_E \\
\text{Re} \langle p' \hat{x} | J_y | p \hat{x} \rangle &\propto \sinh \frac{\lambda' - \lambda}{2} G_M
\end{align*}$$

where $\left(\begin{array}{c} p^{(t)} \\ E^{(t)} \end{array} \right) = m_N \sinh \lambda^{(t)}$

$$\left(\begin{array}{c} p^{(t)} \\ E^{(t)} \end{array} \right) = m_N \cosh \lambda^{(t)}$$

D5 ($m_{\pi} = 278$ MeV, $a = 0.094$ fm)

E5 ($m_{\pi} = 272$ MeV, $a = 0.073$ fm)

D6 ($m_{\pi} = 166$ MeV, $a = 0.094$ fm)

$$\left(\begin{array}{c} \sinh \frac{\lambda' - \lambda}{2} \\ \cosh \frac{\lambda' + \lambda}{2} \end{array} \right) \begin{array}{c}
\text{Re} \langle N_T^{(p_x', T)} | J_t (T/2) | \tilde{N}_T(p_x, 0) \rangle \\
\text{Re} \langle N_T^{(p_x', T)} | J_y (T/2) | \tilde{N}_T(p_x, 0) \rangle
\end{array} \xrightarrow{T \to \infty} G_E/G_M$$
Disconnected Quark Loops

- **Stochastic evaluation:**
 \[\xi(x) = \text{random } Z_2\text{-vector} \]
 \[E[\xi^\dagger(x)\xi(y)] = \delta_{x,y} \]

 \[\sum_x e^{iqx} \mathcal{D}^{-1}(x,x) \approx \frac{1}{N_{MC}} \sum_i^{N_{MC}} \xi^\dagger_i(e^{iqx} \mathcal{D}^{-1}\xi_i) \]

 \[\text{Var}(\sum_x \mathcal{D}^{-1}(x,x)) \sim \frac{1}{N_{MC}} \]

 \[(\text{contributions from } \mathcal{D}^{-1}(x \neq y)) \]

- **Exploit** \(\mathcal{D}^{-1}(x, y) \) **falloff** to reduce \(\sum_{x \neq y} |\mathcal{D}^{-1}(x, y)|^2 \):

Hierarchical probing method [K.Orginos, A.Stathopoulos, ’13]:

In sum over \(N=2^{n+d+1} \) 3D(4D) Hadamard vectors, near-(x,y) terms cancel:

\[\frac{1}{N} \sum_i z_i(x)z_i(y)^\dagger = \begin{cases}
0, & 1 \leq |x - y| \leq 2^k, \\
1, & x = y \text{ or } 2^k < |x - y|
\end{cases} \]

- Further decrease variance by deflating low-lying, long-range modes [A.Gambhir's PhD thesis]
Prior work: Disc. Light & Strange Quark F.F's

N_{f}=2+1 dynamical fermions, m_{\pi} \approx 320 \ MeV
(C13 ensemble)

\begin{align*}
| (G_{E}^{u/d})_{\text{disc}} | & \lesssim 0.010 \ \text{of} \ | (G_{E}^{u/d})_{\text{conn}} | \\
| (G_{E}^{s})_{\text{disc}} | & \lesssim 0.005 \ \text{of} \ | (G_{E}^{u/d})_{\text{conn}} | \\
| (G_{M}^{u/d})_{\text{disc}} | & \lesssim 0.015 \ \text{of} \ | (G_{M}^{u/d})_{\text{conn}} | \\
| (G_{M}^{s})_{\text{disc}} | & \lesssim 0.005 \ \text{of} \ | (G_{M}^{u/d})_{\text{conn}} | \\
\end{align*}

[J. Green, S. Meinel, S.S. et al; PRD92:031501 (2015)]
Disconnected Light, Strange vs. Connected

- D5 ensemble (mπ=280 MeV, a=0.094 fm), 1346 configs,
- 512 HP vectors; UD: also deflation with 500 DdagD evecs [Stathopoulos et al (2013); Gambhir et al 2017]
- s-, disconnected u,d- contributions are small also at high Q^2 up to \(\approx 10 \text{ GeV}^2 \)

<table>
<thead>
<tr>
<th>(F_{1}^{s})</th>
<th>(F_{1}^{u/d})_{disc}</th>
<th>(F_{2}^{u/d})_{disc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% of (F_{2}^{u,d})</td>
<td>20% of (F_{2}^{u,d})</td>
<td></td>
</tr>
</tbody>
</table>
Disconnected Light, Strange vs. Connected

- D5 ensemble (mπ=280 MeV, a=0.094 fm), 1346 configs,
- 512 HP vectors; UD: also deflation with 500 DdagD evecs
 [Stathopoulos et al (2013); Gambhir et al 2017]
- s-, disconnected u, d- contributions are small
 also at high Q² up to ≲ 10 GeV²

\[|F_{1s}^s| \lesssim |(F_{1d}^{u/d})_{\text{disc}}| \lesssim 10\% \text{ of } |F_{2u,d}^u| \]
\[|F_{2s}^s| \lesssim |(F_{2d}^{u/d})_{\text{disc}}| \lesssim 20\% \text{ of } |F_{2u,d}^u| \]
Improved vector current \((V_\mu)_I = \bar{q}\gamma_\mu q + c_V a_\mu \bar{q}i\sigma_{\mu\nu}q \)

\(O(a^1) \) correction: form factors of \(a_\mu \langle N | \partial_\nu (\bar{q}i\sigma^{\mu\nu}q) | N \rangle \)

O(a\(^1\)) correction: form factors of \(a_\mu \)

Relative magnitude of \(O(a^1) \) effects: \(\{ O(a^1) \} / \{ O(a^0) \} \) form factors (assuming \(c_V = 0.05 \))

- improvement coefficient \(c_V \): must be computed on lattice from WI
- perturbation theory: \(c_V \approx -0.01C_F(g_0)^2 \)
Summary

- Preliminary results for high MC-statistics high-momentum form factors up to $Q^2 \lesssim 12 \text{ GeV}^2$, two lattice spacings $a \gtrsim 0.07 \text{ fm}$, two pion masses $m_\pi \gtrsim 170 \text{ MeV}$

 (*No quark-disconnected contributions yet*)

- Form factor results overshoot experimental data $x(2 \ldots 2.5)$;
 G_E/G_M ratios in qualitative agreement

 Discretization?
 Excited states?
 Non-physical quark masses?
 Quark-Disconnected contributions?

- Comparison to experiment important to validate lattice methods for computing relativistic nucleon matrix elements

 Impact on lattice methodology for TMDs, PDFs, DAs calculation