Nucleon Electromagnetic Form Factors at Large Momentum from Lattice QCD

Sergey Syritsyn (Stony Brook University)
with M.Engelhardt, J.Green,
S.Krieg, A.Pochinsky, J.Negele
(Lattice Hadron Physics collaboration)

LATTICE 2023, Aug 1, 2023

Outline

- Nucleon vector form factors at large momentum
- Challenges for large-Q² hadron structure on lattice
- Preliminary results and comparison to experiment & phenomenology
- Examining systematic effects
- Summary and Outlook

Nucleon Elastic E&M Form Factors

Elastic *e*⁻*p* cross-section

- $G_{E,M}$ from ϵ -dep. at fixed $\tau(Q^2)$ ("Rosenbluth separation")
- odominated by G_M at large Q^2
- 2γ corrections at Q² ≥ 1 GeV²

Elastic *e*-*p* amplitude

$$\langle P+q|\,\bar{q}\gamma^\mu q\,|P\rangle = \bar{U}_{P+q}\Big[\begin{matrix} ({\rm Dirac}) & ({\rm Pauli}) \\ F_1(Q^2)\gamma^\mu + F_2\left(Q^2\right) \frac{i\sigma^{\mu\nu}q_\nu}{2M_N} \end{matrix}\Big]U_P$$
 Sachs Electric
$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2)$$

Sachs Electric
$$G_E(Q^2) = F_1(Q^2) - rac{Q^2}{4M^2}F_2(Q^2)$$

Magnetic
$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{\text{Mott}}}{1+\tau} \left[G_E^2 + \frac{\tau}{\epsilon} G_M^2 \right]$$

$$\tau = \frac{Q^2}{4M_N^2} \qquad \epsilon = \left[1 + 2(1+\tau) \tan^2 \frac{\theta}{2} \right]^{-1}$$

Polarization transfer: polarized e-beam

+ detect polarization of recoil nucleon

(alt.: transverse asymmetry on pol. target)

 \bigcirc G_E/G_M ratio (only small radiative corrections)

$$P_t/P_l \propto G_E/G_M$$

Recent/Ongoing Experiments

Projected new precision on proton & neutron form factors [V. Punjabi et al, EPJ A51: 79 (2015); arXiv: 1503.01452]

Experiments at JLab@12GeV

Hall A (HRS, SBS):

$$G_{Mp}$$
 (RS, SBS). G_{Mp} @ Q² ≤ 17.5 GeV²

$$G_{Ep}/G_{Mp} @ Q^2 \le 15 \ GeV^2$$
;

$$G_{Mn}$$
 @ Q^2

@
$$Q^2 \leq 18 \text{ GeV}^2$$

$$G_{En}/G_{Mn} @ Q^2 \le 10.2 \ GeV^2$$
;

Hall B (CLAS12):

$$G_{Mn} \textcircled{0} Q^2 \lesssim 14 \ GeV^2$$

Hall C:

$$G_{En}/G_{Mn}$$
 @ $Q^2 \lesssim 6.9 \text{ GeV}^2$

Recent/Ongoing Experiments

Projected new precision on proton & neutron form factors [V. Punjabi et al, EPJ A51: 79 (2015); arXiv: 1503.01452]

New G_{Mp} data from Hall A [Christy et al, PRL'22]

Nucleon Form Factors: Open Questions

- Are model descriptions of the nucleon viable? Nucleon models disagree beyond explored range
- Role of diquark correlations in elastic scattering? Neutron & proton G_E/G_M at/above $Q^2 = 8 \text{ GeV}^2$
- Scale of transition to perturbative QCD ? (F_2/F_1) scaling at large Q^2 : $Q^2F_{2p}/F_{1p} \stackrel{?}{\propto} \log^2(Q^2/\Lambda^2)$
- What are contributions from u and d flavors? Proton and neutron data needed in wide Q² range

[G.D.Cates, C.W.de Jager, S.Riordan, B.Wojtsekhovski, PRL106:252003, arXiv:1103.1808]

 $\mu_p\,G_{Ep}/G_{Mp}$ 0.2-0.2

Dyson-Schwinger Eqns : (GeV^2) quarks & 0+, 1+ diquarks $(\alpha \approx \text{rate of transition const.quarks} \rightarrow pQCD \text{ with } Q^2)$ [Cloet, Roberts, Prog.Part.Nucl.Phys 77:1 (2014)]

Challenges at Large Q²

Discretization effects:O(a) Correction to current operator

$$(V_{\mu})_{I} = [\bar{q}\gamma_{\mu}q] + c_{V} a \underbrace{\partial_{\nu}[\bar{q}i\sigma_{\mu\nu}q]}_{\propto Q}$$

Stochastic noise grows faster with T [Lepage'89]:

Signal
$$\langle N(T)\bar{N}(0)\rangle$$
 $\sim e^{-E_NT}$
Noise $\langle |N(T)\bar{N}(0)|^2\rangle - |\langle N(T)\bar{N}(0)\rangle|^2$ $\sim e^{-3m_{\pi}T}$
Signal/Noise $\sim e^{-(E_N - \frac{3}{2}m_{\pi})T}$

SNR reduction at 1 fm/c ~ O(10⁻⁴) (phys.quarks, Q²≈12 GeV²)

Excited states: boosting "shrinks" the energy gap

$$E_1 - E_0 = \sqrt{M_1^2 + \vec{p}^2} - \sqrt{M_2^2 + \vec{p}^2} < M_1 - M_0$$

- N(~1500): pN \rightarrow 1.5 GeV $\Rightarrow \Delta E = 500 \rightarrow 300$ MeV
- Quark-disconnected contributions: negligible (≤1%) at Q² ≤ 1 GeV², unknown at large Q²

Large p_N : no reliable EFT/ChPT for m π -, lattice size-extrapolation

Large statistics required to suppress MC noise in lattice correlators

Accessing Large Q²: Breit Frame on a Lattice

"Brick-Wall" frame

Minimize $E_{in,out}$ for target Q^2 :

$$Q^{2} = (\vec{p}_{in} - \vec{p}_{out})^{2} - (E_{in} - E_{out})^{2}$$

Back-to-back $Q^2=4\vec{p}^2$

For (Q²)_{max} = 10 GeV² (
$$E_N \approx 1.9$$
 GeV) $|\vec{p}| = \frac{1}{2} \sqrt{Q_{\rm max}^2} \approx 1.6 \ {\rm GeV}$

lattice kinematics for Q² ≈ 10 GeV²

Nucleon momentum ~ Brillouin zone

$$\langle N\bar{N}\rangle^{-1}(p) \stackrel{?}{=} -ip^{\text{lat}} + m_N$$

$$p_{\mu}^{\text{lat}} = k_{\mu} + O(k^3)$$

⇒ expect O(a^2) corrections
from lattice nucleon spinor

Present QCD Calculation Parameters

- $N_F = 2+1$ clover-improved Wilson fermion ensembles (JLab / W&M / LANL / MIT)
- Lattice spacing $a \approx 0.073 \div 0.091$ fm
- Light quark masses approaching physical : $m\pi = 170 \div 280 \text{ MeV}$
- Large physical volume L $\approx 3.7 \ (m\pi)^{-1}$
- Source-sink separation t_{sep} = 0.51 ÷ 1.09 fm
- Momentum smearing, AMA sampling
- Estimate disconnected contributions

2022/23:

- MC Statistics ~250k on
 D6 (48³ x 96), E5 (48³ x 128)
- Disconnected contractions on D6 (1000+ configs)

Made possible by new nVidia A100 clusters

- Perlmutter [NERSC]
- Juwels-Booster [Fz. Juelich]

Many thanks to the QUDA team!

[K. Clark, R.Babich, R.Brower, M.Wagner, E.Weinberg, and many others]

Lattice Nucleon Energy & Dispersion Relation (E5)

E5 : $m\pi = 272 \text{ MeV}$, spacing a = 0.073 fm , 266k MC samples

Effective energy and 2-state fits

Sergey Syritsyn

$$E_{eff} = \frac{1}{a} \log \frac{C_{N\bar{N}}(t)}{C_{N\bar{N}}(t+a)}$$

Dispersion relation Dashed lines: cont. $E^2(p) = E^2(0) + p^2$

Lattice Nucleon Energy & Dispersion Relation (D6)

Ob: $m\pi = 166 \text{ MeV}$, spacing a = 0.091 fm, 261k MC samples

Effective energy and 2-state fits

$$E_{eff} = \frac{1}{a} \log \frac{C_{N\bar{N}}(t)}{C_{N\bar{N}}(t+a)}$$

Dispersion relation Dashed lines: cont. $E^2(p) = E^2(0) + p^2$

Nucleon Matrix Element & Form Factor Fits (D5)

Nucleon Form Factors

- 2-state fits to extract the ground state
- discrepancy x(2..2.5) for Q2>2GeV2: exc.states? discretization? quark mass
- Phenomenology curves: [Alberico et al, PRC79:065204 (2008)]

Proton F₂/F₁ Ratio

- Lattice data: 2-state fits
- Phenomenology curves: [Alberico et al, PRC79:065204 (2008)]
- Comparison to experimental data (black points)

LATTICE 2023, Aug I, Fermilab

Proton G_E/G_M Ratio

- Lattice data: 2-state fits
- Phenomenology curves: [Alberico et al, PRC79:065204 (2008)]
- Comparison to experimental data (black points)

Earler calculation: (a=0.074 fm, $m\pi=470$ MeV)

Feynman-Hellman method

[Chambers et al (CSSM), PRD96: 114509]

Neutron G_{En}/G_{Mn} Ratio

- Lattice data: 2-state fits
- Phenomenology curves: [Alberico et al, PRC79:065204 (2008)]
- Comparison to experimental data (black points)

Light-Flavor Decomposition (Proton)

Sergey Sy

Examine Exc. States: Proton GE/GM

Robust estimator from nucleon-current correlators:
 avoid lattice correlators fits to ~Σ exp(-Et)

$$\operatorname{Re} \langle p'\hat{x}|J_t|p\hat{x}\rangle \propto \cosh\frac{\lambda'+\lambda}{2}G_E$$

$$\operatorname{Re} \langle p'\hat{x}|J_y|p\hat{x}\rangle \propto \sinh\frac{\lambda'-\lambda}{2}G_M$$
where
$$\begin{pmatrix} p^{(\prime)} &= m_N \sinh\lambda^{(\prime)} \\ E^{(\prime)} &= m_N \cosh\lambda^{(\prime)} \end{pmatrix}$$

Disconnected Quark Loops

• Stochastic evaluation: $\begin{cases} \xi(x) = \text{ random } Z_2\text{-vector} \\ E\big[\xi^\dagger(x)\xi(y)\big] = \delta_{x,y} \end{cases}$

$$\sum_{x} e^{iqx} \not \!\!\! D^{-1}(x,x) \approx \frac{1}{N_{MC}} \sum_{i}^{N_{MC}} \xi_{(i)}^{\dagger} \left(e^{iqx} \not \!\!\! D^{-1} \xi_{(i)} \right)$$

$$\operatorname{Var} \left(\sum_{x} \not \!\!\! D^{-1}(x,x) \right) \sim \frac{1}{N_{MC}} \quad \text{(contributions from } \not \!\!\! D^{-1}(x \neq y) \text{)}$$

• Exploit $D^{-1}(x,y)$ falloff to reduce $\sum_{x\neq y} |D^{-1}(x,y)|^2$:

Hierarchical probing method [K.Orginos, A.Stathopoulos, '13] : In sum over $N=2^{nd+1}$ 3D(4D) Hadamard vectors, near-(x,y) terms cancel:

$$\frac{1}{N} \sum_{i} z_{i}(x) z_{i}(y)^{\dagger} = \begin{cases} 0, & 1 \leq |x - y| \leq 2^{k}, \\ 1, & x = y \text{ or } 2^{k} < |x - y| \end{cases}$$

Further decrease variance by deflating low-lying, long-range modes [A.Gambhir's PhD thesis]

Prior work: Disc.Light & Strange Quark F.F's

 N_f =2+1 dynamical fermions, $m_\pi \approx 320 \text{ MeV}$ (C13 ensemble)

$$|(G_E^{u/d})_{\text{disc}}| \lesssim 0.010 \text{ of } |(G_E^{u-d})_{\text{conn}}|$$

 $|(G_E^s)_{\text{disc}}| \lesssim 0.005 \text{ of } |(G_E^{u-d})_{\text{conn}}|$

$$|(G_M^{u/d})_{\text{disc}}| \lesssim 0.015 \text{ of } |(G_M^{u-d})_{\text{conn}}|$$

 $|(G_M^s)_{\text{disc}}| \lesssim 0.005 \text{ of } |(G_M^{u-d})_{\text{conn}}|$

[J. Green, S. Meinel, S.S. et al; PRD92:031501 (2015)]

Disconnected Light, Strange vs. Connected

- D5 ensemble($m\pi$ =280 MeV, a=0.094 fm), 1346 configs,
- 512 HP vectors; UD: also deflation with 500 DdagD evecs
 [Stathopoulos et al (2013); Gambhir et al 2017]
- s-, disconnected u,d- contributions are small also at high Q^2 up to $\leq 10 \text{ GeV}^2$

$$|F_1^s| \lesssim |(F_1^{u/d})_{\text{disc}}| \lesssim 10\% \text{ of } |F_2^{u,d}|$$

 $|F_2^s| \lesssim |(F_2^{u/d})_{\text{disc}}| \lesssim 20\% \text{ of } |F_2^{u,d}|$

Disconnected Light, Strange vs. Connected

- D5 ensemble($m\pi$ =280 MeV, a=0.094 fm), 1346 configs,
- 512 HP vectors; UD: also deflation with 500 DdagD evecs
 [Stathopoulos et al (2013); Gambhir et al 2017]
- s-, disconnected u,d- contributions are small also at high Q^2 up to $\leq 10 \text{ GeV}^2$

$$|F_1^s| \lesssim |(F_1^{u/d})_{\text{disc}}| \lesssim 10\% \text{ of } |F_2^{u,d}|$$

 $|F_2^s| \lesssim |(F_2^{u/d})_{\text{disc}}| \lesssim 20\% \text{ of } |F_2^{u,d}|$

O(a) Vector Current Correction

Improved vector current $\;(V_\mu)_I=\bar q\gamma_\mu q+c_V\,a\partial_\nu \bar q i\sigma_{\mu\nu} q$

 ${\it O(a^1)}$ correction : form factors of $a \langle N | \partial_{\nu} (\bar{q} i \sigma^{\mu \nu} q) | N \rangle$

Relative magnitude of $O(a^1)$ effects : $\{O(a^1)\}/\{O(a^0)\}$ form factors (assuming $c_V=0.05$)

- lacktriangle improvement coefficient c_V : must be computed on lattice from WI
- perturbation theory: $cV \approx -0.01C_F(g_0)^2$

Summary

- Preliminary results for high MC-statistics high-momentum form factors up to Q² ≤ 12 GeV², two lattice spacings a ≥ 0.07 fm, two pion masses mπ ≥ 170 MeV (No quark-disconnected contributions yet)
- Form factor results overshoot experimental data x(2 ... 2.5); G_E/G_M ratios in qualitative agreement Discretization? Excited states? Non-physical quark masses? Quark-Disconnected contributions?
- Comparison to experiment important to validate lattice methods for computing relativistic nucleon matrix elements Impact on lattice methodology for TMDs, PDFs, DAs calculation

BACKUP