Twist-3 axial GPDs of the proton from lattice QCD

Martha Constantinou

The 40th International Symposium on Lattice Field Theory

August 3, 2023

Collaborators

- S. Bhattacharya, Temple University/RIKEN BNL
- K. Cichy, Adam Mickiewicz University
- J. Dodson, Temple University
- A. Metz, Temple University
- Josh Miller, Temple University
- A. Scapellato, Temple University
- F. Steffens, University of Bonn

arXiv:2306.05533v1 [hep-lat] 8 Jun 2023 Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya^{1,2}, Krzysztof Cichy³, Martha Constantinou¹, Jack Dodson¹, Andreas Metz¹, Aurora Scapellato¹, Fernanda Steffens⁴

Collaborators

- S. Bhattacharya, Temple University/RIKEN BNL
- K. Cichy, Adam Mickiewicz University
- J. Dodson, Temple University
- A. Metz, Temple University
- Josh Miller, Temple University
- A. Scapellato, Temple University
- F. Steffens, University of Bonn

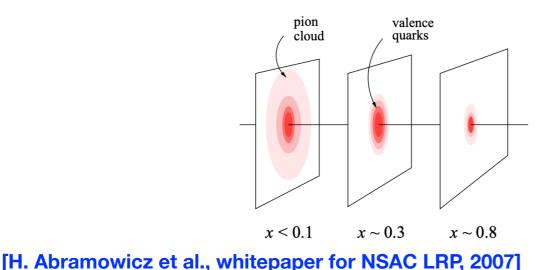
arXiv:2306.05533v1 [hep-lat] 8 Jun 2023 Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya^{1,2}, Krzysztof Cichy³, Martha Constantinou¹, Jack Dodson¹, Andreas Metz¹, Aurora Scapellato¹, Fernanda Steffens⁴

Outline

- ★ Motivation twist-3 classification
- ★ Methodology and computational setup
- ★ Lattice results
- ★ Light-cone GPDs
- ★ Consistency checks

Motivation for GPDs studies



1_{mom} + 2_{coord} tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer

- - GPDs are not well-constrained experimentally:
 - x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H} = \int_{-\infty}^{+\infty} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$

(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)

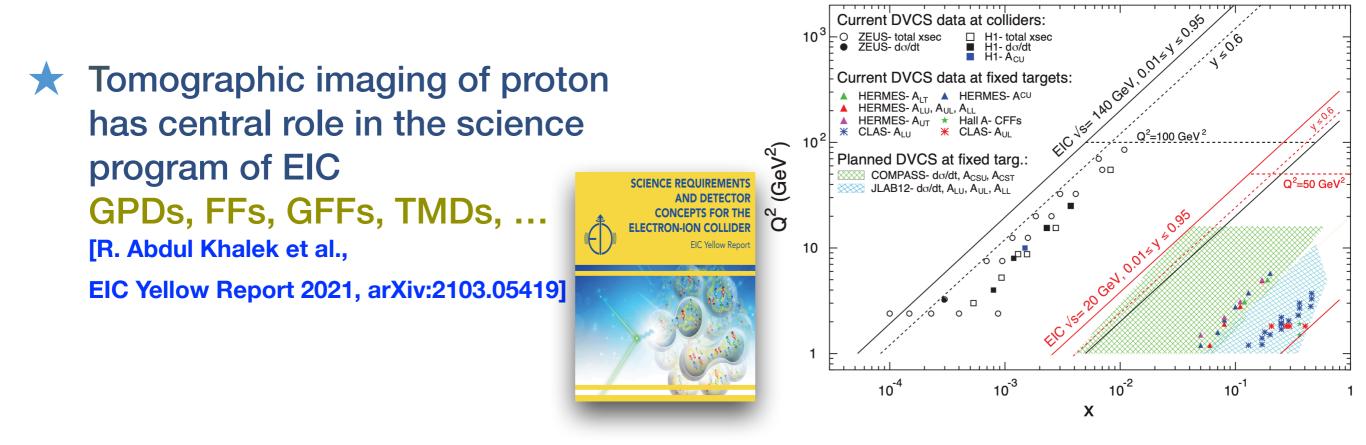
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

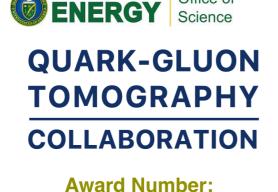
Essential to complement the knowledge on GPD from lattice QCD

Hadron structure at core of nuclear physics



Hadron structure at core of nuclear physics



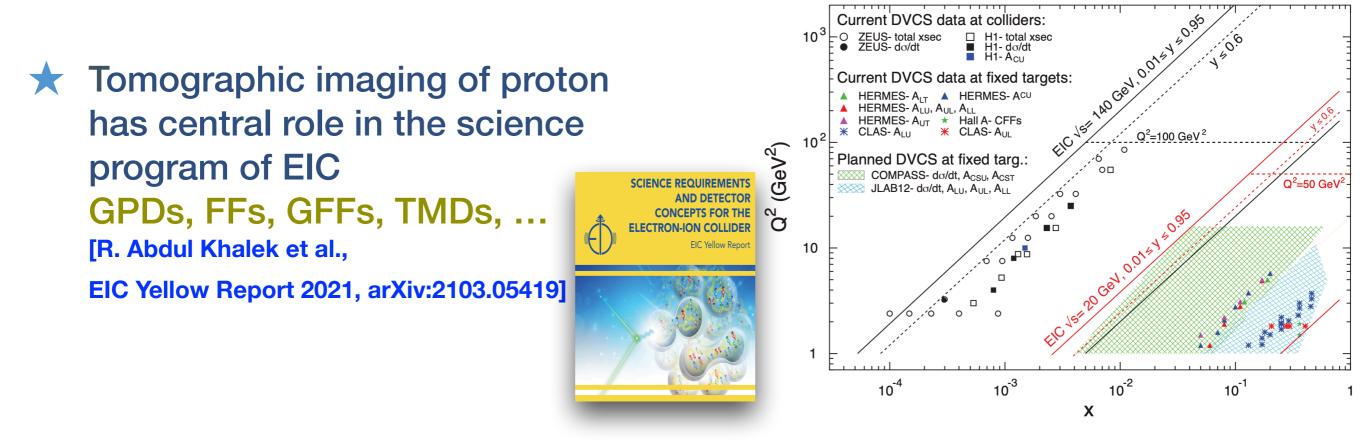


Office of

U.S. DEPARTMENT OF

Award Number: DE-SC0023646 ★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of *t* and ξ dependence

Hadron structure at core of nuclear physics



Office of

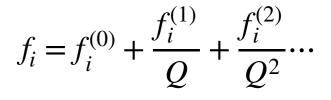
U.S. DEPARTMENT OF

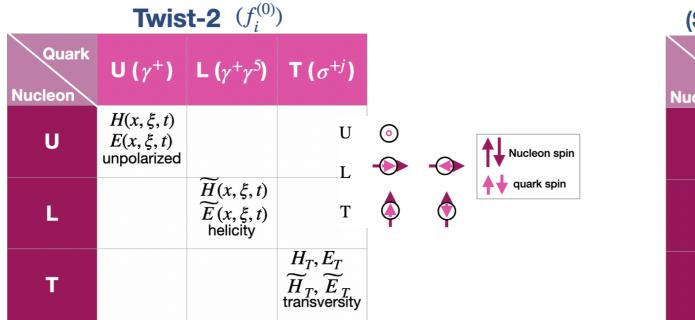
Award Number: DE-SC0023646 ★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of *t* and ξ dependence

Advances of lattice QCD are timely

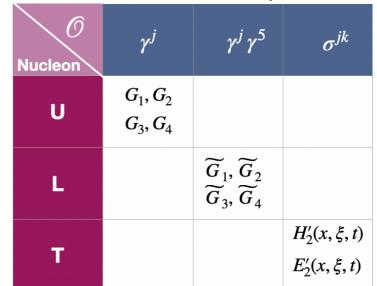
Twist-classification of PDFs, GPDs, TMDs

★ Twist: specifies the order in 1/Q at which the function enters factorization formula for a given observable





(Selected) Twist-3 $(f_i^{(1)})$



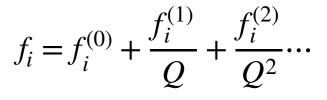
Twist-2: probabilistic densities - a wealth of information exists

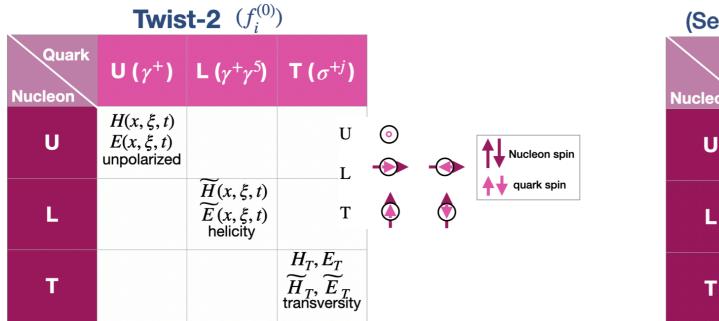
Twist-3: poorly known, but very important:

- as sizeable as twist-2
- contain information about quark-gluon correlations inside hadrons
- appear in QCD factorization theorems for various observables (e.g. g_2)
- certain twist-3 PDFs are related to the TMDs
- physical interpretation (e.g. average force on partons inside hadron)

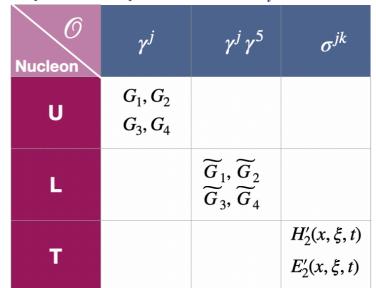
Twist-classification of PDFs, GPDs, TMDs

★ Twist: specifies the order in 1/Q at which the function enters factorization formula for a given observable





(Selected) Twist-3 $(f_i^{(1)})$



Twist-2: probabilistic densities - a wealth of information exists

Twist-3: poorly known, but very important:

- as sizeable as twist-2
- contain information about quark-gluon correlations inside hadrons
- appear in QCD factorization theorems for various observables (e.g. $g_{\rm 2}$)
- certain twist-3 PDFs are related to the TMDs
- physical interpretation (e.g. average force on partons inside hadron)

While twist-3 $f_i^{(1)}$ share some similarities with twist-2 $f_i^{(0)}$ in their extraction, there are several challenges both experimentally and theoretically

Through non-local matrix elements of fast-moving hadrons

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

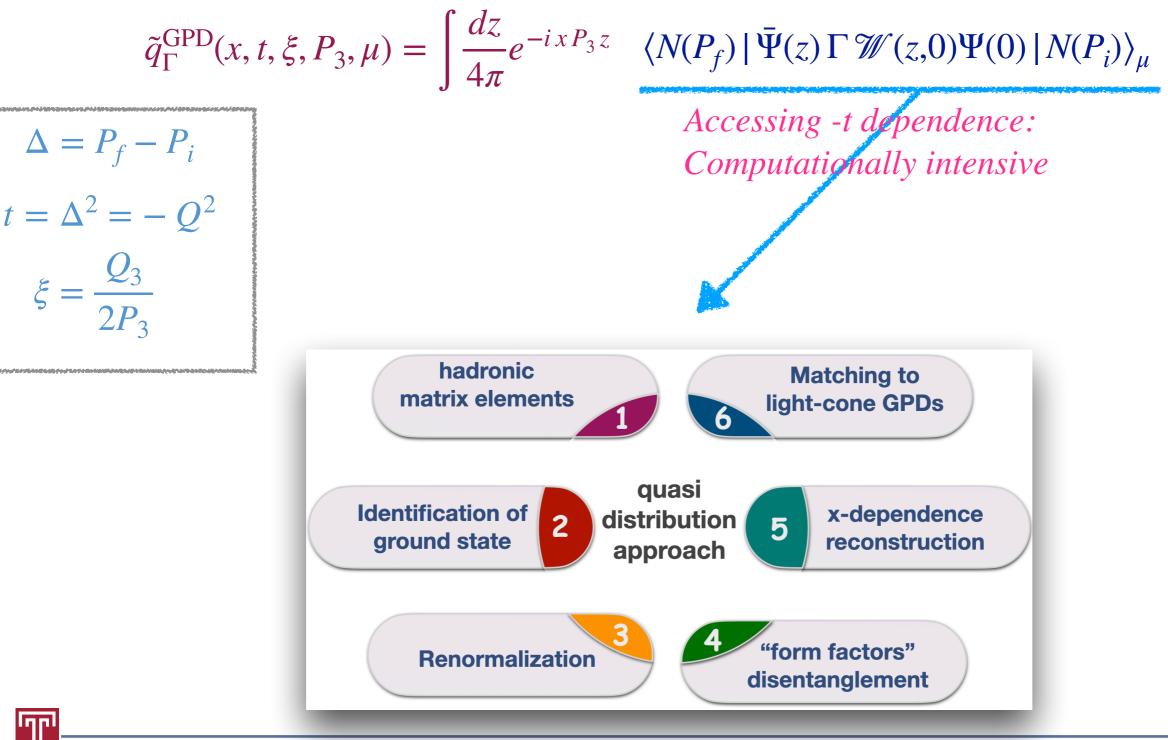
Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$\begin{split} \tilde{q}_{\Gamma}^{\text{GPD}}(x,t,\xi,P_{3},\mu) &= \int \frac{dz}{4\pi} e^{-ixP_{3}z} \quad \langle N(P_{f}) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathcal{W}(z,0) \Psi(0) \, | \, N(P_{i}) \rangle_{\mu} \\ \Delta &= P_{f} - P_{i} \\ t &= \Delta^{2} = - \, Q^{2} \\ \xi &= \frac{Q_{3}}{2P_{3}} \end{split}$$

Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

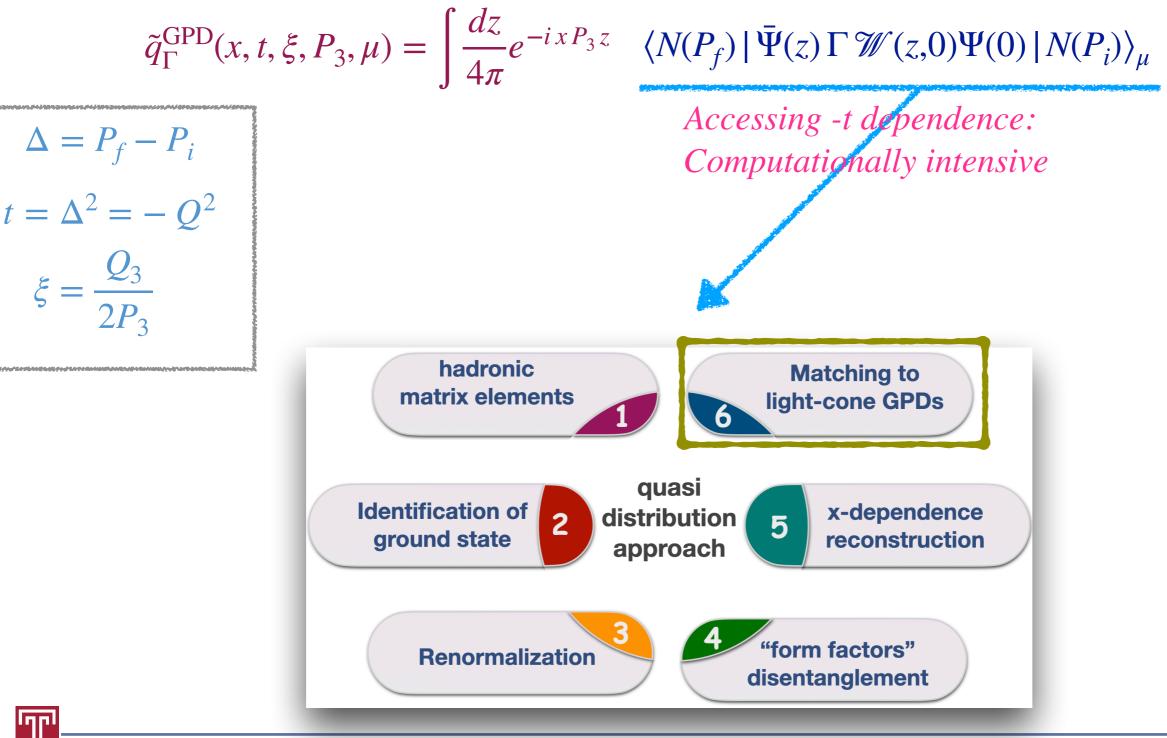
Matrix elements of nonlocal (equal-time) operators with fast moving hadrons



Access of PDFs/GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons



M. Constantinou, Lattice 2023

Parameters of calculations

\star Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

$N(\overrightarrow{P}_{f},0)$

★ Calculation of connected diagram

$P_3 [{ m GeV}]$	$ec{q}[rac{2\pi}{L}]$	$-t[{\rm GeV}^2]$	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m total}$
± 0.83	(0,0,0)	0	2	194	8	3104
± 1.25	(0,0,0)	0	2	731	16	23392
± 1.67	(0,0,0)	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2,\pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm4,0,0)$	2.76	8	329	32	84224

tended Twister

o//aboratio

 $N(\overrightarrow{P}, t_{a})$

Parameters of calculations

\star Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

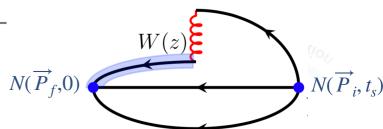
Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

★ Calculation of connected diagram

$P_3 [\mathrm{GeV}]$	$ec{q}[rac{2\pi}{L}]$	$-t[{ m GeV}^2]$	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m total}$
± 0.83	(0,0,0)	0	2	194	8	3104
± 1.25	(0,0,0)	0	2	731	16	23392
± 1.67	(0,0,0)	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2,\pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm4,0,0)$	2.76	8	329	32	84224

Symmetric frame computationally

expensive



Parameters of calculations

\star Nf=2+1+1 twisted mass fermions with a clover term;

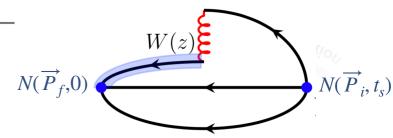
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

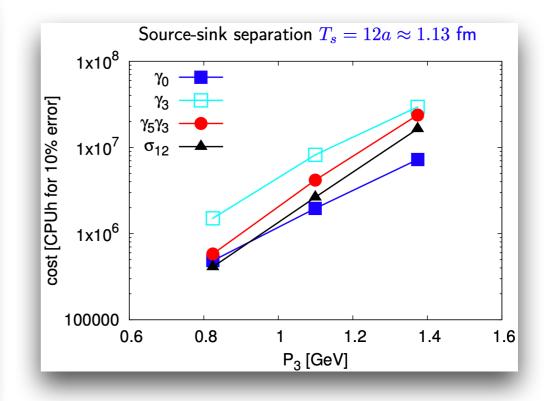
Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

★ Calculation of connected diagram

$P_3[{ m GeV}]$	$ec{q}[rac{2\pi}{L}]$	$-t[{ m GeV}^2]$	37			
			$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m total}$
± 0.83	(0,0,0)	0	2	194	8	3104
± 1.25	(0,0,0)	0	2	731	16	23392
± 1.67	(0,0,0)	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2,\pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4, 0, 0)$	2.76	8	329	32	84224

Symmetric frame computationally expensive





Suppressing gauge noise and reliably

extracting the ground state comes at a

significant computational cost

M. Constantinou, Lattice 2023

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

Parametrization of coordinate-space correlation functions
 [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

Parametrization of coordinate-space correlation functions
 [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

Parametrization of coordinate-space correlation functions
 [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp}\Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Twist-3 contributions to helicity GPDs: $\Gamma = \gamma^{j} \gamma_{5}, \ j = 1, 2$

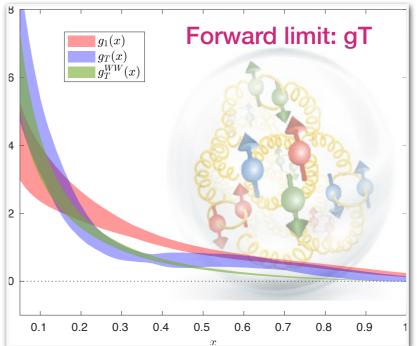
★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

Parametrization of coordinate-space correlation functions
 [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp}\Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Twist-3 contributions to helicity GPDs: $\Gamma = \gamma^{j} \gamma_{5}$, j = 1, 2



Decomposition

$$\begin{split} \Pi^{1}(\Gamma_{0}) &= C \left(-F_{\tilde{H}+\tilde{G}_{2}} \frac{P_{3}\Delta_{y}}{4m^{2}} - F_{\tilde{G}_{4}} \frac{\operatorname{sign}[P_{3}]\Delta_{y}(E+m)}{2m^{2}} \right), \\ \Pi^{1}(\Gamma_{1}) &= i C \left(F_{\tilde{H}+\tilde{G}_{2}} \frac{\left(4m(E+m)+\Delta_{y}^{2}\right)}{8m^{2}} - F_{\tilde{E}+\tilde{G}_{1}} \frac{\Delta_{x}^{2}(E+m)}{8m^{3}} + F_{\tilde{G}_{4}} \frac{\operatorname{sign}[P_{3}]\Delta_{y}(E+m)}{4m^{2}P_{3}} \right) \right) \\ \Pi^{1}(\Gamma_{2}) &= i C \left(-F_{\tilde{H}+\tilde{G}_{2}} \frac{\Delta_{x}\Delta_{y}}{8m^{2}} - F_{\tilde{E}+\tilde{G}_{1}} \frac{\Delta_{x}\Delta_{y}(E+m)}{8m^{3}} - F_{\tilde{G}_{4}} \frac{\operatorname{sign}[P_{3}]\Delta_{x}\Delta_{y}(E+m)}{4m^{2}P_{3}} \right), \\ \Pi^{1}(\Gamma_{3}) &= C \left(-F_{\tilde{G}_{3}} \frac{E\Delta_{x}(E+m)}{2m^{2}P_{3}} \right), \\ \Pi^{2}(\Gamma_{0}) &= C \left(F_{\tilde{H}+\tilde{G}_{2}} \frac{P_{3}\Delta_{x}}{4m^{2}} + F_{\tilde{G}_{4}} \frac{\operatorname{sign}[P_{3}]\Delta_{x}(E+m)}{2m^{2}} \right), \\ \Pi^{2}(\Gamma_{1}) &= i C \left(-F_{\tilde{H}+\tilde{G}_{2}} \frac{\Delta_{x}\Delta_{y}}{8m^{2}} - F_{\tilde{E}+\tilde{G}_{1}} \frac{\Delta_{x}\Delta_{y}(E+m)}{8m^{3}} - F_{\tilde{G}_{4}} \frac{\operatorname{sign}[P_{3}]\Delta_{x}\Delta_{y}(E+m)}{4m^{2}P_{3}} \right), \\ \end{array}$$

$P_3[{ m GeV}]$	$ec{q}[rac{2\pi}{L}]$	$-t[{\rm GeV}^2]$
± 0.83	(0,0,0)	0
± 1.25	(0,0,0)	0
± 1.67	(0,0,0)	0
± 0.83	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2,0,0)$	0.69
± 1.67	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2,\pm 2,0)$	1.38
± 1.25	$(\pm 4,0,0)$	2.76

 ★ Average kinematically equivalent matrix elements

$$\Pi^{2}(\Gamma_{2}) = i C \left(F_{\tilde{H}+\tilde{G}_{2}} \frac{(4m(E+m)+\Delta_{x}^{2})}{8m^{2}} - F_{\tilde{E}+\tilde{G}_{1}} \frac{\Delta_{y}^{2}(E+m)}{8m^{3}} + F_{\tilde{G}_{4}} \frac{\operatorname{sign}[P_{3}] \Delta_{x}^{2}(E+m)}{4m^{2}P_{3}} \right)$$
$$\Pi^{2}(\Gamma_{3}) = C \left(-F_{\tilde{G}_{3}} \frac{E\Delta_{y}(E+m)}{2m^{2}P_{3}} \right),$$

Consistency Checks

Sum Rules (generalization of Burkhardt-Cottingham)
 [X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249]

$$\int_{-1}^{1} dx \, \widetilde{H}(x,\xi,t) = G_A(t) \,, \quad \int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t)$$

$$\int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0 \,, \quad i = 1, 2, 3, 4$$

Sum Rules (generalization of Efremov-Leader-Teryaev) [A. Efremov, O. Teryaev, E. Leader, PRD 55 (1997) 4307, hep-ph/9607217]

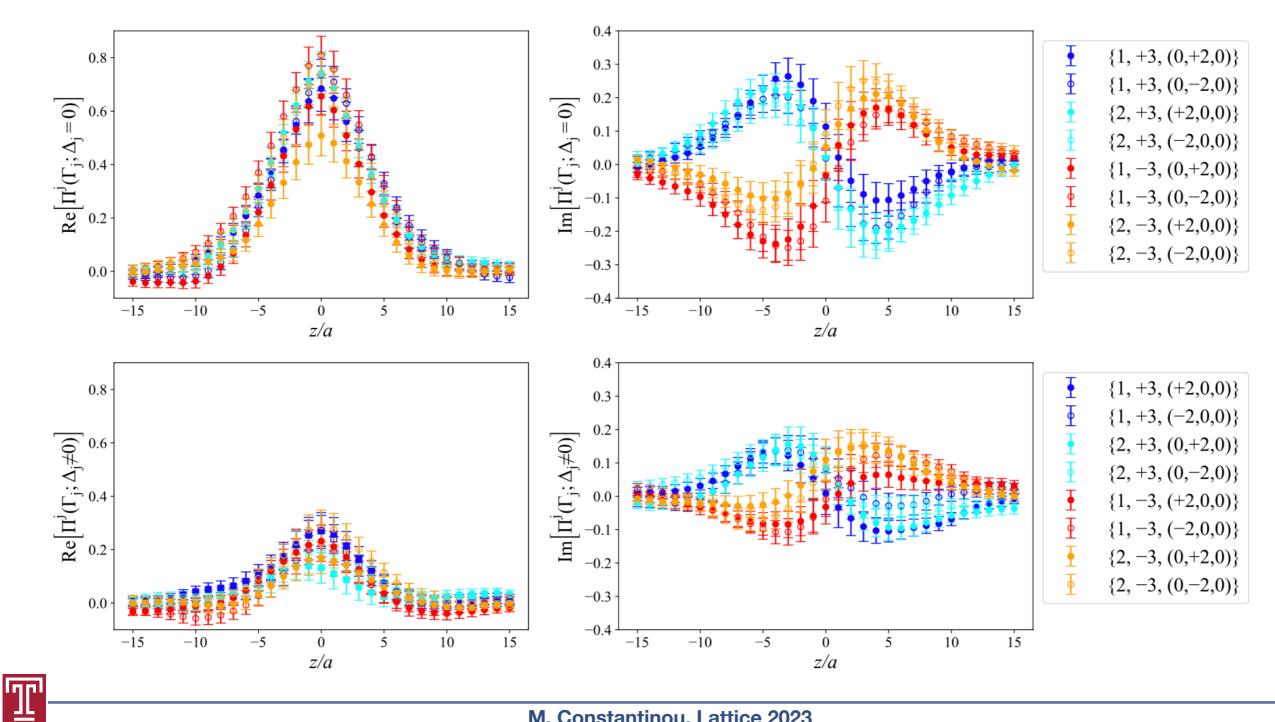
$$\int_{-1}^{1} dx \, x \, \widetilde{G}_{3}(x,0,t) = \frac{\xi}{4} G_{E} \qquad \int_{-1}^{1} dx \, x \, \widetilde{G}_{4}(x,0,t) = \frac{1}{4} G_{E}(t)$$

 G_E : electric FF

Lattice Results - Matrix Elements

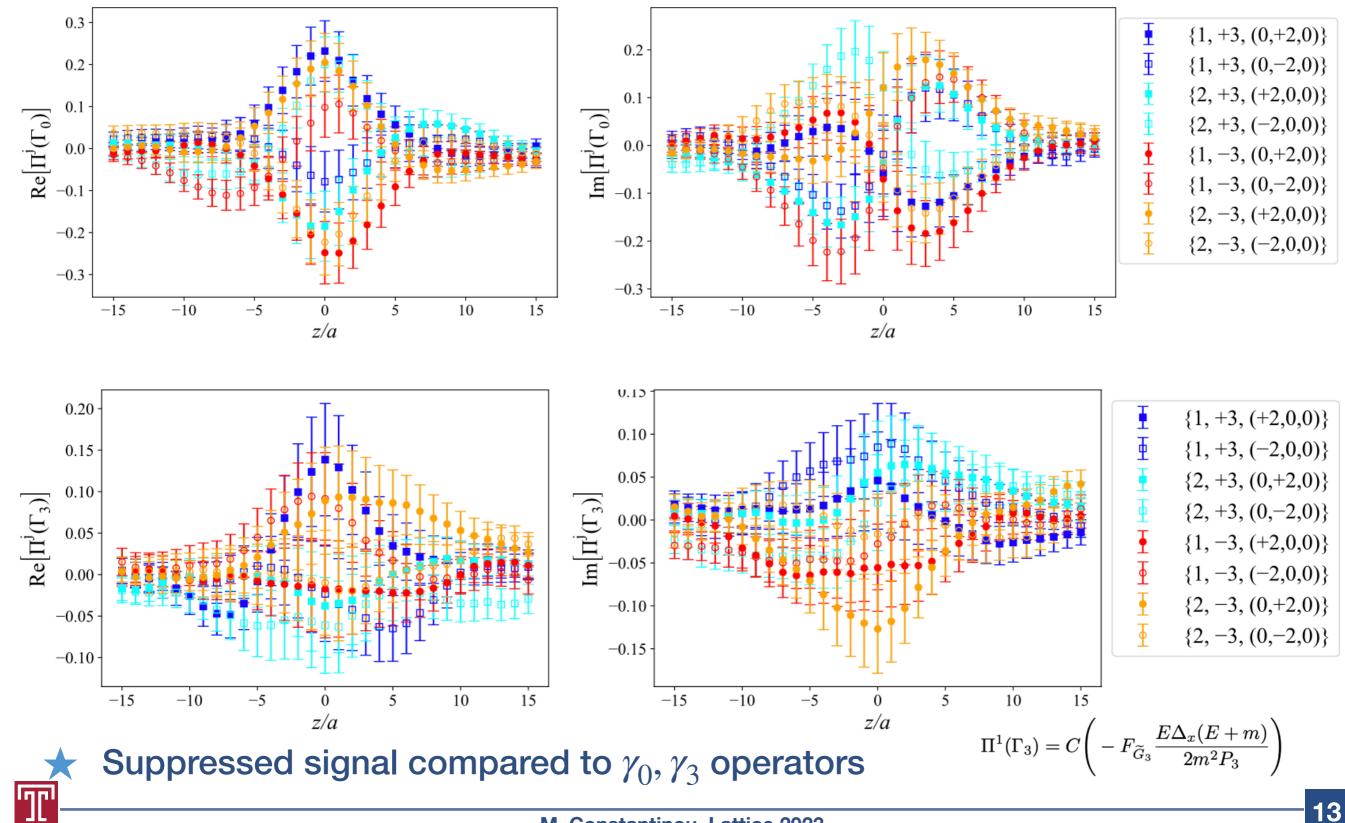
Bare matrix elements ×

$$\Pi^{1}(\Gamma_{1}) = i C \left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\left(4m(E+m) + \Delta_{y}^{2}\right)}{8m^{2}} - F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x}^{2}(E+m)}{8m^{3}} + F_{\widetilde{G}_{4}} \frac{\operatorname{sign}[P_{3}] \Delta_{y}^{2}(E+m)}{4m^{2}P_{3}} \right)$$

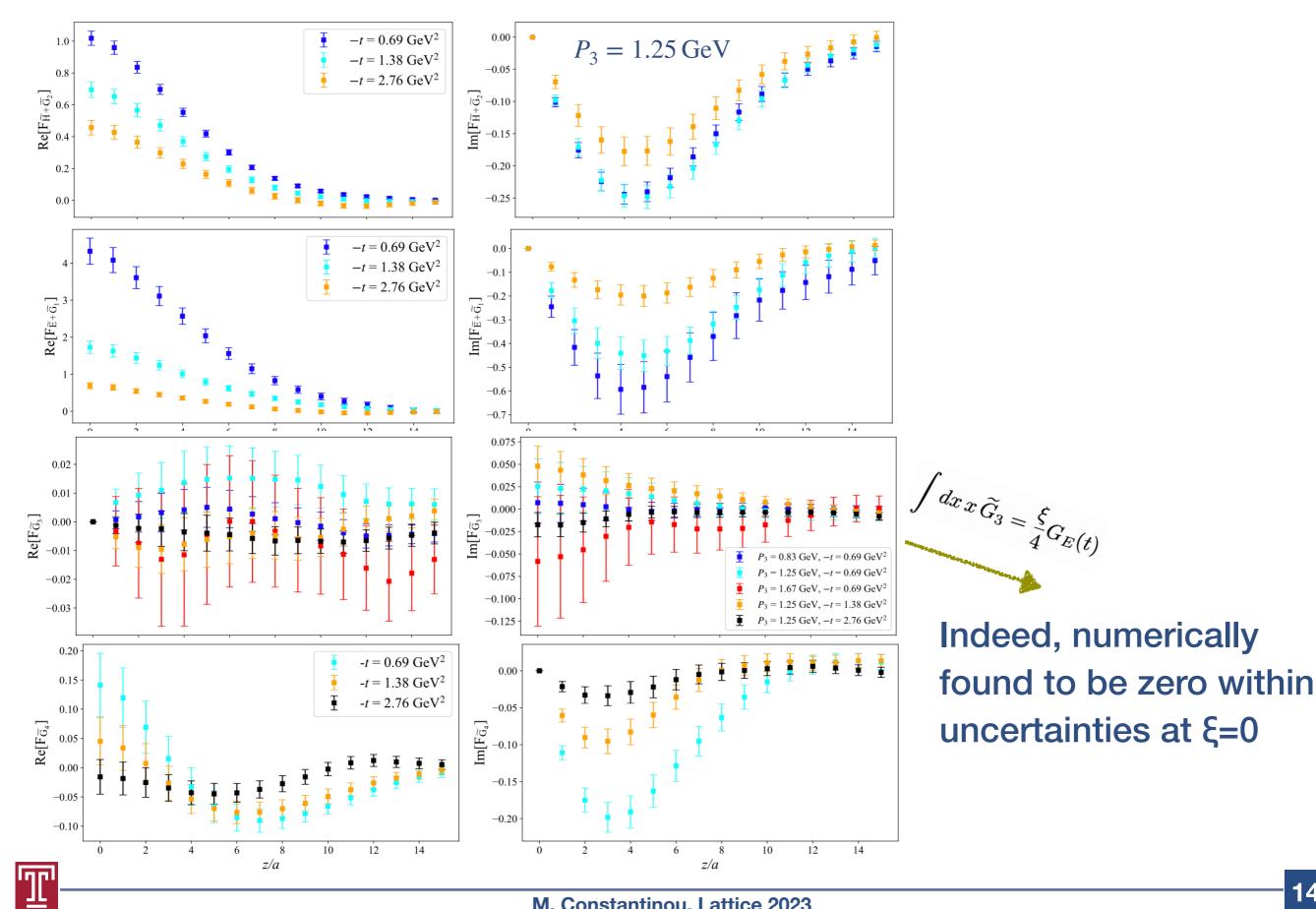


Lattice Results - Matrix Elements

Bare matrix elements *



Lattice Results - quasi-GPDs



Reconstruction of x-dependence & matching

- quasi-GPDs transformed to momentum space using Backus Gilbert [G. Backus and F. Gilbert, Geophysical Journal International 16, 169 (1968)]
- ★ Matching formalism to 1 loop accuracy level

$$F_X^{\mathrm{M}\overline{\mathrm{MS}}}(x,t,P_3,\mu) = \int_{-1}^1 \frac{dy}{|y|} \, C_{\gamma_j \gamma_5}^{\mathrm{M}\overline{\mathrm{MS}},\overline{\mathrm{MS}}}\left(\frac{x}{y},\frac{\mu}{yP_3}\right) \, G_X^{\overline{\mathrm{MS}}}(y,t,\mu) \ + \, \mathcal{O}\left(\frac{m^2}{P_3^2},\frac{t}{P_3^2},\frac{\Lambda_{\mathrm{QCD}}^2}{x^2P_3^2}\right)$$

★ Operator dependent kernel

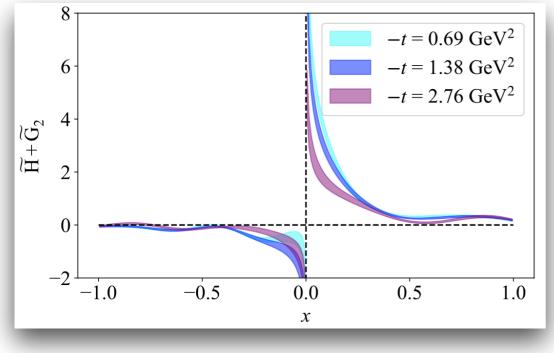
PHYSICAL REVIEW D 102, 034005 (2020)

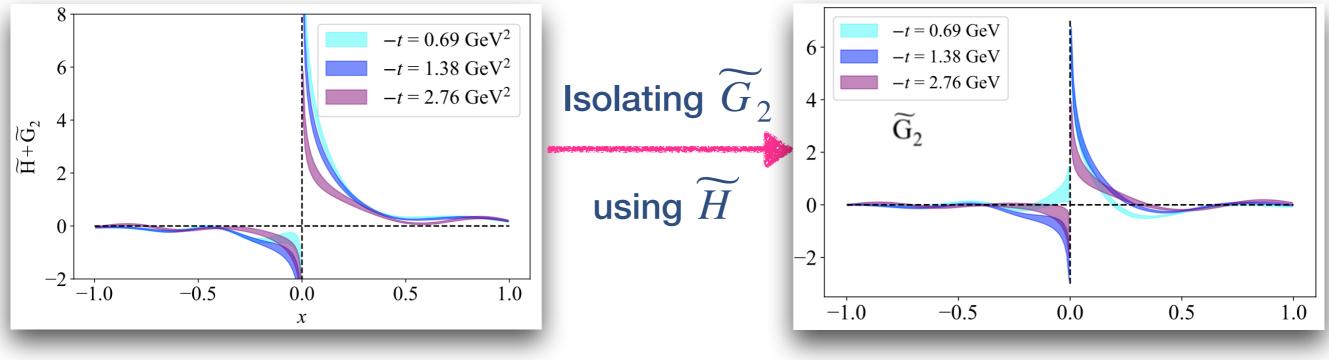
One-loop matching for the twist-3 parton distribution $g_T(x)$

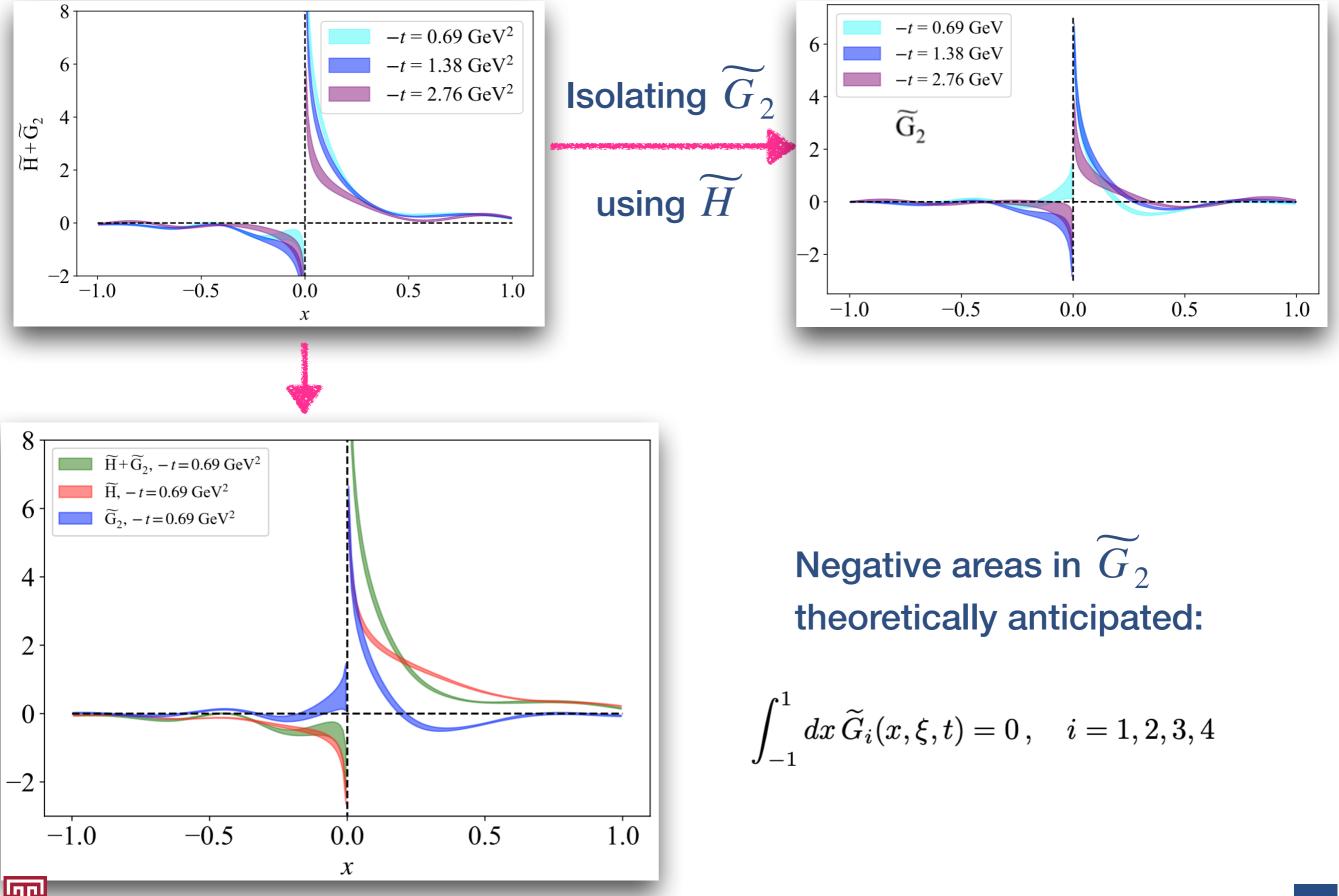
Shohini Bhattacharya^(D),¹ Krzysztof Cichy,² Martha Constantinou^(D),¹ Andreas Metz,¹ Aurora Scapellato,² and Fernanda Steffens³

$$C_{\rm M\overline{MS}}^{(1)}\left(\xi,\frac{\mu^2}{p_3^2}\right) = \frac{\alpha_s C_F}{2\pi} \begin{cases} 0 \\ \delta(\xi) + \frac{\alpha_s C_F}{2\pi} \end{cases} \begin{cases} \left[\frac{-\xi^2 + 2\xi + 1}{1 - \xi} \ln \frac{\xi}{\xi - 1} + \frac{\xi}{1 - \xi} + \frac{3}{2\xi}\right]_+ & \xi > 1 \\ \left[\frac{-\xi^2 + 2\xi + 1}{1 - \xi} \ln \frac{4\xi(1 - \xi)(xP_3)^2}{\mu^2} + \frac{\xi^2 - \xi - 1}{1 - \xi}\right]_+ & 0 < \xi < 1 \\ \left[\frac{-\xi^2 + 2\xi + 1}{1 - \xi} \ln \frac{\xi - 1}{\xi} - \frac{\xi}{1 - \xi} + \frac{3}{2(1 - \xi)}\right]_+ & \xi < 0 \,, \end{cases}$$

Matching does not consider mixing with q-g-q correlators
 [V. Braun et al., JHEP 05 (2021) 086]

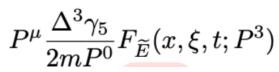






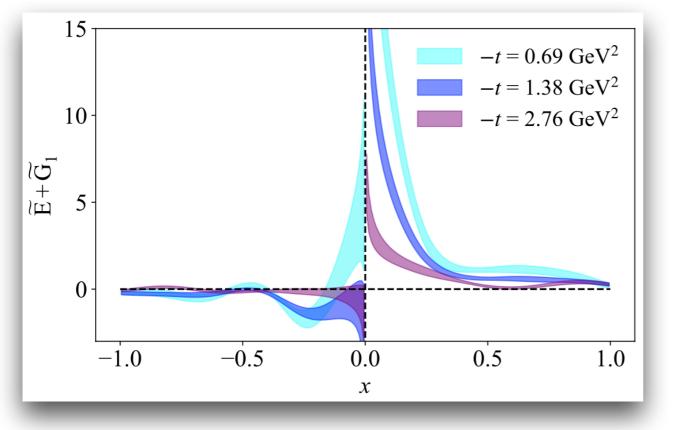
\star Direct access to \widetilde{E} -GPD not possible for zero skewness

\star Glimpse into \widetilde{E} -GPD through twist-3 :



- **\star** Direct access to \widetilde{E} -GPD not possible for zero skewness
 - $P^{\mu}rac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3})$

\star Glimpse into \widetilde{E} -GPD through twist-3 :



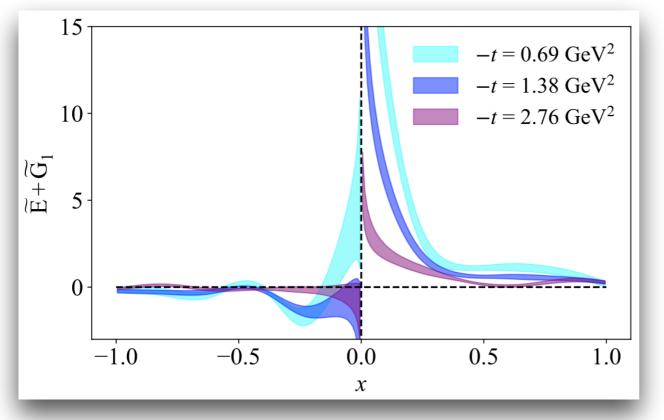
\star Sizable contributions as expected

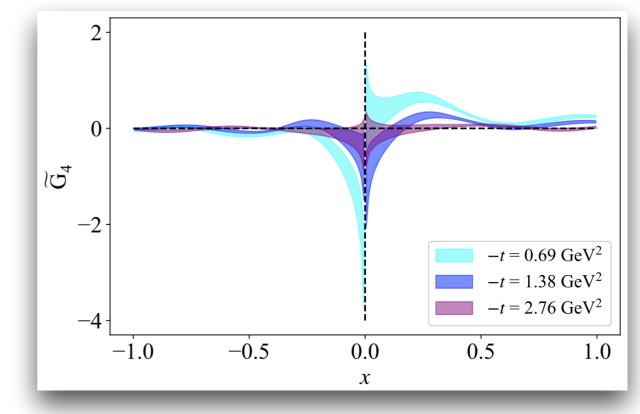
$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t)$$

$$\int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0, \quad i = 1, 2, 3, 4$$

- **\star** Direct access to \widetilde{E} -GPD not possible for zero skewness
 - $P^{\mu}rac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3})$

\star Glimpse into \widetilde{E} -GPD through twist-3 :





Sizable contributions as expected

$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t)$$
$$\int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0, \quad i = 1, 2, 3, 4$$

★ \widetilde{G}_4 very small; no theoretical argument to be zero

$$\int_{-1}^{1} dx \, x \, \widetilde{G}_4(x,\xi,t) = \frac{1}{4} G_E$$

Consistency checks

\star Norms satisfied

GPD	$P_3 = 0.83 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3 = 1.67 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3 = 1.25 \; [\text{GeV}]$
	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 1.38 \; [\text{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

Consistency checks

★ Norms satisfied

GPD	$P_3 = 0.83 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3 = 1.67 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3 = 1.25 \; [\text{GeV}]$
	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 1.38 \; [\text{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

Consistency checks show encouraging results

Consistency checks

★ Norms satisfied

GPD	$P_3 = 0.83 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3 = 1.67 \; [{ m GeV}]$	$P_3 = 1.25 \; [{ m GeV}]$	$P_3 = 1.25 \; [\text{GeV}]$
	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 1.38 \; [\text{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

Consistency checks show encouraging results

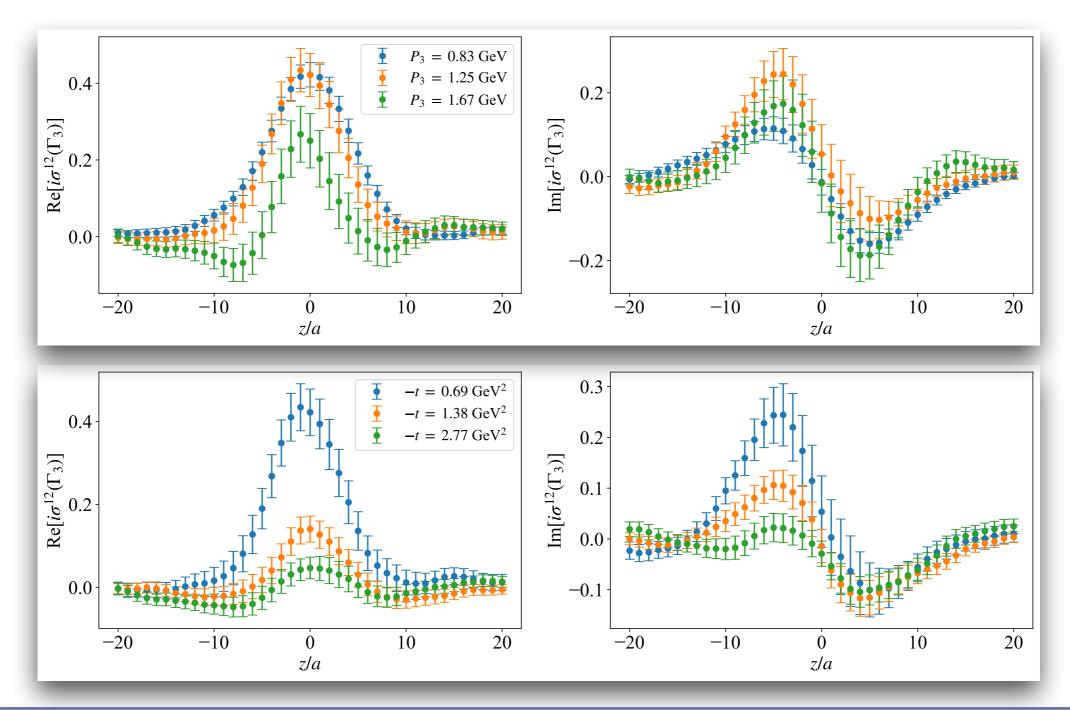
Alternative kinematic setup can be utilized [Fernanda Steffens]

$$F_{\widetilde{H}+\widetilde{G}_{2}} = \frac{1}{2m^{2}} \frac{z_{3}P_{0}^{2}(\Delta_{\perp})^{2}}{P_{3}} + A_{2} \qquad F_{\widetilde{G}_{3}} = \frac{1}{2m^{2}} \left(z_{3}P_{0}^{2}\Delta_{3} - z_{3}P_{3}P_{0}\Delta_{0} \right) A_{1} - z_{3}P_{3}A_{8}$$

$$F_{\widetilde{E}+\widetilde{G}_{1}} = \frac{2z_{3}P_{0}^{2}}{P_{3}} + 2A_{5} \qquad F_{\widetilde{G}_{3}} = \frac{1}{m^{2}} \left(z_{3}P_{0}P_{3}^{2} - z_{3}P_{0}^{3} \right) A_{1}$$

Extension to twist-3 tensor GPDs

Extension to twist-3 tensor GPDs

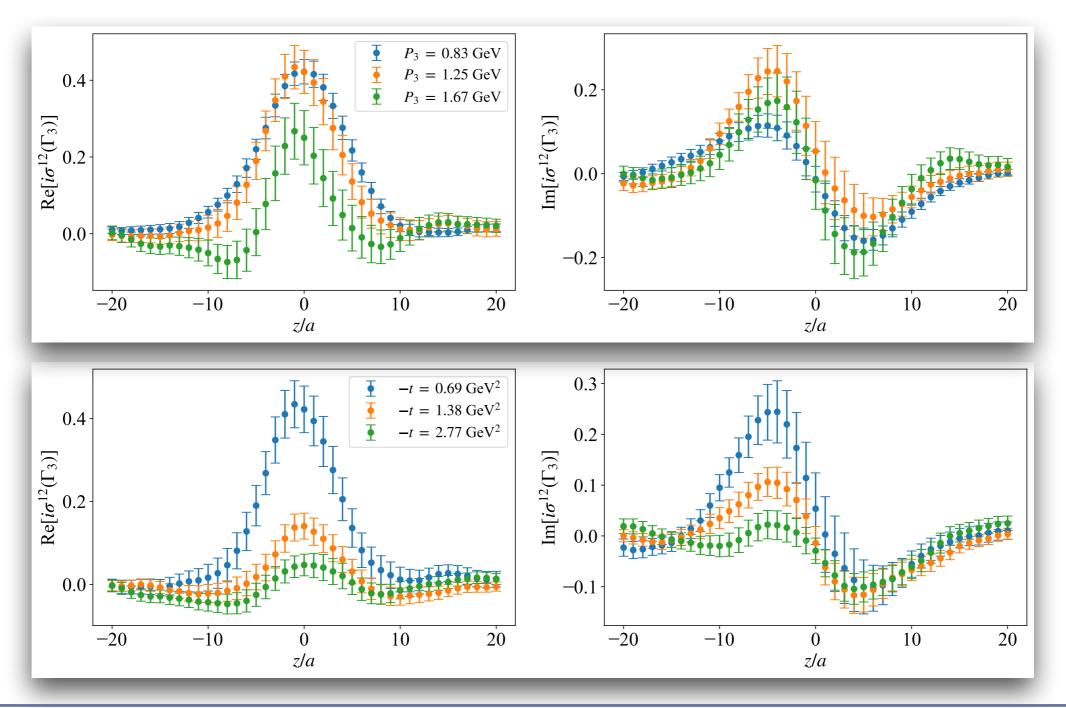


M. Constantinou, Lattice 2023

Extension to twist-3 tensor GPDs

Parametrization [Meissner et al., JHEP 08 (2009) 056]

$$F^{[\sigma^{+-}\gamma_5]} = \bar{u}(p') \left(\gamma^+\gamma_5 \,\widetilde{H}_2' + \frac{P^+\gamma_5}{M} \,\widetilde{E}_2'\right) \, u(p)$$



M. Constantinou, Lattice 2023

Summary

- ★ LaMET formalism is applicable beyond leading twist
- ★ We address computationally expensive calculations GPDs with signal comparable to PDFs
- ★ Several improvements needed
 - mixing with quark-gluon-quark correlator
- ★ Synergy with phenomenology is an exciting prospect!

DOE Early Career Award (NP) Grant No. DE-SC0020405

Backup slides

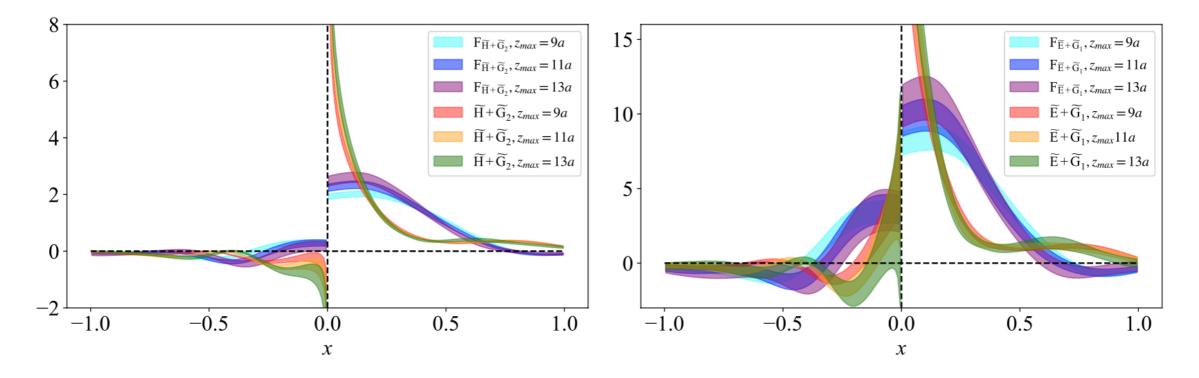


FIG. 10. z_{max} dependence of $F_{\tilde{H}+\tilde{G}_2}$ and $\tilde{H}+\tilde{G}_2$ (left), as well as $F_{\tilde{E}+\tilde{G}_1}$ and $\tilde{E}+\tilde{G}_1$ (right) at $-t = 0.69 \text{ GeV}^2$ and $P_3 = 1.25 \text{ GeV}$. Results are given in the $\overline{\text{MS}}$ scheme at a scale of 2 GeV.

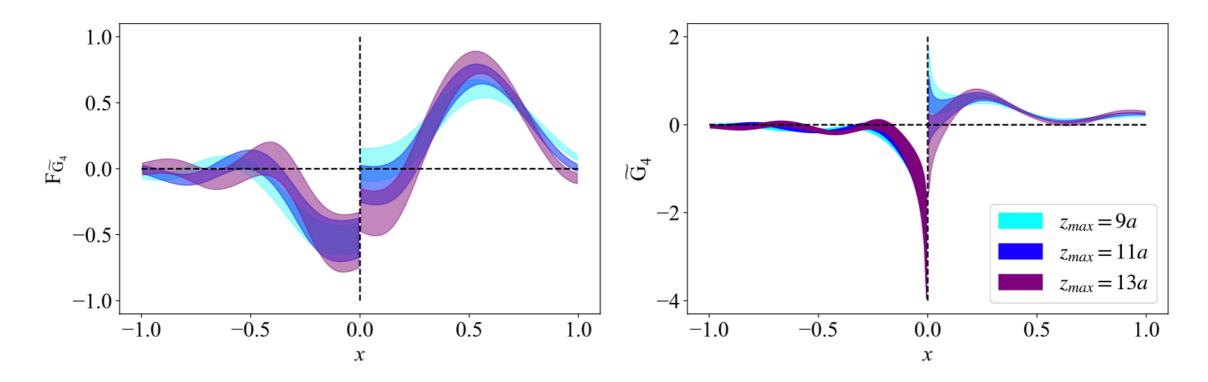


FIG. 11. z_{max} dependence of $F_{\tilde{G}_4}$ and \tilde{G}_4 at $-t = 0.69 \text{ GeV}^2$ and $P_3 = 1.25 \text{ GeV}$. Results are given in $\overline{\text{MS}}$ scheme at a scale of 2 GeV.