Towards hadronic D decays at the SU(3) flavour symmetric point

Maxwell T. Hansen

August 3rd, 2023

• ongoing work with *F Joswig*, F Erben, M Di Carlo, N Lachini, S Paul, A Portelli •

THE UNIVERSITY of EDINBURGH

Motivation

 \Box SM is well known to have CPV, $Im[V_{CKM}] \neq 0$...but not enough for *baryogenesis*!

D 2019: LHCb observed CP violation in hadronic charm decays $D \to \pi \pi, K\overline{K}$

$$\Delta A_{\rm CP} = A_{\rm CP} (K^- K^+) - A_{\rm CP} (\pi^- \pi^+)$$

= (-15.4 ± 2.9) × 10⁻⁴

• LHCb (PRL, 2019) •

Motivation

 \Box SM is well known to have CPV, $Im[V_{CKM}] \neq 0$...but not enough for *baryogenesis*!

D 2019: LHCb observed CP violation in *hadronic charm decays* $D
ightarrow \pi \pi, K\overline{K}$

Lattice QCD can provide the Standard Model prediction (correctly treating all complicated QCD dynamics)

glueballs

tetraquarks

hybrids

Here we present progress on the first model calculation

 $D \rightarrow K\pi$ at the $SU(3)_F$ point

Hadronic D decays: Lattice Calculation

Calculation comes with many challenges

$$A(D \to h_1 h_2) = \mathcal{C}_{n,L,h_1 h_2}^{\mathsf{LL}} \left[\lim_{a \to 0} Z^{\overline{\mathrm{MS}}} \langle n, L | \mathcal{H}_W | D, L \rangle \right]$$

- Non-perturbative renormalization of four-quark operators
- Reliable creation of excited multi-hadron final states
- Removal of discretization effects (enhanced by the charm mass)
- Formalism to relate finite-volume matrix elements to the amplitudes
- Extraction of the matrix element from three-point functions

Hadronic D decays: Lattice Calculation

Calculation comes with many challenges

$$A(D \to h_1 h_2) = \mathcal{C}_{n,L,h_1 h_2}^{\mathsf{LL}} \left[\lim_{a \to 0} Z^{\overline{\mathrm{MS}}} \langle n, L | \mathcal{H}_W | D, L \rangle \right]$$

- Non-perturbative renormalization of four-quark operators
- Reliable creation of excited multi-hadron final states
- Removal of discretization effects (enhanced by the charm mass)
- Formalism to relate finite-volume matrix elements to the amplitudes
- Extraction of the matrix element from three-point functions

Gold standard here is the RBC/UKQCD calculation of $K \rightarrow \pi \pi$ This work is far from that level of calculation: building strategies/understanding feasibility

• R. Abbott et al., RBC/UKQCD, Phys.Rev.D 102 (2020) 5, 054509 •

Computational set-up: gauge field ensembles

- Lattices generated by the OPEN LATtice initiative
 - A Francis, Friday 9:00am, Curia II 🔹

D Three flavors of stabilised Wilson fermions with $m_{\pi} = m_K$

Label	$T \times L^3/a^4$	β	κ	$a \ (fm)$	$m_{\pi} \; ({\rm MeV})$	$m_{\pi}L$
a12m400	96×24^3	3.685	0.1394305	0.12	410	5.988(28)
a094m400	96×32^3	3.8	0.1389630	0.094	410	6.201(19)
a064m400	96×48^3	4.0	0.1382720	0.064	410	6.383(14)

 \Box Results for the finer two ensembles = new relative to last year's presentation

• F Joswig, Lattice2022 •

□ Similar physical volumes across different lattice spacings (~7% variation)

Computational set-up: *software*

- Distillation framework is fully open source and based on
 - Grid: data parallel C++ library (github.com/paboyle/Grid)
 - Hadrons: Grid-based workflow management system (github.com/aportelli/Hadrons)

Initially developed for domain wall fermions

- → flexibility of Grid & Hadrons allows us to use it for Wilson fermions
- Improved solvers for Wilson-clover type fermions are needed

- Data analysis based on
 - pyerrors: python framework for error computation using the Γ method (github.com/fjosw/pyerrors)
 - U Wolff, Comput.Phys.Commun. 156 (2004) 143-153,. 176 (2007) •

Hadronic D decays: Lattice Calculation

Calculation comes with many challenges

$$A(D \to h_1 h_2) = \mathcal{C}_{n,L,h_1 h_2}^{\mathsf{LL}} \left[\lim_{a \to 0} Z^{\overline{\mathsf{MS}}} \langle n, L | \mathcal{H}_W | D, L \rangle \right]$$

Non-perturbative renormalization of four-quark operators

- Reliable creation of excited multi-hadron final states
- Removal of discretization effects (enhanced by the charm mass)
- Extraction of the matrix element from three-point functions
- Formalism to relate finite-volume matrix elements to the amplitudes

Hadronic *D* decays

 \Box Integrating out electroweak physics \rightarrow basis of four-quark operators

Four-quark operators can be challenging with Wilson quarks

- Power-divergent mixing
- Operator mixing
- Lack of O(a) improvement

$$\mathcal{O}_{\dim 6} + \frac{1}{a^n} \mathcal{O}_{\dim (6-n)}$$

$$\mathcal{O}_{\mathsf{dim 6}} + c \, \mathcal{O}_{\mathsf{other dim 6}}$$

$$\mathcal{O}_{\dim 6} + a\mathcal{O}_{\dim 7}$$

Hadronic *D* decays

 \Box Integrating out electroweak physics \rightarrow basis of four-quark operators

Four-quark operators can be challenging with Wilson quarks

- Power-divergent mixing
- Operator mixing
- Lack of O(a) improvement

$$\mathcal{O}_{\dim 6} + \frac{1}{a^n} \mathcal{O}_{\dim (6-n)}$$
$$\mathcal{O}_{\dim 6} + c \, \mathcal{O}_{\text{other dim 6}}$$

 $\mathcal{O}_{\dim 6} + a\mathcal{O}_{\dim 7}$

 \Box First two issues: not present for $\overline{D}^0 \to K^+\pi^-$ and $\overline{D}^0 \to K^-\pi^+$ decays

] Third issue: addressed by multiple lattice spacings (and lower precision goal)

Lack of mixing

 $\Box \text{ Four distinct flavours } \rightarrow \text{ no power-divergent mixing}$ $Q_1^{\bar{d}s} = (\bar{d}u)_{V-A}(\bar{c}s)_{V-A}, \qquad Q_2^{\bar{d}s} = (\bar{d}_a u_b)_{V-A}(\bar{c}_b s_a)_{V-A},$

 \Box Discrete symmetries of $SU(4)_F$ theory highly constraining (even for Wilson quarks)

 $\mathcal{P} = \text{parity}, \qquad \mathcal{C} = \text{charge conjugation}, \qquad \mathcal{S} = (\psi_2 \leftrightarrow \psi_4),$

Lack of mixing

] Four distinct flavours \rightarrow no power-divergent mixing $Q_1^{\bar{d}s} = (\bar{d}u)_{V-A}(\bar{c}s)_{V-A}, \qquad Q_2^{\bar{d}s} = (\bar{d}_a u_b)_{V-A}(\bar{c}_b s_a)_{V-A},$

Discrete symmetries of $SU(4)_F$ theory highly constraining (even for Wilson quarks) $\mathcal{P} = \text{parity}, \qquad \mathcal{C} = \text{charge conjugation}, \qquad \mathcal{S} = (\psi_2 \leftrightarrow \psi_4),$

 \Box Use basis with definite $\psi_2 \leftrightarrow \psi_4$ exchange symmetry

 $Q_{[\mathcal{P}=-]}^{[\mathcal{S}=\pm]} = O_{VA}^{\pm} + O_{AV}^{\pm} \qquad \qquad O_{\Gamma_a\Gamma_b}^{\pm} = \frac{1}{2} \left[(\overline{\psi}_1 \Gamma_a \psi_2) (\overline{\psi}_3 \Gamma_b \psi_4) \pm (\overline{\psi}_1 \Gamma_a \psi_4) (\overline{\psi}_3 \Gamma_b \psi_2) \right]$

D Parity-negative part of $(V - A)^2$ operator does not mix under renormalization

• Donini et al. [hep-lat/9902030] •

Non-perturbative renormalization

- Regularization independent (RI) momentum-subtraction schemes
 - Scale comes from lattice momenta (MOM vs SMOM)
 - Perturbative conversion to MS
- □ Strategy

- Martinelli et al., Nucl.Phys.B 445 (1995) •
- Calculate amputated vertex function on Landau-gauge-fixed background
- Demand "projected vertex = tree vertex" at a given scale

$$\lim_{m_R \to 0} Z_q^{-1} Z_\mathcal{O} \mathcal{V}_\mathcal{O}(p^2) \big|_{p^2 = \mu^2} = 1$$

Non-perturbative renormalization

- Regularization independent (RI) momentum-subtraction schemes
 - Scale comes from lattice momenta (MOM vs SMOM)
 - Perturbative conversion to MS
 -] Strategy

• Martinelli et al., Nucl.Phys.B 445 (1995) •

- Calculate amputated vertex function on Landau-gauge-fixed background
- Demand "projected vertex = tree vertex" at a given scale

$$\lim_{m_R \to 0} Z_q^{-1} Z_{\mathcal{O}} \mathcal{V}_{\mathcal{O}}(p^2) \big|_{p^2 = \mu^2} = 1$$

☐ Final result should be *independent* of matching scale

$$Z_{\mathcal{O}}^{\overline{\mathrm{MS}} \leftarrow \mathsf{latt}}(\mu_{\overline{\mathrm{MS}}}, a) = Z_{\mathcal{O}}^{\overline{\mathrm{MS}} \leftarrow \mathsf{RI}}(\mu_{\overline{\mathrm{MS}}}, \mu_{\mathsf{RI}}) \cdot Z_{\mathcal{O}}^{\mathsf{RI} \leftarrow \mathsf{latt}}(\mu_{\mathsf{RI}}, a) + O(a^2 \mu_{\mathsf{RI}}^2, \alpha(\mu)^n)$$

Non-perturbative renormalization

- Regularization independent (RI) momentum-subtraction schemes
 - Scale comes from lattice momenta (MOM vs SMOM)
 - Perturbative conversion to \overline{MS}
 -] Strategy

• Martinelli et al., Nucl.Phys.B 445 (1995) •

- Calculate amputated vertex function on Landau-gauge-fixed background
- Demand "projected vertex = tree vertex" at a given scale

$$\lim_{m_R \to 0} Z_q^{-1} Z_\mathcal{O} \mathcal{V}_\mathcal{O}(p^2) \big|_{p^2 = \mu^2} = 1$$

Final result should be independent of matching scale

$$Z_{\mathcal{O}}^{\overline{\mathrm{MS}} \leftarrow \mathsf{latt}}(\mu_{\overline{\mathrm{MS}}}, a) = Z_{\mathcal{O}}^{\overline{\mathrm{MS}} \leftarrow \mathsf{RI}}(\mu_{\overline{\mathrm{MS}}}, \mu_{\mathsf{RI}}) \cdot Z_{\mathcal{O}}^{\mathsf{RI} \leftarrow \mathsf{latt}}(\mu_{\mathsf{RI}}, a) + O(a^2 \mu_{\mathsf{RI}}^2, \alpha(\mu)^n)$$

Use twisted boundaries to define different momentum trajectories

twist-1	$p_{\rm in} = (p, p, p, -p),$	$p_{out} = (p, p, p, p),$	q = (0, 0, 0, 2p)	\mathbf{q}
twist-2	$p_{in} = (p, p, 0, 0),$	$p_{out} = (p, 0, p, 0),$	q = (0, -p, p, 0)	
twist-4	$p_{\rm in} = (0, 0, 0, 2p),$	$p_{out} = (p, p, p, p),$	q = (p, p, p, -p)	$p_{\sf in}$ $p_{\sf out}$

Example: $Q_{[\mathcal{P}=-]}^{[\mathcal{S}=-]} = O_{VA}^{-} + O_{AV}^{-}$

SMOM

First focus on large momenta

Perturbative conversion at one loop only, seems to reduce curvature

Example:
$$Q_{[\mathcal{P}=-]}^{[\mathcal{S}=-]} = O_{VA}^{-} + O_{AV}^{-}$$

SMOM

G Full momentum range

 \Box Fit away a^2p^2 in the large momentum regime

- Twist trajectories fit independently, consistency is encouraging
- Renormalization looks likely to be sub-dominant uncertainty here

Example: $Q_{[\mathcal{P}=-]}^{[\mathcal{S}=-]} = O_{VA}^{-} + O_{AV}^{-}$

MOM

First focus on large momenta

Perturbative conversion at one loop only, seems to reduce curvature

Example: $Q_{[\mathcal{P}=-]}^{[\mathcal{S}=-]} = O_{VA}^{-} + O_{AV}^{-}$

MOM

Full momentum range

 \Box Fit away a^2p^2 in the large momentum regime

- Twist trajectories fit independently, consistency is encouraging
- Renormalization looks likely to be sub-dominant uncertainty here
 - **]** Clear consistency between MOM and SMOM!

Hadronic D decays: Lattice Calculation

Calculation comes with many challenges

$$A(D \to h_1 h_2) = \mathcal{C}_{n,L,h_1 h_2}^{\mathsf{LL}} \left[\lim_{a \to 0} Z^{\overline{\mathsf{MS}}} \langle n, L | \mathcal{H}_W | D, L \rangle \right]$$

- Non-perturbative renormalization of four-quark operators
- Reliable creation of excited multi-hadron final states
- Removal of discretization effects (enhanced by the charm mass)
- Formalism to relate finite-volume matrix elements to the amplitudes
- Extraction of the matrix element from three-point functions

Operator construction

- Need a broad basis of operators to reliably create excited states
- Feasible thanks to distillation
 - Quark-field smearing (projection into low-modes of the covariant laplacian)
 - We use exact distillation with $N_{\text{vec}} = 60$ eigenvectors

 \Box GEVP on a matrix from two-hadron operators: $K(p_1)\pi(p_2)$

Operator construction

- Need a broad basis of operators to reliably create excited states
- Feasible thanks to distillation
 - Quark-field smearing (projection into low-modes of the covariant laplacian)
 - We use exact distillation with $N_{\text{vec}} = 60$ eigenvectors

 \square GEVP on a matrix from two-hadron operators: $K(p_1)\pi(p_2)$

 \Box Operators projected to a definite $SU(3)_F$ irrep

□ Will lead to the Cabibbo-enhanced and doubly Cabibbo-suppressed D decay amplitudes

Extracted energy spectrum

□ Variation of energies = mixture of volume and cutoff effects

Extracted energy spectrum

□ Up to ~5% effect... commiserate with ~5% volume mistuning

Extracted energy spectrum

 \Box Rescaling by non-interacting ratio \rightarrow cutoff effects unresolvable

Phase shift tells consistent story

□ Next steps

- Complete and analyze moving frame data
- More careful phase-shift analysis

Hadronic D decays: Lattice Calculation

Calculation comes with many challenges

$$A(D \to h_1 h_2) = \mathcal{C}_{n,L,h_1 h_2}^{\mathsf{LL}} \left[\lim_{a \to 0} Z^{\overline{\mathrm{MS}}} \langle n, L | \mathcal{H}_W | D, L \rangle \right]$$

- Non-perturbative renormalization of four-quark operators
- Reliable creation of excited multi-hadron final states
- Removal of discretization effects (enhanced by the charm mass)
- Formalism to relate finite-volume matrix elements to the amplitudes
- Extraction of the matrix element from three-point functions

Lellouch-Lüscher formalism

 \Box At the $SU(3)_F$ point, four-particle threshold is just open for $E_{K\pi} = M_D$

Standard Lellouch-Lüscher formula can be applied

$$\left|\mathcal{C}^{\mathsf{L}\mathsf{L}}\right|^{2} = 8\pi \left(q\frac{\partial\phi}{\partial q} + k\frac{\partial\delta_{0}}{\partial k}\right)_{k=k_{n}} \frac{E_{n}^{2}m_{D}}{k_{n}^{3}}$$

Lellouch-Lüscher formalism

 \Box At the $SU(3)_F$ point, four-particle threshold is just open for $E_{K\pi} = M_D$

Standard Lellouch-Lüscher formula can be applied

$$\left|\mathcal{C}^{\mathsf{L}\mathsf{L}}\right|^{2} = 8\pi \left(q\frac{\partial\phi}{\partial q} + k\frac{\partial\delta_{0}}{\partial k}\right)_{k=k_{n}} \frac{E_{n}^{2}m_{D}}{k_{n}^{3}}$$

- \Box Applies for all energies: $f(E) = \langle E, \pi K, \text{out} | \mathcal{H}_W(0) | D \rangle$
- \Box Extrapolate (interpolate?) to $E = M_D$ for physical amplitude
- Take advantage of K-matrix based ideas to motivate fit forms

 $\mathcal{A} = \frac{1}{1 - \mathcal{K}_{2,0}} \mathcal{H}$

• MTH, Sharpe, Phys.Rev. D86 (2012) 016007 •

• MTH, Sharpe, Phys.Rev. D86 (2012) 016007 •

• MTH, Sharpe, Phys.Rev. D86 (2012) 016007 •

[•] MTH, Sharpe, Phys.Rev. D86 (2012) 016007 •

Hadronic D decays: Lattice Calculation

Calculation comes with many challenges

$$A(D \to h_1 h_2) = \mathcal{C}_{n,L,h_1 h_2}^{\mathsf{LL}} \left[\lim_{a \to 0} Z^{\overline{\mathrm{MS}}} \langle n, L | \mathcal{H}_W | D, L \rangle \right]$$

0	Non-perturbative renormalization of four-quark operators	00000
0	Reliable creation of excited multi-hadron final states	00000
0	Removal of discretization effects (enhanced by the charm mass)	$\bigcirc \bigcirc $
0	Formalism to relate finite-volume matrix elements to the amplitudes	00000
0	Extraction of the matrix element from three-point functions	00000

Thanks for listening!

Funded by UKRI Future Leaders Fellowship