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LQCD calculations of nuclear matrix elements

LQCD can provide important input for both 
understanding the SM and constraining BSM physics 
(incl. MEs inaccessible in experiment)


• Electroweak reaction rates, 


• Double-beta decay, 


• Dark matter direct detection, 


• Neutrino-nucleus scattering,


• Parton distribution functions, … 


Exploratory LQCD results for nuclear matrix elements 
consistent with experimental results where available

Lattice QCD for nuclear systems
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195. Neutrinoless Double Beta 
Decay from Lattice QCD: The 

 Amplitude
Patrick Oare (MIT)
7/31/23, 4:10 PM

n0n0 → p+p+e−e−



 

All exisiting calculations of baryon-baryon  
and larger systems are incomplete

Systematic uncertainties  
are challenging

3

[Green et al.,  
PRL 127 (2021) 242003 
[2103.01054 [hep-lat]]]


H-dibaryon system: significant 
lattice effects that overbind 
relative to continuum BUT 
challenging data analysis


Challenges:


• Reaching physical quark masses (current extrapolations are coarse)


• Exponentially suppressed finite-volume effects


• *Reaching continuum limit


• Statistically noisy data


• *Excited state contamination


• Design of operators with strong overlap onto ground states


*Difficult to decouple these effects
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Ongoing community debate:  
can we isolate the ground state in 
calculations at mπ ∼ 800 MeV



Analysis methods: 


• Ratios of correlators  
(non-convex ☹, not sum of exponentials ☹)


• Multi-state fits to vector of correlators  
(Prony too, non-convex ☹)


• Variational method (GEVP) 
(stochastic upper bounds on energies)


• Multi-state fits to Hermitian matrices of correlators


First results from symmetric correlation function matrices do not see the  
bound states seen in previous calculations with asymmetric correlation functions

[Francis et al, PRD 99 (2019); Hörz et al, PRC 103 (2021); Green et al, PRL 127 (2021); 
Amarasinghe et al, PRD 07 (2023)]

NN

Matrix element calculations so 
far use off-diagonal correlators

Still a challenging problem — even at mπ ∼ 800MeV

Spectroscopy
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Technological improvements:


• Sparse propagators 


• tiramisu code generator:  
efficient contractions


Conclusions:


• No evidence for (or against)  
bound states


• Interpolating-operator dependence:  
You get out what you put in…


• Additional level — what is it?  
D*, contaminated bound state…?

Status (NPLQCD) at Lattice 2022
Variational analysis with largest operator set 

[Amarasinghe, PES et al., PRD 07 (2023) 094508 [2108.10835 [hep-lat]]]

Two neutrons in a box

Amarasinghe, MW et al [NPLQCD], arXiv:2108.10835 
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Variational analysis only possible for subsets of 
operators at current statistics, e.g. all 
dibaryons + hexaquark

• Consistent results obtained by replacing 
zero-momentum dibaryon operator with 
quasi-local operators

Low-energy states have majority overlap 
with 1 operator structure

Wagman, Lattice 2022
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Interpolating operator dependence
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Removing interpolating operators leads to 
“missing energy levels” for states 
dominantly overlapping with omitted 
operators

Variational upper bounds obtained 
using different interpolating operator 
sets are consistent

Ground-state energy estimates using 
different interpolating-operator sets 
show large discrepancies

Wagman, Lattice 2022



Progress: expanding operator set; lighter  
quark masses; H-dibaryon; no answers yet

• Are there bound states at  in deuteron and dineutron channels?


• What is the ‘extra state’ revealed by hexaquark operators?

mπ ∼ 800 MeV
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New results for Lattice 2023

• Continue to add more interpolating operators 
               new results with more “hexaquark” operators


• Move closer to physical pion mass where we have insight from nature 
               new results at 


• Try to bootstrap insight down from (more precise) systems with 
strangeness, use   symmetry 
               new results for the H-dibaryon

mπ ∼ 170 MeV

SU(3)f

1.

2.

3.



Do not yet know what is a “good enough” set 
Nuclear physics is fine tuned: intuition beware!

NPLQCD interpolating operator set:


1. Dibaryons 
Two spatially-separated plane-wave baryons  
with relative momenta (projected to cubic irreps)


2. Hexaquarks 
Six Gaussian smeared quarks at a point


3. Quasi-local 
Two exponentially localized baryons 

-EFT motivated deuteron-like structure  


• Zero total momentum, two different smearings at source and sink


• Operators constructed from products of baryon-blocks: efficient contractions 

NN

Interpolating operator construction
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(i,j,k)

-(i,j,k)



Systematically explore a corner of Hilbert space

More hexaquark operators

10

1.

For local hexaquark operators, a basis can be written down


• Hexaquark built from three diquarks 
[Rao & Shrock, PLB 116 (1982), Buchoff & Wagman PRD 93 (2016)] 

 
                        


• Colour x spin x flavour space =1440 possibilities


• Antisymmetry and Fierz identities reduces to 16 independent operators


• One hexaquark (in original set of operators) is baryon x baryon,  
others are not (hidden colour) and are much more expensive


Calculation on a smaller lattice volume to enable systematic study

H ∼ Tabcdef(qT
a CΓ1F1qb)(qT

c CΓ1F2qd)(qT
e CΓ1F3qf )



“Additional level” is sensitive to new operators

Dibaryon channel , , 
V = 483 × 96 L = 4.4 fm mπ ∼ 800 MeV
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More hexaquark operators1.

Hexaquarks and the deuteron

PRE
LIMINAR

Y

Dibaryons + color-singlet-product 
hexaquark

Dibaryons + complete basis of 
hexaquarks
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Hexaquarks and the deuteron

PRE
LIMINAR

Y

Dibaryons + color-singlet-product 
hexaquark

Dibaryons + complete basis of 
hexaquarks
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“Additional level” is sensitive to new operators

Dineutron channel , , 
V = 483 × 96 L = 4.4 fm mπ ∼ 800 MeV
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FIG. 7. Comparison of low-energy GEVP e↵ective FV energy shifts for S0, the most analogous

set to that used in the L = 32 analysis where we include dibaryons and the color-singlet-product

hexaquark, and SH , the set where we include all 16 hexauqarks. The dibaryons include upper-

spin/lower-spin/negative-parity-products in both cases.
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Spectroscopy at mπ ∼ 170 MeV2.

 V = 483 × 96
L = 4.4 fm
Ncfgs = 670

 
 

V = 643 × 128
L = 5.8 fm
Ncfgs = 692

DeuteronDineutron

Two volumes, same variational basis as mπ ∼ 800MeV
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Spectroscopy at mπ ∼ 170 MeV2.

 V = 483 × 96
L = 4.4 fm
Ncfgs = 670

 
 

V = 643 × 128
L = 5.8 fm
Ncfgs = 692

DeuteronDineutron

Two volumes, same variational basis as mπ ∼ 800MeV
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2.

PRELIMINARY
Qualitative conclusions as at 


• No evidence for or against bound states in  systems


• Levels sensitive to choice of interpolating operator set


• Robust existence of “extra level” with overlap onto hexaquark operators


• Additional statistics and operators required 

mπ ∼ 800 MeV

NN

Additional “hexaquark” 
level as at mπ ∼ 800 MeV

“Scattering” states with 
overlap primarily onto 
dibaryon operators

Spectroscopy at mπ ∼ 170 MeV

 V = 483 × 96
L = 4.4 fm
Ncfgs = 670

Deuteron

Two volumes, same variational basis as mπ ∼ 800MeV



Potential  bound state predicted by Jaffe to be deeply bound  
[Jaffe, PRL 38, 195 (1977)]


• Extensive experimental searches, bound  
from e.g., “NAGARA” event  
[Takahashi et al., PRL 87, 212502 (2001); 
Nakazawa et al., NuclPhysA 835, 207 (2010)]


• Possible dark matter candidate  
(difficult to reconcile with other constraints) 
[Azizi, JPhysG 47, 095001 (2020)] 

Tensions between different LQCD calculations of  
H-dibaryon binding around 

                 new variational analysis


ΛΛ BH ∼ 80 MeV

BH ≲ 7 MeV

mπ ∼ 800 MeV

16

The H-dibaryon3.

Possibly gain insight from hypernuclei, SU(3)f

13
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FIG. 11. Comparison of our results in Eqs. (23)–(25) to the
estimates quoted by NPLQCD [14, 18, 20] and HAL QCD
[22, 23]. Green and blue symbols refer to the SU(3)-symmetric
and broken cases, respectively. The data point marked by a
star denotes the result in infinite volume.

E5: �E = 18.8 ± 5.5 MeV, m⇡ = 440MeV. (24)

However, recalling that finite-volume e↵ects are asymp-
totically suppressed as e

�L, where  is the binding mo-
mentum, the näıve estimates of the binding energy in
Eqs. (23) and (24) may not be very reliable, given that
L evaluates to 2.99(8) for E1 and 1.74(25) for E5.

In addition, we have applied Lüscher’s finite-volume
quantization condition to determine the scattering phase
shift, which we use to obtain a more reliable estimate of
the binding energy. Including data from the rest frame as
well as several moving frames in the finite-volume analy-
sis of the singlet case results in a shallower binding energy
compared to the näıve estimate:

E1: �E = 19 ± 10 MeV, m⇡ = 960MeV. (25)

Repeating the analysis for the SU(3) 27-plet is made more
di�cult through the relative closeness of the energy levels
to the non-interacting levels, and the same is true in the
case of broken SU(3)-flavor symmetry. We expect the
situation to improve in our ongoing work, since we will
obtain more precise results by also using distillation in
the moving frames.

In Figure 10 we show a compilation of our results for
the binding energy on all our ensembles, plotted against
the pion mass. The comparison with the estimates of
the NPLQCD [14, 18, 20] and HAL QCD [22, 23] collab-
orations is made in Figure 11. In the SU(3)-symmetric
case we find that our estimate is considerably smaller
than the result quoted by NPLQCD at a similar value
of the pion mass [18]. Potentially, uncontrolled system-
atics such as the incorrect identification of the plateau,
quenching of the strange quark or finite-volume e↵ects
could be the source of this discrepancy. We will address
these issues in a future publication based on ensembles
with Nf = 2 + 1 flavors of dynamical quarks.

Our findings suggest that the combination of distil-
lation and Lüscher’s finite-volume formalism will allow
for a considerably improved calculation of the binding
energy. Thus, there are good prospects for a reliable de-
termination of this quantity at the physical point.
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H-dibaryon at mπ ∼ 800 MeV3.

Variational analysis on two volumes

 
 

V = 243 × 48
L = 3.4 fm
Ncfgs = 40

 
 

V = 323 × 48
L = 4.5 fm
Ncfgs = 101

Consistent variational bound 
on binding energy around 

 (preliminary)BH ⪆ 54 MeV
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FIG. 11. Comparison of our results in Eqs. (23)–(25) to the
estimates quoted by NPLQCD [14, 18, 20] and HAL QCD
[22, 23]. Green and blue symbols refer to the SU(3)-symmetric
and broken cases, respectively. The data point marked by a
star denotes the result in infinite volume.

E5: �E = 18.8 ± 5.5 MeV, m⇡ = 440MeV. (24)

However, recalling that finite-volume e↵ects are asymp-
totically suppressed as e

�L, where  is the binding mo-
mentum, the näıve estimates of the binding energy in
Eqs. (23) and (24) may not be very reliable, given that
L evaluates to 2.99(8) for E1 and 1.74(25) for E5.

In addition, we have applied Lüscher’s finite-volume
quantization condition to determine the scattering phase
shift, which we use to obtain a more reliable estimate of
the binding energy. Including data from the rest frame as
well as several moving frames in the finite-volume analy-
sis of the singlet case results in a shallower binding energy
compared to the näıve estimate:

E1: �E = 19 ± 10 MeV, m⇡ = 960MeV. (25)

Repeating the analysis for the SU(3) 27-plet is made more
di�cult through the relative closeness of the energy levels
to the non-interacting levels, and the same is true in the
case of broken SU(3)-flavor symmetry. We expect the
situation to improve in our ongoing work, since we will
obtain more precise results by also using distillation in
the moving frames.

In Figure 10 we show a compilation of our results for
the binding energy on all our ensembles, plotted against
the pion mass. The comparison with the estimates of
the NPLQCD [14, 18, 20] and HAL QCD [22, 23] collab-
orations is made in Figure 11. In the SU(3)-symmetric
case we find that our estimate is considerably smaller
than the result quoted by NPLQCD at a similar value
of the pion mass [18]. Potentially, uncontrolled system-
atics such as the incorrect identification of the plateau,
quenching of the strange quark or finite-volume e↵ects
could be the source of this discrepancy. We will address
these issues in a future publication based on ensembles
with Nf = 2 + 1 flavors of dynamical quarks.

Our findings suggest that the combination of distil-
lation and Lüscher’s finite-volume formalism will allow
for a considerably improved calculation of the binding
energy. Thus, there are good prospects for a reliable de-
termination of this quantity at the physical point.
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• Are there bound states at  in deuteron and dineutron channels?


• What is the ‘extra state’ revealed by hexaquark operators?

mπ ∼ 800 MeV

18

New results for Lattice 2023

• Continue to add more interpolating operators 
               new results with more “hexaquark” operators


• Move closer to physical pion mass where we have insight from nature 
               new results at 


• Try to bootstrap insight down from (more precise) systems with 
strangeness, use   symmetry 
               new results for the H-dibaryon

mπ ∼ 170 MeV

SU(3)f

1.

2.

3.

Progress: expanding operator set; lighter  
quark masses; H-dibaryon; no answers yet
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New results for Lattice 2023
Progress: expanding operator set; lighter  
quark masses; H-dibaryon; no answers yet

• Definitive existence of “extra hexaquark level” in  spectrum that is


- Sensitive to interpolating operator set


- Robust against changing lattice volume and quark masses


• GEVP for H-dibaryon gives robust variational bound with deep binding 
at 


- Consistent as a bound with early results using asymmetric correlators; 
interesting tensions with recent analyses

BB

mπ ∼ 800 MeV

Hexaquark operators are clearly important — are we missing other 
critical operators?



Image Credit: 2018 EIC User’s Group Meeting



• Off-diagonal correlators show plateau for 
deep states [Callatt, NPLQCD, PACS-CS]


• Same state seen in volumes that differ by 
a factor of 8 [NPLQCD]; Hard to explain 
by cancellations


• EFT matching show consistency between 
2,3,4 body systems


• Extrapolated matrix elements match 
nature, sigma terms consistent via slope 
and direct calc


• GEVP analyses do not see states unless 
the “right” operator is included in 
operator set

Evidence about  bound statesNN

21

• Variational bounds from GEVP 
consistent with attractive threshold state 
[Hörz et al, NPLQCD, Green et al.]


• Consistent results with multiple lattice 
ensembles, spacings, quark masses etc


• Robust against some variations of 
operator set (but not others)


• GEVP reconstruction can approximately 
describe off-diagonal correlators 


• HALQCD potentials also do not  
see  bound states

PRO CON



[Detmold et al. Phys. Rev. D 104, 034502 (2021)]

• Isotropic  improved action: , 
, heavy SU(3) symmetric quarks 


• Sparse grid of independent sources every S sites 
in each spatial direction (2 different smearing)


• Project propagator solutions to coarse spatial 
grid: timeslice-to-all  propagator


• Many ways to do projection (decimation, 
random subset choice, convolution,…)


• No modification of eigenstates but slightly 
modifies couplings to excited states 


• Enables  calculations

𝒪(a) a = 0.14 fm
L3 × T = 323 × 48

83 × 48

𝒪(V4)

Sparse propagators

22

13

unity in the early time, excited-state dominated regime. Likewise, in the summaries of fits
to the ground state energies and binding energies detailed in Tables III and IV, respectively,
there are again no observable discrepancies between fits to the full data and fits to the
sparsened data, in terms of both the energies extracted and their statistical uncertainties.

FIG. 5. E↵ective energies (left column), e↵ective binding energies (middle column), and correlated
ratios of full and sparsened e↵ective energies (right column), for the diproton (NN (1S0), first
row), the deuteron (NN (3S1), second row), 3He (third row), and 4He (fourth row). Circles denote
results computed from full two-point correlation functions (Eq. (2)), whereas squares denote results
computed from sparsened two-point correlation functions (Eq. (3)). The sparsened data has been
shifted slightly along the time axis for clarity.
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(i,j,k)

-(i,j,k)

13

Quark-exchange symmetries can be used to greatly reduce the number of independent spin-
color weights required to construct local multi-baryon operators as described in Ref. [135].

For pn systems, the number of non-zero elements of w[H]⇢
↵ can be reduced to N

[H]⇢
w with

N
[H]0
w = N

[H]2
w = 32 and N

[H]1
w = N

[H]3
w = 21. An explicit representation of these reduced

weights is presented in Appendix A. Hexaquark operators with one or more values of the
quark-field smearing radius can be included in an interpolating-operator set that describes
two-nucleon systems (here all quarks are smeared in the same way, although more general
constructions are possible).

In addition to hexaquark operators that are expected to strongly overlap with compact
bound states, operators constructed from products of pairs of nucleon operators at non-zero
spatial separation may be expected to have larger overlap with unbound states of two-
nucleon systems. “Dibaryon” interpolating operators, constructed from products of nucleon
interpolating operators with factorizable plane-wave wavefunctions that are symmetric under
exchange of the nucleon positions, are defined as

D⇢mg(t) =
X

~x1,~x22⇤S

 [D]
m (~x1, ~x2)

X

�,�0

v⇢��0
1

p
2
[p�g(~x1, t)n�0g(~x2, t)

+(�1)1��⇢0n�g(~x1, t)p�0g(~x2, t)
⇤
,

(13)

where v⇢��0 is a weight tensor that projects the two-nucleon system into a row ⇢ 2 {0, . . . , 3}
of the A+

1 � T+
1 two-nucleon spin representation, analogous to the hexaquark operators in

Eqs. (10)-(11). Explicitly,

v0��0 =
1

p
2
(��0��01 � ��1��00),

v1��0 = ��0��00,

v2��0 =
1

p
2
(��0��01 + ��1��00),

v3��0 = ��1��01.

(14)

The spatial wavefunctions appearing in Eq. (13) are chosen to be symmetric in ~x1 $ ~x2 and
are labeled by m, where ~Pm is the center-of-mass momentum and ±~km is the momentum
carried by each nucleon in the center-of-mass frame, and are given by

 [D]
m (~x1, ~x2) =

1
p
2


e
i
⇣

~Pm
2 +~km

⌘
·~x1e

i
⇣

~Pm
2 �~km

⌘
·~x2 + e

i
⇣

~Pm
2 +~km

⌘
·~x2e

i
⇣

~Pm
2 �~km

⌘
·~x1

�
. (15)

Quark-level representations for dibaryon interpolating operators can be derived analogously
to the hexaquark case and are given by

D⇢mg(t) =
X

~x1,~x22⇤S

 [D]
m (~x1, ~x2)

X

↵

w[D]⇢
↵ ui(↵)

g (~x1, t)d
j(↵)
g (~x1, t)u

k(↵)
g (~x1, t)

⇥ dl(↵)g (~x2, t)u
m(↵)
g (~x2, t)d

n(↵)
g (~x2, t),

(16)

where the weights w[D]⇢
↵ , with ↵ 2 {1, . . . ,N [D]⇢

w }, with N
[D]0
w = N

[D]2
w = 288 and N

[D]1
w =

N
[D]3
w = 144, are obtained from products of w[N ]�

↵ , w[N ]�0
↵ , and v⇢��0 and are explicitly shown

in Appendix A. The dibaryon weights w[D]⇢
↵ di↵er from the hexaquark weights w[H]⇢

↵ , since
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FIG. 1. Examples of wavefunctions demonstrating how sparsening leads to the coincidence
on ⇤S of plane-wave dibaryon wavefunctions  [D]

m (~x1, ~x2) with zero center-of-mass momenta and
relative momenta proportional to ~nm and ~nm ±

L
S êk. Each momentum component can be analyzed

independently, and for simplicity the relative position of the nucleons is taken to be ~x1 � ~x2 =
(x1�x2, 0, 0) with momenta corresponding to ~nm = (0, 0, 0), ~nm = (1, 0, 0), and ~nm = (2, 0, 0) shown
as solid lines in the left, center, and right panels, respectively. Positions satisfying ~x1�~x2 2 ⇤S are
shown as open shapes. Analogous spatial wavefunctions for momenta ~nm ±

L
S ê1 that are identical

to  [D]
m (~x1, ~x2) for ~x1 � ~x2 2 ⇤S are shown as dashed and dotted lines (degenerate for the case

~nm = (0, 0, 0)). For concreteness, the values L = 32 and S = 4 used in the numerical calculations
in Sec. III are chosen.

the single-nucleon momentum vector ~km = (2, 0, 0) with ~km �
L
S ê1 = (�6, 0, 0) as seen in

Fig. 1. For non-interacting nucleons, this leads to an excited-state energy gap �E(2,I,�J )
S =q

M2
N + 4

�
2⇡
L

�2
+
q

M2
N + 36

�
2⇡
L

�2
�2MN for the I, �J pairs that have overlap with dibaryon

operators with s = 0. This is coincident with the non-interacting energy of states with
s = 20 in the MN ! 1 limit (for the quark masses in Sec. III, it is closest to the non-

interacting energy with s = 19), and t � 1/�E(2,I,�J )
S is achievable in practical calculations

as seen below. For the choice of K = 6 used in Sec. III, non-interacting energy levels with
s = 8 and many other relative-momentum shells with 20 > s > K will lead to excited-
state contamination from states outside the subspace spanned by the interpolating-operator
set and with smaller excitation energies than �E(2,I,�J )

S . Excited-state e↵ects arising from
sparsening are therefore expected to be suppressed compared to other excited-state e↵ects
present in two-nucleon correlation functions and are not given any special significance below.

For large volumes, both plane-wave dibaryon operators and compact hexaquark operators
may have small overlap with the loosely-bound deuteron state found in nature. Within low-
energy EFTs and phenomenological nuclear models with nucleon degrees of freedom, the
deuteron is described by a wavefunction that for large |~x1 � ~x2| and a cubic volume with
PBCs is proportional to

P
~n2Z3 e�d|~x1�~x2+~nL| times a polynomial in 1/|~x1 � ~x2 + ~nL| [34,

35, 51, 142], where the deuteron binding momentum is d =
p
MNBd in terms of the

nucleon mass, MN , and the deuteron binding energy, Bd. However, interpolating operators
proportional to

P
~n2Z3 e�d|~x1�~x2+~nL| do not factorize into products of functions of ~x1 and

~x2.10 In Sec. II B, the factorization of  [D]
m (~x1, ~x2) into a sum of two products of functions

10 Using fast-Fourier transform (FFT) techniques, correlation functions built from such interpolating oper-
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12

MN < M� ⌘ E
(1, 32 ,H

+)
0 , both in nature and in LQCD calculations at unphysically large

quark masses, it is expected that �� operators and other combinations will dominantly
overlap with higher-energy states than NN operators. For simplicity, only NN hexaquark
operators constructed from products of color-singlet nucleons that transform under the cubic
group as G+

1 ⌦ G+
1 are considered in this work.

Hexaquark operators will be denoted as H⇢cg(t) below, where ⇢ 2 {0, . . . , 3} labels the
row of G+

1 ⌦G+
1 = A+

1 �T+
1 , c labels the center-of-mass momentum ~Pc, and g labels the quark

smearing, as in the single-nucleon case. Quark antisymmetry and the A+
1 spatial symmetry

of hexaquark operators force I = 1 operators to transform in the one-dimensional A+
1 irrep

associated with spin-singlet states, and they similarly force I = 0 operators to transform in
the T+

1 irrep associated with spin-triplet states. The I = 1 hexaquark operators have ⇢ = 0,
and for the Iz = 0 case they are defined by

H0cg(t) =
X

~x2⇤S

 [H]
c (~x)

1

2
[p0g(~x, t)n1g(~x, t) � p1g(~x, t)n0g(~x, t)

+n0g(~x, t)p1g(~x, t) � n1g(~x, t)p0g(~x, t)] ,

(10)

where g specifies the quark-field smearing (chosen to be the same for all quarks), and the

same sparsened plane-wave wavefunctions  [H]
c (~x) ⌘  [N ]

c (~x) = ei
~Pc·~x

���
⇤S

are used as for the

nucleon above. The spectra of pp and nn states with I = 1 and Iz = ±1 are identical to
those of pn states with I = 1 and Iz = 0 by isospin symmetry, and it is therefore su�cient to
only consider pn operators in isospin-symmetric calculations of the two-nucleon spectrum.
Hexaquark operators for pn systems with I = 0 are defined as

H1cg(t) =
X

~x2⇤S

 [H]
c (~x)

1
p
2
[p0g(~x, t)n0g(~x, t) � n0g(~x, t)p0g(~x, t)] ,

H2cg(t) =
X

~x2⇤S

 [H]
c (~x)

1

2
[p0g(~x, t)n1g(~x, t) + p1g(~x, t)n0g(~x, t)

�n0g(~x, t)p1g(~x, t) � n1g(~x, t)p0g(~x, t)] ,

H3cg(t) =
X

~x2⇤S

 [H]
c (~x)

1
p
2
[p1g(~x, t)n1g(~x, t) � n1g(~x, t)p1g(~x, t)] .

(11)

Quark-level representations of hexaquark operators can be derived from Eqs. (10)-(11) by

inserting the representations of p�g and n�g in terms of the quark fields qi(↵)g . These quark-
level representations can be used to define spin-color weights and associated spin-color-index-
valued maps9 analogous to the weights and index maps defined for the nucleon in Eq. (2)
as

H⇢cg(t) =
X

~x2⇤S

 [H]
c (~x)

X

↵

w[H]⇢
↵ ui(↵)

g (~x, t)dj(↵)g (~x, t)uk(↵)
g (~x, t)

⇥ dl(↵)g (~x, t)um(↵)
g (~x, t)dn(↵)g (~x, t).

(12)

9 The same notation is used for index maps i(↵), j(↵), . . . , for di↵erent interpolating operators since the

labels carried by the corresponding weights are su�cient to specify the interpolating operators in all

contexts.
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16

of ~x1 and ~x2 shown in Eq. (15) is exploited using baryon-block algorithms that e�ciently

compute C [D,D]
⇢mg⇢0m0g0(t) using O(V 3

S ) operations. “Quasi-local” interpolating operators that
can be e�ciently computed using baryon-block algorithms are defined by

Q⇢qg(t) =
X

~x1,~x22⇤S

 [Q]
q (~x1, ~x2, ~R)

X

�,�0

v⇢��0
1

p
2
[p�g(~x1, t)n�0g(~x2, t)

+(�1)1��⇢0n�g(~x1, t)p�0g(~x2, t)
⇤
,

(17)

with wavefunctions

 [Q]
q (~x1, ~x2, ~R) =

1

VS

X

⌧2TS

e�q|⌧(~x1)�~R|e�q|⌧(~x2)�~R|, (18)

where q labels the various localization scales q included in an interpolating-operator set, ~R
is an arbitrary parameter11 specifying the location of the center of the two-nucleon system
in the lattice volume (before translation averaging over ⇤S), and TS is the set of trans-
lations by multiples of the sparse lattice spacing, which are defined to act on coordinate
vectors by ⌧(~x) = ~x + S(⌧1ê1 + ⌧2ê2 + ⌧3ê3) with ⌧1, ⌧2, ⌧3 2 {0, . . . , L/S � 1}, with each
component of ⌧(~x) defined modulo L to respect PBCs. Quark-level spin-color weights for

quasi-local interpolating operators are identical to w[D]⇢
↵ , defined in Appendix A. The sum

over translations in Eq. (18) introduces correlations between the positions of the nucleons
and leads to an entangled two-nucleon wavefunction describing a pair of nucleons exponen-
tially localized around a common point. Applying the same translation to ~x1 and ~x2 in
Eq. (18) ensures that the wavefunction is independent of ~x1 + ~x2 and therefore has def-
inite center-of-mass momentum ~Pq = ~0 (mod 2⇡

S ). These quasi-local wavefunctions are
qualitatively similar although quantitatively di↵erent12 from the periodic EFT expectationP

~n2Z3 e�q|~x1�~x2+~nL|, as illustrated in Fig. 2. Linear combinations of  [Q]
q (~x1, ~x2, ~R) with

di↵erent q can be used to construct more general wavefunctions for quasi-local two-nucleon

systems. Quasi-local wavefunctions  [Q]
q (~x1, ~x2, ~R) are linearly independent from a truncated

set of dibaryon wavefunctions  [D]
m (~x1, ~x2) with s = |~nm|

2 < 3L2. They can be included in a
variational interpolating-operator set in an attempt to describe loosely bound states, with
spatially correlated pairs of nucleons, more e�ciently than a set including only dibaryon op-
erators. Quasi-local interpolating operators therefore provide a well-motivated extension to
a set of dibaryon operators (that approximately describe unbound two-nucleon systems) and
hexaquark interpolating operators (that approximately describe tightly bound two-nucleon
systems).

Two-nucleon correlation functions using this interpolating-operator set are defined by

C [T ,T 0]
⇢ts⇢0t0g0(t) =

D
T⇢ts(t)

�
T

0
⇢0t0g0

�†
(0)

E
, (19)

for all T 2 {H,D,Q} with corresponding wavefunction indices t, t0 2 {c,m, q}. Calculations
of the correlation-function matrix with elements given by Eq. (19) generalize previous LQCD

ators could be computed using (VS ln VS)2 operations. An FFT approach may be useful for calculations

of two-nucleon correlation functions, although it has less favorable scaling for B > 2 systems than the

baryon-block methods discussed in Sec. II B and Ref. [135].
11 Quasi-local wavefunctions are invariant under shifts of ~R by S êk but depend on ~R (mod S).
12 Since

P
~n2Z3 e�q|~x1�~x2+~nL| is not an exact description of the FV QCD two-nucleon wavefunction, maxi-

mizing the quantitative similarity of an interpolating operator wavefunction with this expression does not

guarantee maximal overlap with loosely bound two-nucleon systems in QCD.
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of ~x1 and ~x2 shown in Eq. (15) is exploited using baryon-block algorithms that e�ciently

compute C [D,D]
⇢mg⇢0m0g0(t) using O(V 3

S ) operations. “Quasi-local” interpolating operators that
can be e�ciently computed using baryon-block algorithms are defined by

Q⇢qg(t) =
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~x1,~x22⇤S
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q (~x1, ~x2, ~R)
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1

p
2
[p�g(~x1, t)n�0g(~x2, t)

+(�1)1��⇢0n�g(~x1, t)p�0g(~x2, t)
⇤
,

(17)

with wavefunctions

 [Q]
q (~x1, ~x2, ~R) =

1

VS

X

⌧2TS

e�q|⌧(~x1)�~R|e�q|⌧(~x2)�~R|, (18)

where q labels the various localization scales q included in an interpolating-operator set, ~R
is an arbitrary parameter11 specifying the location of the center of the two-nucleon system
in the lattice volume (before translation averaging over ⇤S), and TS is the set of trans-
lations by multiples of the sparse lattice spacing, which are defined to act on coordinate
vectors by ⌧(~x) = ~x + S(⌧1ê1 + ⌧2ê2 + ⌧3ê3) with ⌧1, ⌧2, ⌧3 2 {0, . . . , L/S � 1}, with each
component of ⌧(~x) defined modulo L to respect PBCs. Quark-level spin-color weights for

quasi-local interpolating operators are identical to w[D]⇢
↵ , defined in Appendix A. The sum

over translations in Eq. (18) introduces correlations between the positions of the nucleons
and leads to an entangled two-nucleon wavefunction describing a pair of nucleons exponen-
tially localized around a common point. Applying the same translation to ~x1 and ~x2 in
Eq. (18) ensures that the wavefunction is independent of ~x1 + ~x2 and therefore has def-
inite center-of-mass momentum ~Pq = ~0 (mod 2⇡

S ). These quasi-local wavefunctions are
qualitatively similar although quantitatively di↵erent12 from the periodic EFT expectationP

~n2Z3 e�q|~x1�~x2+~nL|, as illustrated in Fig. 2. Linear combinations of  [Q]
q (~x1, ~x2, ~R) with

di↵erent q can be used to construct more general wavefunctions for quasi-local two-nucleon

systems. Quasi-local wavefunctions  [Q]
q (~x1, ~x2, ~R) are linearly independent from a truncated

set of dibaryon wavefunctions  [D]
m (~x1, ~x2) with s = |~nm|

2 < 3L2. They can be included in a
variational interpolating-operator set in an attempt to describe loosely bound states, with
spatially correlated pairs of nucleons, more e�ciently than a set including only dibaryon op-
erators. Quasi-local interpolating operators therefore provide a well-motivated extension to
a set of dibaryon operators (that approximately describe unbound two-nucleon systems) and
hexaquark interpolating operators (that approximately describe tightly bound two-nucleon
systems).

Two-nucleon correlation functions using this interpolating-operator set are defined by

C [T ,T 0]
⇢ts⇢0t0g0(t) =

D
T⇢ts(t)

�
T

0
⇢0t0g0

�†
(0)

E
, (19)

for all T 2 {H,D,Q} with corresponding wavefunction indices t, t0 2 {c,m, q}. Calculations
of the correlation-function matrix with elements given by Eq. (19) generalize previous LQCD

ators could be computed using (VS ln VS)2 operations. An FFT approach may be useful for calculations

of two-nucleon correlation functions, although it has less favorable scaling for B > 2 systems than the

baryon-block methods discussed in Sec. II B and Ref. [135].
11 Quasi-local wavefunctions are invariant under shifts of ~R by S êk but depend on ~R (mod S).
12 Since

P
~n2Z3 e�q|~x1�~x2+~nL| is not an exact description of the FV QCD two-nucleon wavefunction, maxi-

mizing the quantitative similarity of an interpolating operator wavefunction with this expression does not

guarantee maximal overlap with loosely bound two-nucleon systems in QCD.

Quasi-local operators
What about loosely bound systems like the deuteron?

Finite-volume EFT wavefunction:

Doesn’t factorize into product of single-baryon wavefunctions, no baryon blocks…

Factorizable approximation:

See e.g. Koning, Lee, and Hammer, Annals Phys. 327, 1450 (2012)  

 Briceño, Davoudi, Lee and Savage, PRD 88 (2013)
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of ~x1 and ~x2 shown in Eq. (15) is exploited using baryon-block algorithms that e�ciently

compute C [D,D]
⇢mg⇢0m0g0(t) using O(V 3

S ) operations. “Quasi-local” interpolating operators that
can be e�ciently computed using baryon-block algorithms are defined by

Q⇢qg(t) =
X

~x1,~x22⇤S

 [Q]
q (~x1, ~x2, ~R)

X

�,�0

v⇢��0
1

p
2
[p�g(~x1, t)n�0g(~x2, t)

+(�1)1��⇢0n�g(~x1, t)p�0g(~x2, t)
⇤
,

(17)

with wavefunctions

 [Q]
q (~x1, ~x2, ~R) =

1

VS

X

⌧2TS

e�q|⌧(~x1)�~R|e�q|⌧(~x2)�~R|, (18)

where q labels the various localization scales q included in an interpolating-operator set, ~R
is an arbitrary parameter11 specifying the location of the center of the two-nucleon system
in the lattice volume (before translation averaging over ⇤S), and TS is the set of trans-
lations by multiples of the sparse lattice spacing, which are defined to act on coordinate
vectors by ⌧(~x) = ~x + S(⌧1ê1 + ⌧2ê2 + ⌧3ê3) with ⌧1, ⌧2, ⌧3 2 {0, . . . , L/S � 1}, with each
component of ⌧(~x) defined modulo L to respect PBCs. Quark-level spin-color weights for

quasi-local interpolating operators are identical to w[D]⇢
↵ , defined in Appendix A. The sum

over translations in Eq. (18) introduces correlations between the positions of the nucleons
and leads to an entangled two-nucleon wavefunction describing a pair of nucleons exponen-
tially localized around a common point. Applying the same translation to ~x1 and ~x2 in
Eq. (18) ensures that the wavefunction is independent of ~x1 + ~x2 and therefore has def-
inite center-of-mass momentum ~Pq = ~0 (mod 2⇡

S ). These quasi-local wavefunctions are
qualitatively similar although quantitatively di↵erent12 from the periodic EFT expectationP

~n2Z3 e�q|~x1�~x2+~nL|, as illustrated in Fig. 2. Linear combinations of  [Q]
q (~x1, ~x2, ~R) with

di↵erent q can be used to construct more general wavefunctions for quasi-local two-nucleon

systems. Quasi-local wavefunctions  [Q]
q (~x1, ~x2, ~R) are linearly independent from a truncated

set of dibaryon wavefunctions  [D]
m (~x1, ~x2) with s = |~nm|

2 < 3L2. They can be included in a
variational interpolating-operator set in an attempt to describe loosely bound states, with
spatially correlated pairs of nucleons, more e�ciently than a set including only dibaryon op-
erators. Quasi-local interpolating operators therefore provide a well-motivated extension to
a set of dibaryon operators (that approximately describe unbound two-nucleon systems) and
hexaquark interpolating operators (that approximately describe tightly bound two-nucleon
systems).

Two-nucleon correlation functions using this interpolating-operator set are defined by

C [T ,T 0]
⇢ts⇢0t0g0(t) =

D
T⇢ts(t)

�
T

0
⇢0t0g0

�†
(0)

E
, (19)

for all T 2 {H,D,Q} with corresponding wavefunction indices t, t0 2 {c,m, q}. Calculations
of the correlation-function matrix with elements given by Eq. (19) generalize previous LQCD

ators could be computed using (VS ln VS)2 operations. An FFT approach may be useful for calculations

of two-nucleon correlation functions, although it has less favorable scaling for B > 2 systems than the

baryon-block methods discussed in Sec. II B and Ref. [135].
11 Quasi-local wavefunctions are invariant under shifts of ~R by S êk but depend on ~R (mod S).
12 Since

P
~n2Z3 e�q|~x1�~x2+~nL| is not an exact description of the FV QCD two-nucleon wavefunction, maxi-

mizing the quantitative similarity of an interpolating operator wavefunction with this expression does not

guarantee maximal overlap with loosely bound two-nucleon systems in QCD.
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FIG. 2. Spatial wavefunctions  [Q]
q (~x1, ~x2) associated with quasi-local interpolating operators with

relative nucleon positions parallel to a lattice axis ~x1 � ~x2 = (x1 � x2, 0, 0) and localization scales
q 2 {0.14, 0.07, 0.035} are shown in the left, center, and right panels, respectively. The open
squares demonstrate the sparsened wavefunction with positions satisfying ~x1 � ~x2 2 ⇤S , while the
dashed line is obtained by setting S = 1 to show sparsening e↵ects. Spatial wavefunctions of the
form

P
~n2Z3 e�q|~x1�~x2+~nL| are also shown with solid lines and open circles for comparison. For

concreteness, the figure corresponds to L = 32, S = 4, and the values of q used in the numerical
calculations in Sec. III.

calculations in the two-nucleon sector including positive-definite [D,D] correlation functions

of the form
D
D⇢mg(t)D

†
⇢0m0g0(0)

E
, which have been recently studied in Refs. [26, 28, 30], as

well as asymmetric [D,H] correlation functions of the form
D
D⇢mg(t)H

†
⇢0c0g0(0)

E
, which have

identical structure (up to di↵erences in quark-field smearing) to the correlation functions
studied in Refs. [11, 13, 15, 16, 18, 21, 22, 25, 120–129].

A modified form of Eq. (19) is required for calculating correlation functions involving
quasi-local operators using generalized baryon-block algorithms that assume factorizability
of two-nucleon spatial wavefunctions. The sum in Eq. (18) projects Q⇢qg to total momen-
tum 0 (mod 2⇡/S) while introducing correlations in the two-nucleon wavefunctions between
the positions of the two quasi-local nucleon interpolating operators. The same sum pre-
vents correlation functions involving Q⇢qg from factorizing into products of single-nucleon
wavefunctions; however, it is possible to approximate such correlation functions using fac-
torized wavefunctions by relying on ensemble averaging to impose translational invariance.
A “factorized” quasi-local interpolating operator can be defined as

F⇢qg(t) =
X

~x1,~x22⇤S

 [F ]
q (~x1, ~x2, ~R)

X

�,�0

v⇢��0
1

p
2
[p�g(~x1, t)n�0g(~x2, t)

+(�1)1��⇢0n�g(~x1, t)p�0g(~x2, t)
⇤
,

(20)

where

 [F ]
q (~x1, ~x2, ~R) = e�q|~x1�~R|e�q|~x2�~R|. (21)

The quasi-local wavefunction  [Q]
q (~x1, ~x2, ~R) can be obtained by averaging the factorized

Full
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, which have been recently studied in Refs. [26, 28, 30], as

well as asymmetric [D,H] correlation functions of the form
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⇢0c0g0(0)
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, which have

identical structure (up to di↵erences in quark-field smearing) to the correlation functions
studied in Refs. [11, 13, 15, 16, 18, 21, 22, 25, 120–129].

A modified form of Eq. (19) is required for calculating correlation functions involving
quasi-local operators using generalized baryon-block algorithms that assume factorizability
of two-nucleon spatial wavefunctions. The sum in Eq. (18) projects Q⇢qg to total momen-
tum 0 (mod 2⇡/S) while introducing correlations in the two-nucleon wavefunctions between
the positions of the two quasi-local nucleon interpolating operators. The same sum pre-
vents correlation functions involving Q⇢qg from factorizing into products of single-nucleon
wavefunctions; however, it is possible to approximate such correlation functions using fac-
torized wavefunctions by relying on ensemble averaging to impose translational invariance.
A “factorized” quasi-local interpolating operator can be defined as

F⇢qg(t) =
X
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where

 [F ]
q (~x1, ~x2, ~R) = e�q|~x1�~R|e�q|~x2�~R|. (21)

The quasi-local wavefunction  [Q]
q (~x1, ~x2, ~R) can be obtained by averaging the factorized
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Robust fitting is crucial

• Fits to correlators - then take correlated 
bootstrap differences for energy shifts


• Scan over all possible fit ranges and fit 
models up to 3-exp within those ranges


• Many tests of fit stability


• Final result - weighted model average 
 

• Final uncertainties - weighted combination 
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FIG. 16: Flowchart representing the steps of the fitting procedure for one specific fitting range.
Rectangular shapes represent process steps, while diamond shapes represent decision steps. Input
parameters to the fitting procedure are shown in blue. As described in the text, the steps illustrated
here are repeated Nfits times with different random choices of tmin, and final results are obtained
from weighted averages of fit results for the tmin choices leading to the “Accept fit” rectangle.
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(final results use tol�2 = 2). This defines a reproducible and automatable procedure for
fitting correlation functions, including sampling of possible fit ranges and excited-state model
selection, in which fit results are functions of only the tolerances described above and the
given correlation functions. A graphical illustration of the fitting procedure is shown in
Fig. 16. This fitting procedure was implemented in the Julia language [103] using the
Optim optimization package [104] to obtain the results of this work.

Fits that pass all of the checks above are considered reliable estimates of the energy
spectrum, and the final estimate of the ground-state energy E0 and its uncertainty �E0 are
obtained by taking a weighted average of the Nsuccess successful fit results Ef
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where f labels the choice of fit range specified by tmin for each interpolating operator16. Each
fit result provides an unbiased estimate of the ground-state energy. The relative weights wf

of each fit in the weighted average can therefore be chosen arbitrarily in the limit of large
statistics; in practice it is advantageous to choose weights that penalize poor fits with larger
�2/Ndof and unconstraining fits with larger uncertainties �Ef
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where pf = �(Ndof/2, �2

f/2)/�(Ndof/2) is the p-value assuming �2-distributed goodness-of-
fit parameters with �2

f obtained by inserting Ef
0

into Eq. (B5)17. Variation to the particular
choices of specified tolerances have been studied, and the subsequent variation in the ensem-
ble of successful fits is found to have little impact on the results of this weighted averaging.

16
The total error �E0 describes the combined statistical uncertainty on E0 plus systematic uncertainty

arising from the choice of fit range and fit model. The partitioning of this error into �statE0 and �sysE0

only partially separates statistical and systematic uncertainties because �statE0 includes statistical errors

plus systematic uncertainties related to fluctuations among the �Ef
0 .

17
For large �⇤

, the �2
function being minimized approaches an uncorrelated �2

and the values of �2
will not

be distributed as �2
-distributed random variables with Ndof degrees-of-freedom. In this regime where finite

N artifacts are not negligible, the weights in Eq. (B8) still serve the purpose of penalizing comparatively

less accurate descriptions of the results being fit and their correlations as estimated by S
ij
tt0(�

⇤), but the

absolute sizes of the pf should not be interpreted as p-values for each fit.

49

(final results use tol�2 = 2). This defines a reproducible and automatable procedure for
fitting correlation functions, including sampling of possible fit ranges and excited-state model
selection, in which fit results are functions of only the tolerances described above and the
given correlation functions. A graphical illustration of the fitting procedure is shown in
Fig. 16. This fitting procedure was implemented in the Julia language [103] using the
Optim optimization package [104] to obtain the results of this work.

Fits that pass all of the checks above are considered reliable estimates of the energy
spectrum, and the final estimate of the ground-state energy E0 and its uncertainty �E0 are
obtained by taking a weighted average of the Nsuccess successful fit results Ef

0
,

E0 =
NsuccessX

f=1

wfEf
0
,

�statE
2

0
=

NsuccessX

f=1

wf (�Ef
0
)2,

�sysE
2

0
=

NsuccessX

f=1

wf
⇣
Ef

0
� E0

⌘2

,

�E0 =

q
�statE

2

0
+ �sysE

2

0
,

(B7)

where f labels the choice of fit range specified by tmin for each interpolating operator16. Each
fit result provides an unbiased estimate of the ground-state energy. The relative weights wf

of each fit in the weighted average can therefore be chosen arbitrarily in the limit of large
statistics; in practice it is advantageous to choose weights that penalize poor fits with larger
�2/Ndof and unconstraining fits with larger uncertainties �Ef

0
. Following Ref. [62], we use

the weights

ewf =
pf

⇣
�Ef

0

⌘�2

PNsuccess

f 0=1
pf 0

⇣
�Ef 0

0

⌘�2
, (B8)

where pf = �(Ndof/2, �2

f/2)/�(Ndof/2) is the p-value assuming �2-distributed goodness-of-
fit parameters with �2

f obtained by inserting Ef
0

into Eq. (B5)17. Variation to the particular
choices of specified tolerances have been studied, and the subsequent variation in the ensem-
ble of successful fits is found to have little impact on the results of this weighted averaging.

16
The total error �E0 describes the combined statistical uncertainty on E0 plus systematic uncertainty

arising from the choice of fit range and fit model. The partitioning of this error into �statE0 and �sysE0

only partially separates statistical and systematic uncertainties because �statE0 includes statistical errors

plus systematic uncertainties related to fluctuations among the �Ef
0 .

17
For large �⇤

, the �2
function being minimized approaches an uncorrelated �2

and the values of �2
will not

be distributed as �2
-distributed random variables with Ndof degrees-of-freedom. In this regime where finite

N artifacts are not negligible, the weights in Eq. (B8) still serve the purpose of penalizing comparatively

less accurate descriptions of the results being fit and their correlations as estimated by S
ij
tt0(�

⇤), but the

absolute sizes of the pf should not be interpreted as p-values for each fit.

49

(final results use tol�2 = 2). This defines a reproducible and automatable procedure for
fitting correlation functions, including sampling of possible fit ranges and excited-state model
selection, in which fit results are functions of only the tolerances described above and the
given correlation functions. A graphical illustration of the fitting procedure is shown in
Fig. 16. This fitting procedure was implemented in the Julia language [103] using the
Optim optimization package [104] to obtain the results of this work.

Fits that pass all of the checks above are considered reliable estimates of the energy
spectrum, and the final estimate of the ground-state energy E0 and its uncertainty �E0 are
obtained by taking a weighted average of the Nsuccess successful fit results Ef

0
,

E0 =
NsuccessX

f=1

wfEf
0
,

�statE
2

0
=

NsuccessX

f=1

wf (�Ef
0
)2,

�sysE
2

0
=

NsuccessX

f=1

wf
⇣
Ef

0
� E0

⌘2

,

�E0 =

q
�statE

2

0
+ �sysE

2

0
,

(B7)

where f labels the choice of fit range specified by tmin for each interpolating operator16. Each
fit result provides an unbiased estimate of the ground-state energy. The relative weights wf

of each fit in the weighted average can therefore be chosen arbitrarily in the limit of large
statistics; in practice it is advantageous to choose weights that penalize poor fits with larger
�2/Ndof and unconstraining fits with larger uncertainties �Ef

0
. Following Ref. [62], we use

the weights

ewf =
pf

⇣
�Ef

0

⌘�2

PNsuccess

f 0=1
pf 0

⇣
�Ef 0

0

⌘�2
, (B8)

where pf = �(Ndof/2, �2

f/2)/�(Ndof/2) is the p-value assuming �2-distributed goodness-of-
fit parameters with �2

f obtained by inserting Ef
0

into Eq. (B5)17. Variation to the particular
choices of specified tolerances have been studied, and the subsequent variation in the ensem-
ble of successful fits is found to have little impact on the results of this weighted averaging.

16
The total error �E0 describes the combined statistical uncertainty on E0 plus systematic uncertainty

arising from the choice of fit range and fit model. The partitioning of this error into �statE0 and �sysE0

only partially separates statistical and systematic uncertainties because �statE0 includes statistical errors

plus systematic uncertainties related to fluctuations among the �Ef
0 .

17
For large �⇤

, the �2
function being minimized approaches an uncorrelated �2

and the values of �2
will not

be distributed as �2
-distributed random variables with Ndof degrees-of-freedom. In this regime where finite

N artifacts are not negligible, the weights in Eq. (B8) still serve the purpose of penalizing comparatively

less accurate descriptions of the results being fit and their correlations as estimated by S
ij
tt0(�

⇤), but the

absolute sizes of the pf should not be interpreted as p-values for each fit.

49

(final results use tol�2 = 2). This defines a reproducible and automatable procedure for
fitting correlation functions, including sampling of possible fit ranges and excited-state model
selection, in which fit results are functions of only the tolerances described above and the
given correlation functions. A graphical illustration of the fitting procedure is shown in
Fig. 16. This fitting procedure was implemented in the Julia language [103] using the
Optim optimization package [104] to obtain the results of this work.

Fits that pass all of the checks above are considered reliable estimates of the energy
spectrum, and the final estimate of the ground-state energy E0 and its uncertainty �E0 are
obtained by taking a weighted average of the Nsuccess successful fit results Ef

0
,

E0 =
NsuccessX

f=1

wfEf
0
,

�statE
2

0
=

NsuccessX

f=1

wf (�Ef
0
)2,

�sysE
2

0
=

NsuccessX

f=1

wf
⇣
Ef

0
� E0

⌘2

,

�E0 =

q
�statE

2

0
+ �sysE

2

0
,

(B7)

where f labels the choice of fit range specified by tmin for each interpolating operator16. Each
fit result provides an unbiased estimate of the ground-state energy. The relative weights wf

of each fit in the weighted average can therefore be chosen arbitrarily in the limit of large
statistics; in practice it is advantageous to choose weights that penalize poor fits with larger
�2/Ndof and unconstraining fits with larger uncertainties �Ef

0
. Following Ref. [62], we use

the weights

ewf =
pf

⇣
�Ef

0

⌘�2

PNsuccess

f 0=1
pf 0

⇣
�Ef 0

0

⌘�2
, (B8)

where pf = �(Ndof/2, �2

f/2)/�(Ndof/2) is the p-value assuming �2-distributed goodness-of-
fit parameters with �2

f obtained by inserting Ef
0

into Eq. (B5)17. Variation to the particular
choices of specified tolerances have been studied, and the subsequent variation in the ensem-
ble of successful fits is found to have little impact on the results of this weighted averaging.

16
The total error �E0 describes the combined statistical uncertainty on E0 plus systematic uncertainty

arising from the choice of fit range and fit model. The partitioning of this error into �statE0 and �sysE0

only partially separates statistical and systematic uncertainties because �statE0 includes statistical errors

plus systematic uncertainties related to fluctuations among the �Ef
0 .

17
For large �⇤

, the �2
function being minimized approaches an uncorrelated �2

and the values of �2
will not

be distributed as �2
-distributed random variables with Ndof degrees-of-freedom. In this regime where finite

N artifacts are not negligible, the weights in Eq. (B8) still serve the purpose of penalizing comparatively

less accurate descriptions of the results being fit and their correlations as estimated by S
ij
tt0(�

⇤), but the

absolute sizes of the pf should not be interpreted as p-values for each fit.

49

(final results use tol�2 = 2). This defines a reproducible and automatable procedure for
fitting correlation functions, including sampling of possible fit ranges and excited-state model
selection, in which fit results are functions of only the tolerances described above and the
given correlation functions. A graphical illustration of the fitting procedure is shown in
Fig. 16. This fitting procedure was implemented in the Julia language [103] using the
Optim optimization package [104] to obtain the results of this work.

Fits that pass all of the checks above are considered reliable estimates of the energy
spectrum, and the final estimate of the ground-state energy E0 and its uncertainty �E0 are
obtained by taking a weighted average of the Nsuccess successful fit results Ef

0
,

E0 =
NsuccessX

f=1

wfEf
0
,

�statE
2

0
=

NsuccessX

f=1

wf (�Ef
0
)2,

�sysE
2

0
=

NsuccessX

f=1

wf
⇣
Ef

0
� E0

⌘2

,

�E0 =

q
�statE

2

0
+ �sysE

2

0
,

(B7)

where f labels the choice of fit range specified by tmin for each interpolating operator16. Each
fit result provides an unbiased estimate of the ground-state energy. The relative weights wf

of each fit in the weighted average can therefore be chosen arbitrarily in the limit of large
statistics; in practice it is advantageous to choose weights that penalize poor fits with larger
�2/Ndof and unconstraining fits with larger uncertainties �Ef

0
. Following Ref. [62], we use

the weights

ewf =
pf

⇣
�Ef

0

⌘�2

PNsuccess

f 0=1
pf 0

⇣
�Ef 0

0

⌘�2
, (B8)

where pf = �(Ndof/2, �2

f/2)/�(Ndof/2) is the p-value assuming �2-distributed goodness-of-
fit parameters with �2

f obtained by inserting Ef
0

into Eq. (B5)17. Variation to the particular
choices of specified tolerances have been studied, and the subsequent variation in the ensem-
ble of successful fits is found to have little impact on the results of this weighted averaging.

16
The total error �E0 describes the combined statistical uncertainty on E0 plus systematic uncertainty

arising from the choice of fit range and fit model. The partitioning of this error into �statE0 and �sysE0

only partially separates statistical and systematic uncertainties because �statE0 includes statistical errors

plus systematic uncertainties related to fluctuations among the �Ef
0 .

17
For large �⇤

, the �2
function being minimized approaches an uncorrelated �2

and the values of �2
will not

be distributed as �2
-distributed random variables with Ndof degrees-of-freedom. In this regime where finite

N artifacts are not negligible, the weights in Eq. (B8) still serve the purpose of penalizing comparatively

less accurate descriptions of the results being fit and their correlations as estimated by S
ij
tt0(�

⇤), but the

absolute sizes of the pf should not be interpreted as p-values for each fit.



Nucleon ground-state and Deuteron 12th level

Fitting methods: example

27

□□

□□

□□
□□

□□

0.0 0.2 0.4 0.6 0.8 1.0

2.12

2.13

2.14

2.15

2.16

2.17

▯
▯

▯
▯ ▯ ▯

▯ ▯

▯

▯
▯

0.0 0.5 1.0 1.5

2.10

2.15

2.20

□

□

□ □
□

□
□ □

□

□

□

□

□

□

0 5 10 15

1.195

1.200

1.205

1.210

□□
□□

□□ □□
□□

□□

□□

□□

□□

□□

□□

□□

0.0 0.2 0.4 0.6 0.8 1.0

1.61

1.62

1.63

1.64

1.65

1.66Highest weight fit

Fitted range for bound

Overlaps onto operators

(relative fit weights)


