To bind or not to bind: A question of various two-nucleon interpolators
Lattice 2023: FNAL
3rd August, 2023

André Walk-Loud

Understanding the emergence of nuclear physics has the potential to be relevant to a broad set of nuclear and particle physics experimental programs

Why is the universe
composed of matter?
(and not anti-matter)

Does dark matter
interact with matter?
(beyond gravitationally)

What are the properties
of dense nuclear matter?
(beyond gravitationally)
nãture

What are the properties of the proton?

This seemingly simple problem has proved remarkably challenging to undertake

(blue = work I was involved in)

Challenges for NN calculations that are particularly difficult

D Exponential decay of signal with respect to the variance
■ $\frac{S}{N}(t) \approx \frac{1}{\sqrt{N}} e^{-A\left(M_{N}-\frac{3}{2} m_{\pi}\right) t}$
\square Physics of interest (interaction energies) are at the per-mille level of the total energy Deuteron: $B_{D} \approx 2.2 \mathrm{MeV}, E_{N N} \approx 2 \mathrm{GeV}$
\square The excited state energy gap is set by kinetic energy of nucleons, much smaller than the typical inelastic excited state energy
\square pion production threshold becomes very close to $2 M_{N}$ at $m_{\pi}^{\text {phys }}$

- short-time is polluted by excited states (as can be intermediate times) while late times are too noisy to resolve signals - and we must precisely determine a per-mille contribution to the total energy

To simplify the problems - work at $m_{u}=m_{d}=m_{s} \approx m_{s}^{\text {phys }}$

NPLQCD,
Yamazaki et al.,
CalLat (2015)

Compact, hexa-quark creation operator

diffuse - wall source
no bound state
"Mainz" (Distillation)
CoSMoN (stochastic LapH
NPLQCD (sparsened momentum)

momentum-space
creation \& annihilation
positive-definite correlation matrix
no bound state

To simplify the problems - work at $m_{u}=m_{d}=m_{s} \approx m_{s}^{\text {phys }}$

- So far, no study of all methods on the same ensemble (different actions, masses, lattice spacings...)
- difficult to draw conclusions

■ especially given the recent "Mainz" results [Green, Hanlon, Junnarkar, Wittig, PRL 127-2103.01054]

- I will report on our (CoSMoN/BaSc) efforts to study most methods on a single ensemble
- sLapH
- hexa-quark
- displaced local source (CalLat)
- HAL QCD

figure courtesy of J. Green

Our Lattice Action

- We generated an ensemble with the CLS action

Lüscher-Weisz gauge action, non-perturbative $\mathrm{O}(\mathrm{a})$ improved clover-Wilson fermions

- $m_{u}=m_{d}=m_{s} \approx m_{s}^{\text {phys }} \longrightarrow m_{\pi} \approx 714 \mathrm{MeV}$ $a \approx 0.086 \mathrm{fm}, V=48^{3} \times 96$
- The intent was to make a physical volume similar to that used by NPLQCD single stout-smeared, tadpole improved, iso-clover fermion action
@ $\mathrm{SU}(3)$ symmetric $m_{\pi} \approx 806 \mathrm{MeV}$ $a \approx 0.145 \mathrm{fm}, V=32^{3} \times 48$

stochastic Laplacian Heaviside (sLapH) Method

[] "Distillation" - Peardon et al. PRD 80 (2009) [0905.2160]

holding smearing fixed in physical units $\rightarrow, N \propto L^{3}$
[] "sLapH" - Morningstar et al. PRD 83 (2011) [1104.3870]

introduce stochastic noise-basis between LapH space and quark lines
number of stochastic noises, N_{η}, is independent of volume
introduces more noise to correlation functions
adds some complexity/cost to constructing hadrons and contracting them

stochastic Laplacian Heaviside (sLapH) Method

with either method - construct hadron interpolating fields in momentum space at the source as well as sink

- Expected levels for $I=0, S=0, B=2, \boldsymbol{P}=0$, and $T_{1 g}$ irrep
- Momentum squared in parentheses (units $(2 \pi / L)^{2}$) in particle content

E / m_{N}	Multiplicity	Particle Content
2.00000000	(1)	$N(0) N(0)$
2.03441931	(2)	$N(1) N(1)$
2.06826590	(3)	$N(2) N(2)$
2.10156746	(2)	$N(3) N(3)$
2.13434948	(2)	$N(4) N(4)$
2.16663555	(5)	$N(5) N(5)$
2.19844753	(5)	$N(6) N(6)$
2.26072895	(3)	$N(8) N(8)$
2.29123489	(5)	$N(9 B) N(9 B)$
2.29123489	(2)	$N(9 A) N(9 A)$
2.31017370	(2)	$\Delta(0) \Delta(0)$
2.32133997	(5)	$N(10) N(10)$
2.34003514	(5)	$\Delta(1) \Delta(1)$

- Expected levels for $I=1, S=0, B=2, \boldsymbol{P}=0$, and $A_{1 g}$ irrep
- Momentum squared in parentheses (units $(2 \pi / L)^{2}$) in particle content

E / m_{N}	Multiplicity	Particle Content
2.00000000	(1)	$N(0) N(0)$
2.03441931	(1)	$N(1) N(1)$
2.06826590	(1)	$N(2) N(2)$
2.10156746	(1)	$N(3) N(3)$
2.13434948	(1)	$N(4) N(4)$
2.16663555	(1)	$N(5) N(5)$
2.18722722	(1)	$N(1) \Delta(1)$
2.19844753	(1)	$N(6) N(6)$
2.21889309	(2)	$N(2) \Delta(2)$
2.25010523	(1)	$N(3) \Delta(3)$
2.26072895	(1)	$N(8) N(8)$
2.28088292	(1)	$N(4) \Delta(4)$
2.29123489	(1)	$N(9 B) N(9 B)$
2.29123489	(1)	$N(9 A) N(9 A)$
2.31017370	(1)	$\Delta(0) \Delta(0)$

tables courtesy of C. Morningstar
at this pion mass ($m_{\pi} \approx 714 \mathrm{MeV}$), pion-production is heavier still!

our results circa 2020 [2009.11825]

■ 2 streams of 401 configurations each 4 time-sources per configuration forward propagating correlators only

- Our results are not precise enough to fit NN and N separately

$$
\begin{aligned}
& C_{N}(t, p)=A_{0}(p) e^{-E_{0}(p) t}\left[1+\sum_{n=1}^{N} r_{n} e^{-\Delta E_{n}(p) t}\right] \\
& R_{N N}(t)=B_{0} e^{-\Delta E_{0}^{N N}} \frac{1+\sum_{n=1}^{N} r_{n}^{N N} e^{-\Delta E_{n}^{N N} t}}{\left(1+\sum_{p} r_{p} e^{-\Delta E_{p} t}\right)\left(1+\sum_{q} r_{q} e^{-\Delta E_{q} t}\right)}
\end{aligned}
$$

- we have to rely upon fitting the ratio correlator

$$
N_{n}=1, \quad N_{n n}^{\text {inel }}=1
$$

our results circa 2020 [2009.11825]

- 16 energy levels with (expected) negligible overlap with non S-wave

- We find a virtual bound state (like dineutron) - a purely imaginary solution with negative sign

$$
\frac{q_{-}^{\text {deut }}}{m_{\pi}}=-i 0.132(32)
$$

- We can infer the size of the potential from causality
and unitarity: Wigner PRD 98 (1955), Phillips and Cohen PLB 390 (1997)

$$
r_{0} \leq 2\left[R-\frac{R^{2}}{a}+\frac{R^{3}}{3 a^{2}}\right], \quad m_{\pi} R \gtrsim 2.0, \quad R \gtrsim 0.55 \mathrm{fm}
$$

Updates since 2009.11825

- Our goal is to compare and contrast (nearly) all methods in the literature on a single ensemble
- add hexaquark interpolator to the basis

■ compare with p-sink / hexaquark source off-diagonal only (NPLQCD, Yamazaki et al, CalLat)
\square compare with p-sink / displaced NN source off-diagonal (CalLat)

- increase statistics of sLapH method
- compare with HAL QCD potential

Updates since 2009.11825 - add hexaquark to basis

- hexaquark (HX) operator has more excited state contamination and is noisier than the $\mathrm{N}(0) \mathrm{N}(0)$ correlator
- The off-diagonal $\mathrm{N}(0) \mathrm{N}(0)$ - HX correlator has similar behavior to diagonal $\mathbf{N}(0) \mathbf{N}(0)$ correlator

■ This is in contrast to what NPLQCD/CalLat find suggesting that discrepancy is sensitive to either

- lattice action
- quark smearing

N(3)N(3)

Updates since 2009.11825 - add hexaquark to basis

- hexaquark (HX) operator strongly overlaps with highest state in the spectrum (top left)
$\square \mathrm{N}(\mathrm{p}) \mathrm{N}(\mathrm{p})$ operators mostly overlap onto a single state, with some mixing (except with highest state)

(I) E w/out HX

IE with HX

- we find the HX operator is NOT needed to determine the low-lying NN spectrum

Updates since 2009.11825 - compare with local/displaced NN source

sLapH g.s. energy in $T_{1 g}$ from 2009.11825
NPLQCD $(2012,2017) /$ CalLat (2015) g.s. energy from local NN creation operator

D pulling $p^{\dagger}\left(x_{0}\right) n^{\dagger}\left(x_{0}+\Delta\right)$ apart at creation leads to significantly different excited state contamination

- extracting stable ΔE is challenging
\square local $p^{\dagger}\left(x_{0}\right) n^{\dagger}\left(x_{0}\right)$ strongly couples to NN-inelastic states that are unique to NN (not N on its own) e.g. $\Delta \Delta$

Updates since 2009.11825 - increased statistics with sLapH

- 2 streams of 401 configurations each 4 time-sources per configuration

■ 4 streams, 1490 total configs 8 time-sources per configuration

■ Additionally, introduce more sophisticated "conspiracy" fit model
\square It is observed that the excited states strongly cancel in the ratio correlator, suggesting a "conspiracy" of cancellation between most excited states in the numerator and denominator

- Build a fit function that mimics this observation

Updates since 2009.11825 - "conspiracy" model

- Assume a good approximation for NN correlator is from the product of the individual nucleon correlators

$$
C_{N N}(t) \approx C_{N_{1}}(t) C_{N_{2}}(t)
$$

$$
C_{N N}(t) \approx A_{0}^{1} e^{-E_{0}^{1} t}\left[1+\sum_{n=1}^{N_{1}-1} r_{n}^{1} e^{-\Delta E_{n}^{1} t}\right] A_{0}^{2} e^{-E_{0}^{2} t}\left[1+\sum_{n=1}^{N_{2}-1} r_{n}^{2} e^{-\Delta E_{n}^{2} t}\right]
$$

- For simplicity - consider using a single excited state for the individual nucleons then, we can construct a fit function for NN with 2 excited states:

$$
C_{N N}(t)=B_{00} e^{-\left(2 E_{0}+\Delta E_{00}\right) t}+B_{01} e^{-\left(E_{0}+E_{1}+\delta E_{10}\right) t}+B_{11} e^{-\left(2 E_{1}+\delta E_{11}\right) t}
$$

and similar for more excited states

Updates since 2009.11825

 "conspiracy" model- Assume a good approximation for NN correlator is from the product of the individual nucleon correlators

$$
C_{N N}(t) \approx C_{N_{1}}(t) C_{N_{2}}(t)
$$

$C_{N N}(t) \approx A_{0}^{1} e^{-E_{0}^{1} t}\left[1+\sum_{n=1}^{N_{1}-1} r_{n}^{1} e^{-\Delta E_{n}^{1} t}\right] A_{0}^{2} e^{-E_{0}^{2} t}\left[1+\sum_{n=1}^{N_{2}-1} r_{n}^{2} e^{-\Delta E_{n}^{2} t}\right]$
D For simplicity - consider using a single excited state for the individual nucleons then, we can construct a fit function for NN with 2 excited states:

$$
C_{N N}(t)=B_{00} e^{-\left(2 E_{0}+\Delta E_{00}\right) t}+B_{01} e^{-\left(E_{0}+E_{1}+\delta E_{10}\right) t}+B_{11} e^{-\left(2 E_{1}+\delta E_{11}\right) t}
$$

and similar for more excited states

Updates since 2009.11825 - "conspiracy" model

one (or more) bugs in my phase shift analysis prevent me from showing you the updated phase shift plot

Updates since 2009.11825 - HAL QCD potential

口 $m_{u}=m_{d}=m_{s} \approx m_{s}^{\text {phys }} \longrightarrow m_{\pi} \approx 714 \mathrm{MeV}$ $a \approx 0.086 \mathrm{fm}, V=48^{3} \times 96$

Updates since 2009.11825 - HAL QCD potential

- Motivation for finding stable analytic form of the potential
\square We want to study the temporal dependence of the parameters of the potential, to see if there is some monotonic behavior that can be modeled, and used to fit $V(t, r)$ for all t and extrapolate to $t \rightarrow \infty$
] Work in progress

Updates since 2009.11825

HAL QCD potential

- Uncorrelated fit to $\mathrm{V}(\mathrm{t}, \mathrm{r})$

■ Solve Schrödinger Equation

- Solve for asymptotic wave-function and phase shift Lüscher

$$
V(t, r), t=10
$$

(thanks to C. Körber, A. Meyer, A. Nicholson)

Updates since 2009.11825 - NPLQCD Sparsened Momentum

To bind or not to bind?

- This is a question that is unfortunately not one we can absolutely answer - we can only find numerical evidence
\square We (the community) often rely upon Lüscher quantization condition analysis of spectrum to detect inconsistent energy levels - in the case of old NPLQCD \& CalLat results (at least at $m_{\pi} \approx 800 \mathrm{MeV}$), the observed spectrum did not show signs of sickness
- However, we are observing a preponderance of evidence that the older methods with present statistics, are yielding qualitatively incorrect spectrum -
I believe the old results are wrong (including those I was involved with)
I believe the di-nucleon system unbinds at pion masses heavier than physical
- The newer (at least newly applied to two-nucleon) methods are more expensive
but, they are more robust and they yield a much richer spectrum (many more energy levels obtained in the same calculation)

■ The path forward seems clear - we need to apply these methods @ lighter pion masses where they have a chance of having an impact on our understanding of NN interactions

- To have an impact, we must have $m_{\pi} \lesssim 200 \mathrm{MeV}$

Thank You

Collaborators

CoSMoN

(Connecting the Standard Model to Nuclei)

(postdoc, grad student, undergrad)

Grant Bradley	Brown University
John Bulava	DESY
Kate Clark	NVIDIA
Zack Hall	University of North Carolina Chapel Hill
Andrew Hanlon	Brookhaven National Laboratory
Jinchen He	University of Maryland College Park
Ben Hörz	INTEL
Dean Howarth	Lawrence Berkeley National Laboratory
Bálint Joó	Oak Ridge National Laboratory
Aaron Meyer	Lawrence Livermore National Laboratory/NTN
Henry Monge-Camacho	Oak Ridge National Laboratory
Colin Morningstar	Carnegie Mellon University
Joseph Moscoso	University of North Carolina Chapel Hill
Amy Nicholson	University of North Carolina Chapel Hill
Fernando Romero-López	
Sarah Skinner	MIT
Pavlos Vranas	Cawregie Mellon University
André Walker-Loud	Lawrence Berkeley National Laboratory
Daniel Xing	University of California Berkeley
Yizhou Zhai	University of California Berkeley

(Baryon Scattering)

(postdoc, grad student, undergrad)

Bárbara Cid-Mora	GSI
Jeremy Green	DESY
R. Jamie Hudspith	GSI
M. Padmanath	IMSc, Chennai
Parikshit Junnarkar	Darmstadt
Nolan Miller	University of Mainz
Daniel Mohler	GSI
Srijit Paul	University of Edinburgh
Hartmut Wittig	University of Mainz

