MLMC: Machine Learning Monte Carlo for Lattice Gauge Theory

ת. Sam Foreman

Xiao-Yong Jin, James C. Osborn
Saforem2/lattice23

Overview

1. Background: \{MCMC, HMC\}

- Leapfrog Integrator
- Issues with HMC
- Can we do better?

2. L2HMC: Generalizing MD

- 4D $S U(3)$ Model
- Results

3. References
4. Extras

Background: MCMC

Markov Chain Monte Carlo (MCMC)

```
(C) Goal
Generate independent samples {\mp@subsup{x}{i}{}}\mathrm{ , such that }\mp@subsup{}{}{1}
\[
\left\{x_{i}\right\} \sim p(x) \propto e^{-S(x)}
\]
where \(S(x)\) is the action (or potential energy)
```

- Want to calculate observables \mathcal{O} :

$$
\langle\mathcal{O}\rangle \propto \int[\mathcal{D} x] \mathcal{O}(x) p(x)
$$

If these were independent, we could approximate: $\langle\mathcal{O}\rangle \simeq \frac{1}{N} \sum_{n=1}^{N} \mathcal{O}\left(x_{n}\right)$

$$
\sigma_{\mathcal{O}}^{2}=\frac{1}{N} \operatorname{Var}[\mathcal{O}(x)] \Longrightarrow \sigma_{\mathcal{O}} \propto \frac{1}{\sqrt{N}}
$$

[^0]
Markov Chain Monte Carlo (MCMC)

(C) Goal

Generate independent samples $\left\{x_{i}\right\}$, such that ${ }^{1}$

$$
\left\{x_{i}\right\} \sim p(x) \propto e^{-S(x)}
$$

$\langle\mathcal{O}\rangle \propto \int[\mathcal{D} x] \mathcal{O}(x) p(x)$
Instead, nearby configs are correlated, and we incur a factor of $\tau_{\text {int }}^{\mathcal{O}}$:

$$
\sigma_{\mathcal{O}}^{2}=\frac{\tau_{\text {int }}^{\mathcal{O}}}{N} \operatorname{Var}[\mathcal{O}(x)]
$$

1. Here, ~ means "is distributed according to"

Background: HMC

Hamiltonian Monte Carlo (HMC)

- Want to (sequentially) construct a chain of states:

$$
x_{0} \rightarrow x_{1} \rightarrow x_{i} \rightarrow \cdots \rightarrow x_{N}
$$

such that, as $N \rightarrow \infty$:
$\left\{x_{i}, x_{i+1}, x_{i+2}, \cdots, x_{N}\right\} \xrightarrow{N \rightarrow \infty} p(x) \propto e^{-S(x)}$

</> Trick

- Introduce fictitious momentum $v \sim \mathcal{N}(0,1)$
- Normally distributed independent of x, i.e.

$$
p(x, v)=p(x) p(v) \propto e^{-S(x)} e^{-\frac{1}{2} v^{T} v}=e^{-\left[S(x)+\frac{1}{2} v^{T} v\right]}=e^{-H(x, v)}
$$

Hamiltonian Monte Carlo (HMC)

- Idea: Evolve the (\dot{x}, \dot{v}) system to get new states $\left\{x_{i}\right\}$.
- Write the joint distribution $p(x, v)$:

$$
\begin{gathered}
\text { </> Hamiltonian Dynamics } \\
H=S[x]+\frac{1}{2} v^{T} v \Longrightarrow \\
\dot{x}=+\partial_{v} H, \dot{v}=-\partial_{x} H
\end{gathered}
$$

$$
p(x, v) \propto e^{-S[x]} e^{-\frac{1}{2} v^{T} v}=e^{-H(x, v)}
$$

Figure 1: Overview of HMC algorithm

Leapfrog Integrator (HMC)

> </> Hamiltonian Dynamics $(\dot{x}, \dot{v})=\left(\partial_{v} H,-\partial_{x} H\right)$

$$
\begin{aligned}
& \text { © Leapfrog Step } \\
& \text { input }(x, v) \rightarrow\left(x^{\prime}, v^{\prime}\right) \text { output } \\
& \tilde{v}:=\Gamma(x, v)=v-\frac{\varepsilon}{2} \partial_{x} S(x) \\
& x^{\prime}:=\Lambda(x, \tilde{v})=x+\varepsilon \tilde{v} \\
& v^{\prime}:=\Gamma\left(x^{\prime}, \tilde{v}\right)=\tilde{v}-\frac{\varepsilon}{2} \partial_{x} S\left(x^{\prime}\right)
\end{aligned}
$$

GT Warning!

Resample $v_{0} \sim \mathcal{N}(0,1)$ at the beginning of each trajectory

Note: $\partial_{x} S(x)$ is the force

HMC Update

- We build a trajectory of $N_{\text {LF }}$ leapfrog steps ${ }^{1}$

$$
\left(x_{0}, v_{0}\right) \rightarrow\left(x_{1}, v_{1}\right) \rightarrow \cdots \rightarrow\left(x^{\prime}, v^{\prime}\right)
$$

- And propose x^{\prime} as the next state in our chain

$$
\begin{aligned}
& \Gamma:(x, v) \rightarrow v^{\prime}:=v-\frac{\varepsilon}{2} \partial_{x} S(x) \\
& \Lambda:(x, v) \rightarrow x^{\prime}:=x+\varepsilon v
\end{aligned}
$$

- We then accept / reject x^{\prime} using MetropolisHastings criteria,
$A\left(x^{\prime} \mid x\right)=\min \left\{1, \frac{p\left(x^{\prime}\right)}{p(x)}\left|\frac{\partial x^{\prime}}{\partial x}\right|\right\}$

1. We always start by resampling the momentum, $v_{0} \sim \mathcal{N}(0,1)$

HMC Demo

Figure 2: HMC Demo

Issues with HMC

- What do we want in a good sampler?
- Fast mixing (small autocorrelations)
- Fast burn-in (quick convergence)
- Problems with HMC:
- Energy levels selected randomly \rightarrow slow mixing
- Cannot easily traverse low-density zones \rightarrow slow convergence

HMC Samples with $\varepsilon=0.25$

HMC Samples with $\varepsilon=0.5$

Topological Freezing

Topological Charge:

$$
\begin{gathered}
\qquad \begin{array}{r}
Q=\frac{1}{2 \pi} \sum_{P}\left\lfloor x_{P}\right\rfloor \in \mathbb{Z} \\
\text { note: }\left\lfloor x_{P}\right\rfloor=x_{P}-2 \pi\left\lfloor\frac{x_{P}+\pi}{2 \pi}\right\rfloor
\end{array}
\end{gathered}
$$

Critical Slowing Down

- Q gets stuck!
- as $\beta \longrightarrow \infty$:
- $Q \longrightarrow$ const.
- $\delta Q=\left(Q^{*}-Q\right) \rightarrow 0 \Longrightarrow$
- \# configs required to estimate errors grows exponentially: $\tau_{\text {int }}^{Q}$ \longrightarrow ∞

Note $\delta Q \rightarrow 0$ at increasing β

Can we do better?

- Introduce two (invertible NNs) vNet and $\times \mathrm{NNet}^{1}$:
- vNet: $(x, F) \longrightarrow\left(s_{v}, t_{v}, q_{v}\right)$
- xNet: $(x, v) \longrightarrow\left(s_{x}, t_{x}, q_{x}\right)$
- Use these (s, t, q) in the generalized MD update:
- $\Gamma_{\theta}^{ \pm}:(x, v) \xrightarrow{s_{v}, t_{v}, q_{v}}\left(x, v^{\prime}\right)$
- $\Lambda_{\theta}^{ \pm}:(x, v) \xrightarrow{s_{x}, t_{x}, q_{x}}\left(x^{\prime}, v\right)$

Figure 4: Generalized MD update where $\Lambda_{\theta}^{ \pm}, \Gamma_{\theta}^{ \pm}$ are invertible $\mathbf{N N s}$

L2HMC: Generalizing the MD Update

L2HMC Update

- Introduce $d \sim \mathcal{U}(\pm)$ to determine the direction ${ }^{1}$ of our update

1. $v^{\prime}=\Gamma^{ \pm}(x, v)$
2. $x^{\prime}=x_{B}+\Lambda^{ \pm}\left(x_{A}, v^{\prime}\right)$ update v
3. $x^{\prime \prime}=x_{A}^{\prime}+\Lambda^{ \pm}\left(x_{B}^{\prime}, v^{\prime}\right)$
4. $v^{\prime \prime}=\Gamma^{ \pm}\left(x^{\prime \prime}, v^{\prime}\right)$
update first half: x_{A}
update other half: x_{B}
update v

Figure 5: Generalized MD update with $\Lambda_{\theta}^{ \pm}, \Gamma_{\theta}^{ \pm}$ invertible NNs

L2HMC: Leapfrog Layer

1. Update \mathbf{v} :

Invertible NN
$\mathbf{v}^{\prime}=\Gamma^{ \pm}\left[\mathbf{v} ; \zeta_{\mathbf{v}}\right]$
2. Update half of \mathbf{x} viai $\bar{m}_{k} \odot \mathbf{x}_{k}$:

$$
\mathbf{x}^{\prime}=\mathbf{x}_{m}+\bar{m} \odot \Lambda^{ \pm}\left[\mathbf{x}_{\bar{m}} ; \zeta_{\overline{\mathbf{x}}_{k}}\right]
$$

3. Update (other) half via $m^{k} \odot \mathbf{x}_{k}^{\prime}$:

$$
\mathbf{x}^{\prime \prime}=\mathbf{x}_{m}^{\prime}+\bar{m} \odot \Lambda^{ \pm}\left[\mathbf{x}_{m}^{\prime} ; \zeta_{\mathbf{x}^{\prime}}\right]
$$

4. Half-step full \mathbf{v} update:

$$
\mathbf{v}^{\prime \prime}=\Gamma^{ \pm}\left[\mathbf{v}^{\prime} ; \zeta_{\mathbf{v}^{\prime}}\right]
$$

L2HMC Update

Algorithm

1. input: x

- Resample: $v \sim \mathcal{N}(0,1) ; d \sim \mathcal{U}(\pm)$
- Construct initial state: $\xi=(x, v, \pm)$

2. forward: Generate proposal ξ^{\prime} by passing initial ξ through N_{LF} leapfrog layers

$$
\xi \xrightarrow{\text { LF layer }} \xi_{1} \longrightarrow \cdots \longrightarrow \xi_{N_{\mathrm{LF}}}=\xi^{\prime}:=\left(x^{\prime \prime}, v^{\prime \prime}\right)
$$

- Accept / Reject:

$$
A\left(\xi^{\prime} \mid \xi\right)=\min \left\{1, \frac{\pi\left(\xi^{\prime}\right)}{\pi(\xi)}\left|\mathcal{J}\left(\xi^{\prime}, \xi\right)\right|\right\}
$$

3. backward (if training):

- Evaluate the loss function ${ }^{1} \mathcal{L} \leftarrow \mathcal{L}_{\theta}\left(\xi^{\prime}, \xi\right)$ and backprop

4. return: x_{i+1}

Evaluate MH criteria (1) and return accepted config,

$$
x_{i+1} \leftarrow \begin{cases}x^{\prime \prime} \mathrm{w} / \operatorname{prob} A\left(\xi^{\prime \prime} \mid \xi\right) & \nabla \\ x & \mathrm{w} / \operatorname{prob} 1-A\left(\xi^{\prime \prime} \mid \xi\right)\end{cases}
$$

Figure 6: Leapfrog Layer used in generalized MD update

1. For simple $\mathbf{x} \in \mathbb{R}^{2}$ example, $\mathcal{L}_{\theta}=A\left(\xi^{*} \mid \xi\right) \cdot\left(\mathbf{x}^{*}-\mathbf{x}\right)^{2}$

4D $S U(3)$ Model

(C) Link Variables

- Write link variables $U_{\mu}(x) \in S U(3)$:

$$
\begin{aligned}
U_{\mu}(x) & =\exp \left[i \omega_{\mu}^{k}(x) \lambda^{k}\right] \\
& =e^{i Q}, \quad \text { with } \quad Q \in \mathfrak{s u}(3)
\end{aligned}
$$

where $\omega_{\mu}^{k}(x) \in \mathbb{R}$, and λ^{k} are the generators of $S U(3)$

</> Conjugate Momenta

- Introduce $P_{\mu}(x)=P_{\mu}^{k}(x) \lambda^{k}$ conjugate to $\omega_{\mu}^{k}(x)$
(V) Wilson Action

$$
S_{G}=-\frac{\beta}{6} \sum \operatorname{Tr}\left[U_{\mu \nu}(x)+U_{\mu \nu}^{\dagger}(x)\right]
$$

where $U_{\mu \nu}(x)=U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)$

Figure 7: Illustration of the lattice

HMC: 4D $S U(3)$

Hamiltonian: $H[P, U]=\frac{1}{2} P^{2}+S[U] \Longrightarrow$

- $\underline{U \text { update: }} \frac{d \omega^{k}}{d t}=\frac{\partial H}{\partial P^{k}}$

$$
\begin{gathered}
\frac{d \omega^{k}}{d t} \lambda^{k}=P^{k} \lambda^{k} \Longrightarrow \frac{d Q}{d t}=P \\
Q(\varepsilon)=Q(0)+\varepsilon P(0) \Longrightarrow \\
-i \log U(\varepsilon)=-i \log U(0)+\varepsilon P(0) \\
U(\varepsilon)=e^{i \varepsilon P(0)} U(0) \Longrightarrow
\end{gathered}
$$

- $\underline{P \text { update: }} \frac{d P^{k}}{d t}=-\frac{\partial H}{\partial \omega^{k}}$

$$
\begin{aligned}
\frac{d P^{k}}{d t}=-\frac{\partial H}{\partial \omega^{k}} & =-\frac{\partial H}{\partial Q}=-\frac{d S}{d Q} \Longrightarrow \\
P(\varepsilon) & =P(0)-\left.\varepsilon \frac{d S}{d Q}\right|_{t=0} \\
& =P(0)-\varepsilon F[U]
\end{aligned}
$$

$\Lambda: U \longrightarrow U^{\prime}:=e^{i \varepsilon P^{\prime}} U$
ε is the step size

- Momentum Update:

$$
\Gamma: P \longrightarrow P^{\prime}:=P-\frac{\varepsilon}{2} F[U]
$$

- Link Update:

$$
\Lambda: U \longrightarrow U^{\prime}:=e^{i \varepsilon P^{\prime}} U
$$

- We maintain a batch of Nb lattices, all updated in parallel
- U.dtype = complex128
- U. shape
$=[\mathrm{Nb}, 4, \mathrm{Nt}, \mathrm{Nx}, \mathrm{Ny}, \mathrm{Nz}, 3,3]$

Networks 4D $S U(3)$

U-Network:
UNet: $(U, P) \longrightarrow\left(s_{U}, t_{U}, q_{U}\right)$

P-Network:
PNet: $(U, P) \longrightarrow\left(s_{P}, t_{P}, q_{P}\right)$

Networks 4D $S U(3)$

U-Network:

UNet: $(U, P) \longrightarrow\left(s_{U}, t_{U}, q_{U}\right)$

P-Network:
PNet: $(U, P) \longrightarrow\left(s_{P}, t_{P}, q_{P}\right)$
let's look at this

P-Network (pt. 1)

$$
(U, F) \longrightarrow \text { P-Network } \longrightarrow\left(s_{P}, t_{P}, q_{P}\right)
$$

- input ${ }^{1}:(U, F):=\left(e^{i Q}, F\right)$

$$
\begin{aligned}
& h_{0}=\sigma\left(w_{Q} Q+w_{F} F+b\right) \\
& h_{1}=\sigma\left(w_{1} h_{0}+b_{1}\right)
\end{aligned}
$$

$$
:
$$

$$
h_{n}=\sigma\left(w_{n-1} h_{n-2}+b_{n}\right)
$$

$$
z:=\sigma\left(w_{n} h_{n-1}+b_{n}\right) \longrightarrow
$$

- output ${ }^{2}:\left(s_{P}, t_{P}, q_{P}\right)$
- $s_{P}=\lambda_{s} \tanh \left(w_{s} z+b_{s}\right)$
- $t_{P}=w_{t} z+b_{t}$
- $q_{P}=\lambda_{q} \tanh \left(w_{q} z+b_{q}\right)$

1. $\sigma(\cdot)$ denotes an activation function
2. $\lambda_{s}, \lambda_{q} \in \mathbb{R}$ are trainable parameters

P-Network (pt. 2)

- Use $\left(s_{P}, t_{P}, q_{P}\right)$ to update $\Gamma^{ \pm}:(U, P) \rightarrow\left(U, P_{ \pm}\right)^{1}$:
- forward $(d=+)$:

$$
\Gamma^{+}(U, P):=P_{+}=P \cdot e^{\frac{\varepsilon}{2} s_{P}}-\frac{\varepsilon}{2}\left[F \cdot e^{\varepsilon q_{P}}+t_{P}\right]
$$

- backward $(d=-)$:

$$
\Gamma^{-}(U, P):=P_{-}=e^{-\frac{\varepsilon}{2} s_{P}}\left\{P+\frac{\varepsilon}{2}\left[F \cdot e^{\varepsilon q_{P}}+t_{P}\right]\right\}
$$

1. Note that $\left(\Gamma^{+}\right)^{-1}=\Gamma^{-}$, i.e. $\Gamma^{+}\left[\Gamma^{-}(U, P)\right]=\Gamma^{-}\left[\Gamma^{+}(U, P)\right]=(U, P)$

Results: 2D $U(1)$
© Improvement
We can measure the performance by comparing $\tau_{\text {int }}$ for the trained model vs. HMC.
Note: lower is better

$$
\beta=7
$$

Interpretation

Figure 8: Illustration of how different observables evolve over a single L2HMC trajectory.

Interpretation

Average plaquette: $\left\langle x_{P}\right\rangle$ vs LF step

Average energy: $H-\sum \log |\mathcal{J}|$

Figure 9: The trained model artifically increases the energy towards the middle of the trajectory, allowing the sampler to tunnel between isolated sectors.

4D $S U(3)$ Results

(a) 100 train iters

(b) 500 train iters

(c) 1000 train iters

Figure 10: $\log |\mathcal{J}|$ vs. $N_{\text {LF }}$ during training

4D $S U(3)$ Results: $\delta U_{\mu \nu}$

Figure 11: The difference in the average plaquette $\left|\delta U_{\mu \nu}\right|^{2}$ between the trained model and HMC

4D $S U(3)$ Results: $\delta U_{\mu \nu}$

Figure 12: The difference in the average plaquette $\left|\delta U_{\mu \nu}\right|^{2}$ between the trained model and HMC

Next Steps

- Further code development
- Saforem2/l2hmc-qcd
- Continue to use / test different network architectures
- Gauge equivariant NNs for $U_{\mu}(x)$ update
- Continue to test different loss functions for training
- Scaling:
- Lattice volume
- Network size
- Batch size
- \# of GPUs

Thank you!

Csaforem2
(6) Acknowledgements

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

* $799 / 21691$ © $12 \mathrm{hmc}-\mathrm{qcd}$ codefactor A

arXiv 2112.01582 arXiv 2105.03418
Config Hydra © PyTorch TensorFlow Lil Visualize in W\&B

Acknowledgements

- Links:
- © Link to github
- A reach out!
- References:
- Link to slides
- (link to github with slides
- E (Foreman et al. 2022; Foreman, Jin, and Osborn 2022, 2021)
- E (Boyda et al. 2022; Shanahan et al. 2022)
- Huge thank you to:
- Yannick Meurice
- Norman Christ
- Akio Tomiya
- Nobuyuki Matsumoto
- Richard Brower
- Luchang Jin
- Chulwoo Jung
- Peter Boyle
- Taku Izubuchi
- Denis Boyda
- Dan Hackett
- ECP-CSD group
- ALCF Staff + Datascience Group

Links + References

- This talk: © saforem2/lattice23
- Slides: Inl saforem2.github.io/lattice23]
- Code repo saforem2/12hmc-qcd
- Title Slide Background (worms) animation
- Link to HMC demo

References

Boyda, Denis et al. 2022. "Applications of Machine Learning to Lattice Quantum Field Theory." In Snowmass 2021. https://arxiv.org/abs/2202.05838.
Foreman, Sam, Taku Izubuchi, Luchang Jin, Xiao-Yong Jin, James C. Osborn, and Akio Tomiya. 2022. "HMC with Normalizing Flows." PoS LATTICE2021: 073. https://doi.org/10.22323/1.396.0073.
Foreman, Sam, Xiao-Yong Jin, and James C. Osborn. 2021. "Deep Learning Hamiltonian Monte Carlo." In 9th International Conference on Learning Representations. https://arxiv.org/abs/2105.03418.
———. 2022. "LeapfrogLayers: A Trainable Framework for Effective Topological Sampling." PoS LATTICE2021 (May): 508.
https://doi.org/10.22323/1.396.0508.
Shanahan, Phiala et al. 2022. "Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning," September. https://arxiv.org/abs/2209.07559.

Extras

Integrated Autocorrelation Time

Figure 13: Plot of the integrated autocorrelation time for both the trained model (colored) and HMC (greyscale).

Comparison

Figure 14: Comparison of $\langle\delta Q\rangle=\frac{1}{N} \sum_{i=k}^{N} \delta Q_{i}$ for the trained model Figure 14 (a) vs. HMC Figure 14 (b)

Plaquette analysis: x_{P}

Deviation from $V \rightarrow \infty$ limit, x_{P}^{*}

Figure 15: Plot showing how average plaquette, $\left\langle x_{P}\right\rangle$ varies over a single trajectory for models trained at different β, with varying trajectory lengths $N_{\text {LF }}$

Loss Function

- Want to maximize the expected squared charge difference ${ }^{1}$:

$$
\mathcal{L}_{\theta}\left(\xi^{*}, \xi\right)=\mathbb{E}_{p(\xi)}\left[-\delta Q^{2}\left(\xi^{*}, \xi\right) \cdot A\left(\xi^{*} \mid \xi\right)\right]
$$

- Where:
- δQ is the tunneling rate:

$$
\delta Q\left(\xi^{*}, \xi\right)=\left|Q^{*}-Q\right|
$$

- $A\left(\xi^{*} \mid \xi\right)$ is the probability ${ }^{2}$ of accepting the proposal ξ^{*} :

$$
A\left(\xi^{*} \mid \xi\right)=\min \left(1, \frac{p\left(\xi^{*}\right)}{p(\xi)}\left|\frac{\partial \xi^{*}}{\partial \xi^{T}}\right|\right)
$$

1. Where ξ^{*} is the proposed configuration (prior to Accept / Reject)
2. And $\left|\frac{\partial \xi^{*}}{\partial \xi^{T}}\right|$ is the Jacobian of the transformation from $\xi \rightarrow \xi^{*}$

v-Update ${ }^{1}$

- forward $(d=+)$:

$$
\Gamma^{+}:(x, v) \rightarrow v^{\prime}:=v \cdot e^{\frac{\varepsilon}{2} s_{v}}-\frac{\varepsilon}{2}\left[F \cdot e^{\varepsilon q_{v}}+t_{v}\right]
$$

- backward $(d=-)$:

$$
\Gamma^{-}:(x, v) \rightarrow v^{\prime}:=e^{-\frac{\varepsilon}{2} s_{v}}\left\{v+\frac{\varepsilon}{2}\left[F \cdot e^{\varepsilon q_{v}}+t_{v}\right]\right\}
$$

1. Note that $\left(\Gamma^{+}\right)^{-1}=\Gamma^{-}$, i.e. $\Gamma^{+}\left[\Gamma^{-}(x, v)\right]=\Gamma^{-}\left[\Gamma^{+}(x, v)\right]=(x, v)$

x-Update

- forward $(d=+)$:

$$
\Lambda^{+}(x, v)=x \cdot e^{\frac{\varepsilon}{2} s_{x}}-\frac{\varepsilon}{2}\left[v \cdot e^{\varepsilon q_{x}}+t_{x}\right]
$$

- backward $(d=-)$:

$$
\Lambda^{-}(x, v)=e^{-\frac{\varepsilon}{2} s_{x}}\left\{x+\frac{\varepsilon}{2}\left[v \cdot e^{\varepsilon q_{x}}+t_{x}\right]\right\}
$$

Lattice Gauge Theory (2D $U(1)$)

C6 Link Variables

$$
U_{\mu}(n)=e^{i x_{\mu}(n)} \in \mathbb{C}, \quad \text { where }
$$

$$
x_{\mu}(n) \in[-\pi, \pi)
$$

© Wilson Action

$$
S_{\beta}(x)=\beta \sum_{P} \cos x_{P}
$$

$x_{P}=\left[x_{\mu}(n)+x_{\nu}(n+\hat{\mu})-x_{\mu}(n+\hat{\nu})-x_{\nu}(n)\right]$

Note: x_{P} is the product of links around 1×1 square, called a "plaquette"

2D Lattice

Figure 16: Jupyter Notebook

Annealing Schedule

- Introduce an annealing schedule during the training phase:

$$
\left\{\gamma_{t}\right\}_{t=0}^{N}=\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{N-1}, \gamma_{N}\right\}
$$

where $\gamma_{0}<\gamma_{1}<\cdots<\gamma_{N} \equiv 1$, and $\left|\gamma_{t+1}-\gamma_{t}\right| \ll 1$

- Note:
- for $\left|\gamma_{t}\right|<1$, this rescaling helps to reduce the height of the energy barriers \Longrightarrow
- easier for our sampler to explore previously inaccessible regions of the phase space

Networks 2D $U(1)$

- Stack gauge links as shape $\left(U_{\mu}\right)=[\mathrm{Nb}, 2, N t, N x] \in \mathbb{C}$

$$
x_{\mu}(n):=[\cos (x), \sin (x)]
$$

with shape $\left(x_{\mu}\right)=[N b, 2, N t, N x, 2] \in \mathbb{R}$

- x-Network:
- $\psi_{\theta}:(x, v) \longrightarrow\left(s_{x}, t_{x}, q_{x}\right)$
- v-Network:
- $\varphi_{\theta}:(x, v) \longrightarrow\left(s_{v}, t_{v}, q_{v}\right)$

Networks 2D $U(1)$

- Stack gauge links as shape $\left(U_{\mu}\right)=[\mathrm{Nb}, 2, N t, N x] \in \mathbb{C}$

$$
x_{\mu}(n):=[\cos (x), \sin (x)]
$$

with shape $\left(x_{\mu}\right)=[\mathrm{Nb}, 2, \mathrm{Nt}, \mathrm{Nx}, 2] \in \mathbb{R}$

- x-Network:
- $\psi_{\theta}:(x, v) \longrightarrow\left(s_{x}, t_{x}, q_{x}\right)$
- v-Network:
- $\varphi_{\theta}:(x, v) \longrightarrow\left(s_{v}, t_{v}, q_{v}\right) \longleftarrow$ lets look at this

Toy Example: GMM $\in \mathbb{R}^{2}$

Gaussian Mixture Model Sampling via L2HMC

Gaussian Mixture Model Sampling via HMC $(\varepsilon=0.25)$

Gaussian Mixture Model Sampling via HMC $(\varepsilon=0.5)$

Physical Quantities

- To estimate physical quantities, we:
- calculate physical observables at increasing spatial resolution
- perform extrapolation to continuum limit

continuum

Figure 17: Increasing the physical resolution $(a \rightarrow 0)$ allows us to make predictions about numerical values of physical quantities in the continuum limit.

[^0]: 1. Here, ~ means "is distributed according to"
