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Background: MCMC
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Markov Chain Monte Carlo (MCMC)

@ Goal

Generate independent samples {z; }, such that?

{2} ~ p(z) < e

where S(x) is the action (or potential energy)

e Want to calculate observables O:

(0) x [ [Dz] O(z)p(z)

If these were independent, we could approximate: (O) ~ % ZN  O(z,)

1 |
0 = —Var[O(z)] = g x ——

N VN
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Markov Chain Monte Carlo (MCMC)

@ Goal

Generate independent samples {x; }, such that®

{z:} ~ p(a) o e~ ~ p(x)

where S(x) is the action (or potential energy)

e Want to calculate observables O:

(0) o [ [Dz] O(x)p(z)

Instead, nearby configs are correlated, and we incur a factor of Tift:
2 _ T
T = ]l\r}t Var|O(z)]
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Background: HMC
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Hamiltonian Monte Carlo (HMC)

e Want to (sequentially) construct a chain of states:

Xgo — X1 —7X; —7 - —7 TN

such that, as N — o0:

N —00 —S(x
{wi7mi+17wi+27"' 733]\7} >P(CB) X € (@)
</> Trick
e Introduce fictitious momentum v ~ N (0, 1)
= Normally distributed independent of z, i.e.
p(z,v) = p(z) p(v) e 5@ =3V _ o= [S@+]vT] _ —Hiaw)
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e Idea: Evolve the (&, V) system to get

Hamiltonian Monte Carlo (HMC)

new states {x; }

e Write the joint distribution p(z, v):

p(z,v) x e

</> Hamiltonian Dynamics
H = S[z] + 3v7v =

= 40,H, 0= —0,H

Slal ,~ 4" _ ,~H(z)
p(c) | ﬂ, - \\k\\ )
\\\\ x
o -

Figure 1: Overview of HMC algorithm
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Leapfrog Integrator (HMC)

</> Hamiltonian Dynamics 1

(&,) = (8,H,—0,H)

f@ Leapfrog Step
input (CB,’U) — (:c’,’u’) output

0
I

(EF} Warning!
Resample vg ~ N (0,1)

at the beginning of each trajectory

Note: 0,5 () is the force

85
833 //

<]¢:/_\>A
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HMC Update

e We build a trajectory of Nir leapfrog steps-
(zo,v0) — (z1,v1) = +-- — (2',v")

e And propose z’ as the next state in our chain

(z,v) > v :==v — g@wS(m)

I': (z,v
A:(z,v) > 2’ :=2z+ev

e We then accept / reject ' using Metropolis-
Hastings criteria, }

A(z'|z) = min {1, p(z)

p(z)

ox’
ozx

1K
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HMC Demo

14
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Issues with HMC '°

e What do we want in a good sampler?
= Fast mixing (small autocorrelations)
= Fast burn-in (quick convergence)

e Problems with HMC:

= Energy levels selected randomly — slow mixing

= Cannot easily traverse low-density zones — slow convergence

Gaussian Mixture Model Sampling via HMC (e = 0.25) Gaussian Mixture Model Sampling via HMC (¢ = 0.5)
1.5 .
: 1.0f
1.0 [
: 0.5F
0.5 I
0.0f 0.0:'
[ @ [
-0.5F —-0.5¢
—1.of— -1.0f
B S e
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Topological Freezing

Topological Charge:
1

f@ Critical Slowing Down
o () gets stuck!
= as B — o0
o () — const.
0 5Q = (Q"—Q) > 0 —

= # configs required to estimate errors

oy &
grows exponentially: 7./, — 00

1

QO (HMC)

0 1000 2000 3000 4000

MD Time

Q
o
=
=
c
=
S
3
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Can we do bhetter?

e Introduce two (invertible NNs) vNet
and xNet?:

SR T

¥ Ny
Y
/@

e Use these (s, t, q) in the generalized @

® vNet: (ZC‘,F) — (8v7 by, qv)

® xNet. (.’E,’U) — (Swa te, qm)

MD update: \

- I‘;t: (z,v) St (z,v") K\4 4
I/ b /!

. A_;:: (w’v) Sazvtw7q’£> (CL',,'U)

Figure 4: Generalized MD update where A;t, I‘éﬁ
are invertible NNs

1. L2HMC: M (Foreman, Jin, and Osborn 2021, 2022)
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L2HMC: Generalizing the MD Update
L2HMC Update \

e Introduce d ~ U(+£) to determine the ¥ T

direction? of our update

1.v" =T*(z,v)
2.2 =z + AE(x4,v")

3.2" =12y + A% (23, 7)

T
40" =T*(z", ') @

" "
:
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L2HMC: Leapfrog Layer

1. Update V: (ISR RNN]
v =[[*[v; ]

2. Update half of X via' 771, ® Xg:

X' = Xp + MmO A" [Xa; (5,

3. Update (other) half via 1" ® X :

x" = xl, +mOAF [x,; (]

4. Half-step full v update:

V.Il — I‘\:I: [V,, Cv’]

force scaling translation

[8;6 S(zr) © exp (5VQV (Cvi ))

X scaling V scaling translation

| v}, © exp (ex g% (Cx,))
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L2HMC Update

Algorithm

1.input:
e Resample: v ~ N(0,1); d ~U(L)
e Construct initial state: £ = (z, v, +)

2. forward: Generate proposal &' by passing initial £ through Npp
leapfrog layers
LF layer

g >€1 P T2 gNLF — g, = (JZ”,U”)

e Accept / Reject:

A€l = min {1,787 ¢ 9}
3. backward (if training):

e Evaluate the loss function® £ < Ly(&', £) and backprop

4. return: ;41

Evaluate MH criteria (1) and return accepted config,

| z w/ prob A(&"|¢) "
L {w w/ prob 1 — A(¢")¢) ©

1. For simple x € R? example, Ly = A(£*]¢) - (x* — x)°

21
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Figure 6: Leapfrog Layer used in generalized MD update
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4D SU (3) Model :

@ Link Variables
* Write link variables U, (z) € SU(3):

Uu(z) = exp [ wﬁ(m))\k]
=e'?, with Q € su(3)

7

N\

where w”®(z) € R, and A* are the generators of SU(3)

J

</> Conjugate Momenta

e Introduce P,(z) = PZf(a:)Ak conjugate to wl’j(x)

.

-

® Wilson Action

So = 5 S Tr [Upu(z) + UL (@)

where Uy, (z) = U, (2)U, (z + @)U} (z + D)

>
=

U;[(m + D)
<
Uj(w)' AU (z + 1)
>
U, (z)

Figure 7: Illustration of the lattice
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HMC: 4D SU (3)
Hamiltonian: H|P,U| = 1 P? + S|U] =

o _ OH
e U update: i — 9Pk
dw* k _ pkyk dQ
Q) = Q(0) +eP(0) =
—i logU(e) = —i logU(0) + eP(0)
Ule) = P00 (0) =

A: U—U =eP'U

24

dP® _  OH
e P update: dt —  dwk
P oH _ _9H __dS
dt ok 08Q  dQ
ds
P(e) = P(0) — e —
(e) (0) Q|
= P(0) — e F[U]
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HMC: 4D SU (3) .

e Momentum Update:
e LI
I‘:PHP’::P—iF[U]

e Link Update: @>//

AU —=U =Py

A
e \We maintain a batch of Nb lattices, @

all updated in parallel

s [J.dtype = complex128 @>A

s [J.shape
= [Nb, 4, Nt, Nx, Ny, Nz, 3, 3] \l/
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Networks 4D SU (3)
7w

26

U -Network: ( ‘/ \‘ ~
uNet: (U, P) — (su, tu, qu) // \
RERS
P-Network: \v
PNet: (U, P) — (sp, tp, qp)
& ‘@“
v/ é
| \ \ \ /S
i \ ¥

P
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Networks 4D SU (3) )

U -Network:
unet: (U, P) — (su, tu, qu)

P-Network:
PNet: (U, P) — (sp, tp, qp)

n

let’s look at this

() o

1
?\f\@\,
i
Tx

F|U
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P-Network (pt. 1)

(U, F) %[ P-Network ]% (sp,tp,qp)

° inPU'tl: (U, F) P (e":Q, F) ° OUtPUtz: (8P7 tP, qP)
ho = 0 (wo@ + wgF + b) = sp = \s tanh(wsz + b)
hi = o (wihy + b1) » tp = w2z + by

= gp = A\, tanh(w,z + b,)

hn — 0 (wn—lhn—Z + bn)
z = o (wyh,_1 +b,) —

AAAAAAAAAAAAAAAAAA
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P-Network (pt. 2)

(U, F) ﬁ[ P-Network J% (sp,tp,qp)

e Use (sp,tp,qp)toupdateI'* : (U, P) — (U, Py)*:
= forward (d = +):

I(U,P)=P, =P.eb*r _ % [F - e5% 4 tp]
= backward (d = —):

[ (U,P):=P —e 3 {P n % F - 57 tp]}

1.Note that (I'") ' =T, ie. T [~ (U, P)] = I [T'H(U, P)] = (U, P)

30
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Results: 2D U (1)

105 I—Q— HI\/IIC (avg)I E%
~i+= Trained (avg)

- ® Improvement

We can measure the performance by comparing Tint
for the trained model vs. HMC.

Note: lower is better

p=T
5.0 :
——— Trained | I | I
25 - HMC L u Ll TH u L1 e i
Qz
0.0
—2.5 | —1 || || | ||| | | .
0.0 0.2 0.4 0.6 0.8 1.0
MC Step x 107
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leapfrog step
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Interpretation

Deviation in xp Topological charge mixing Artificial influx of energy

4
Ay
yll D

0.0 0.1 02 -5 0 5 500 1000
(xp — 2p) O H —> log|J]|

Figure 8: Illustration of how different observables evolve over a single L2ZHMC trajectory.

A
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Interpretation
0 0
1 1
2 2
3 3
4 4
) 5
6 6
7 7
8 8
9 )
0.70 075 080 085 0.90 500 1000 1500
plagsf Hf
Average plaquette: (xp) vs LF step Average energy: H — ) " log | J |

Figure 9: The trained model artifically increases the energy towards the middle of the trajectory, allowing the
sampler to tunnel between isolated sectors.
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4D SU (3) Results

SeIENITe 13, TNIRTNY

A

-2000 0 2000
logdet

(a) 100 train iters

4000

(’U" NIN|—

N

-500 0] 500 1000 1500
logdet

(b) 500 train iters

Figure 10: log | J| vs. INLF during training

b
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(c) 1000 train iters
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4D SU (3) Results: 60U,

|6U,,»]? (HMC - Eval)

chain

draw

Figure 11: The difference in the average plaquette ]5Uu,,]2 between the trained model and HMC
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4D SU (3) Results: 60U,

|6U,v|% (HMC - Eval)

I 0.040
0.035

~

6
0.030
5
0.025
= B DN I e ;
© 0.020 &
U3 o
0.015
: |
0.010
! 0.005
0]
0] 20 40 60 80

draw

Figure 12: The difference in the average plaquette \5UW\2 between the trained model and HMC
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Next Steps

e Further code development
= () saforem2/12hmc-qcd

e Continue to use / test different network architectures
= Gauge equivariant NNs for U, (z) update

e Continue to test different loss functions for training
e Scaling:

= |attice volume

= Network size

= Batch size

m # of GPUs

40
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https://github.com/saforem2/l2hmc-qcd
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Thank you!

ﬁ samforeman.me O saforem2 W @saforem2 4 foremans@anl.gov
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1I2hmc-qcd

() 12hmc-gcd codefactorn

arXiv 2112.01582 arXiv 2105.03418

Config -

lul Visualize in
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Links + References

e This talk: ) saforem2/lattice23

= Slides: M saforem?2.github.io/lattice23]
e Code repo €) saforem2/12hmc-qcd

e Title Slide Background (worms) animation
e Link to HMC demo

44
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Integrated Autocorrelation Time

p=4 ﬂ=5 p=06
| [== Np=9 [~ M=25 1
1|l-#- Np=10 ] -
10° 5 = mip=11| E
. Nip=12
i Nir=13
10* 4 3
SEREEE -
S 3
X
= 1 W = ]
| trained | — o0 -0
*1 ETEI) TS |l
] .; ]

0 1 ) s () 1 1\ S ) '
NLFX \Y% (@ Step NLFX \Y% (@ Step NLFX \Y% (@ Step NLFX \Y% (@ Step

Figure 13: Plot of the integrated autocorrelation time for both the trained model (colored) and HMC (greyscale).
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Comparison

dQint/eval.avg dQint/hmc.avg
0.5 0.5

dQint/eval.step

0 l l l l 0 l l l l
200 400 600 800 200 400 600 800

(a) Trained model (b) Generic HMC

Figure 14: Comparison of (0Q) = % Z;Nk d(Q; for the trained model Figure 14 (a) vs. HMC Figure 14 (b)
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Plaquette analysis:  p

s oll  0.925 1
0.12 =5 :
s-al|  0.900
0.10 =
> 0.875 =
> 0.08 - ~
| = 0.850
2. 0.06 = ~
= 0.825 =
0.04 - '
0.0 \ 0.800 —
0.00 7 L 0.775 =
| | | | | | | | |
0 12 0 2 4 6 8 10 12
leapfrog step leapfrog step

Figure 15: Plot showing how average plaquette, <:13p> varies over a single trajectory for models trained at
different 3, with varying trajectory lengths Ny
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Loss Function

e Want to maximize the expected squared charge difference®:

Lo (£*,6) =By — 6Q% (£,€) - A(£*|8)]

e Where:
= () is the tunneling rate:

= A(E*|€) is the probability? of accepting the proposal £*:

p(&") |5’€*
' p(€) |OET

A(€'l¢) = min (1

)

proposed
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v-Update?

e forward (d = +):

e backward (d = —):

' (x,v) > v :

52
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x-Update

o forward (d = +):
T — 5 8¢ = €qy
A (z,v) =x-e> —5[1)'6 + t,]
e backward (d = —):

A (z,v) =e 2% {:13 — g v - et 4 tx]}
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Lattice Gauge Theory (2D U (1))

@ Link Variables

U,(n) = €™ € C, where

Ly (n) = [_7‘-7 7T)

©® Wilson Action

Sa(x) =P Zcos Tp,
P

ep = [2u(n) + 2, (n + 1) — @,(n + D) — 2, ()

Lp
“plaquette”

54
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Figure 16: Jupyter Notebook




Annealing Schedule

e Introduce an annealing schedule during the training phase:

N
{/Yt}tzo — {707717 <o 7/7N—17/7N}
whereyg <71 < --- <7y =1,and |11 — %) < 1
e Note:

= for || < 1, this rescaling helps to reduce the height of the energy
barriers —>

= casier for our sampler to explore previously inaccessible regions of the
phase space

AAAAAAAAAAAAAAAAAA
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Networks 2D U (1)
e Stack gauge links as shape(U,,)=[Nb, 2, Nt, Nx] € C
z,(n) = [cos(z),sin(z)]

with shape(z,)= [Nb, 2, Nt, Nx, 2] € R
e x-Network:

= Yy : (x,v) — (Sz, tz, Q)

e v-Network:

g (2, 0) — (Su, tu, Q)
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Networks 2D U (1)
e Stack gauge links as shape(U,,)=[Nb, 2, Nt, Nx] € C
z,(n) = [cos(z),sin(z)]

with shape(z,)= [Nb, 2, Nt, Nx, 2] € R
e x-Network:

= g : (x,v) — (Sz, tz, Q)

o v-Network:

" g (2, v) — (Su, tu, Q)
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Toy Example: GMM € R?

Gaussian Mixture Model Sampling via L2ZHMC

0.5

0.0

—05}

— Ty

1 L il L 1

1

1

-2 -1

0

1

Gaussian Mixture Model Sampling via HMC (¢ = 0.25)

0.0

—05}

&)

1 L L L 1

1

1

©

= =1

0

1

Gaussian Mixture Model Sampling via HMC (¢ =0.5)

—05}

1
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Physical Quantities

e To estimate physical quantities, we:
= calculate physical observables at increasing spatial resolution
= perform extrapolation to continuum limit

60

d

continuum
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