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Background: MCMC
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Markov Chain Monte Carlo (MCMC)

Goal

Generate independent samples , such that1

where  is the action (or potential energy)

Want to calculate observables :

If these were independent, we could approximate: 

1. Here,  means “is distributed according to”

{x  }i

{x  } ∼i p(x) ∝ e−S(x)

S(x)

O

O ∝⟨ ⟩ Dx O(x) p(x)∫ [ ]

O ≃⟨ ⟩   O(x  )
N
1 ∑n=1

N
n

σ =O
2

 Var O(x) ⟹
N

1
[ ] σ  ∝O  

 N

1

∼
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Markov Chain Monte Carlo (MCMC)

Goal

Generate independent samples , such that1

where  is the action (or potential energy)

Want to calculate observables :

Instead, nearby con�gs are correlated, and we incur a factor of :

1. Here,  means “is distributed according to”

{x  }i

{x  } ∼i p(x) ∝ e−S(x)

S(x)

O

O ∝⟨ ⟩ Dx O(x) p(x)∫ [ ]

τ  int
O

σ  =O
2

 Var O(x)
N

τ  int
O

[ ]

∼
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Background: HMC
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Hamiltonian Monte Carlo (HMC)
Want to (sequentially) construct a chain of states:

such that, as :

Trick

Introduce �ctitious momentum 

Normally distributed independent of , i.e.

x  →0 x  →1 x  →i ⋯ → x  N

N → ∞

x  ,x  ,x  , ⋯ ,x   { i i+1 i+2 N}
N→∞

p(x) ∝ e−S(x)

v ∼ N (0, 1)

x

  p(x, v) = p(x) p(v) ∝ e e = e = e−S(x) −  v v2
1 T − S(x)+ v v[ 2

1 T ] −H(x,v)
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Hamiltonian Monte Carlo (HMC)
Idea: Evolve the  system to get
new states ❗

Write the joint distribution :

Hamiltonian Dynamics

Figure 1: Overview of HMC algorithm

( , )ẋ v̇

{x  }i
p(x, v)

p(x, v) ∝ e e =−S[x] −  v v2
1 T

e−H(x,v)

H = S[x] +  v v ⟹2
1 T

=ẋ +∂  H, =v v̇ −∂  Hx
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Leapfrog Integrator (HMC)

Hamiltonian Dynamics

Leapfrog Step
input  output

Warning!
Resample 

at the beginning of each trajectory

Note:  is the force

, =(ẋ v̇) ∂  H, −∂  H( v x )

x, v →( ) x , v( ′ ′)

  

v~

x′

v′

:= Γ(x, v) = v −  ∂  S(x)
2
ε

x

:= Λ(x, ) = x + εv~ v~

:= Γ(x , ) = −  ∂  S(x )′ v~ v~
2
ε

x
′

v  ∼0 N (0, 1)

∂  S(x)x
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HMC Update
We build a trajectory of  leapfrog steps1

And propose  as the next state in our chain

We then accept / reject  using Metropolis-
Hastings criteria,

1. We always start by resampling the momentum, 

N  LF

 (x  , v  ) → (x  , v  ) → ⋯ → (x , v )0 0 1 1
′ ′

x′

  

Γ : (x, v) → v′

Λ : (x, v) → x′

:= v −  ∂  S(x)
2
ε

x

:= x + εv

x′

A(x ∣x) =′ min 1,     {
p(x)
p(x )′

∣
∣

∂x
∂x′

∣
∣}
v  ∼0 N (0, 1)

13



HMC Demo

Figure 2: HMC Demo
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Issues with HMC
What do we want in a good sampler?

Fast mixing (small autocorrelations)
Fast burn-in (quick convergence)

Problems with HMC:
Energy levels selected randomly  slow mixing

Cannot easily traverse low-density zones  slow convergence

Figure 3: HMC Samples generated with varying step sizes 

→

→

HMC Samples with ε = 0.25 HMC Samples with ε = 0.5

ε
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Topological Freezing
Topological Charge:

note: 

Critical Slowing Down

 gets stuck!

as :

# con�gs required to estimate errors
grows exponentially: 

Q =   x  ∈
2π
1

P

∑ ⌊ P ⌋ Z

x  =⌊ P ⌋ x  −P 2π  ⌊ 2π
x  +πP ⌋

Q

β ⟶ ∞

Q ⟶ const.

δQ = Q − Q →( ∗ ) 0 ⟹

τ  ⟶int
Q ∞

Note  at increasing δQ → 0 β
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Can we do better?
Introduce two (invertible NNs) vNet
and xNet1:

vNet: 

xNet: 

 

Use these  in the generalized
MD update:

 

 

1.   ( , )

(x,F ) ⟶ s  , t  , q  ( v v v)

(x, v) ⟶ s  , t  , q  ( x x x)

(s, t, q)

Γ  θ
± : (x, v)

s  ,t  ,q  v v v (x, v )′

Λ  θ
± : (x, v)  

s  ,t ,q  x x x (x , v)′

+ =

+

Figure 4: Generalized MD update where , 
are invertible NNs

Λ  θ
± Γ  θ

±

L2HMC: Foreman, Jin, and Osborn 2021 2022

17

https://github.com/saforem2/l2hmc-qcd


L2HMC: Generalizing the MD Update

L2HMC Update

Introduce  to determine the

direction1 of our update

1.    update 

2.    update �rst half: 

3.    update other half: 

4.    update 

 

1. Resample both , and  at the beginning of each trajectory

d ∼ U(±)

v =′ Γ±(x, v) v

x =′ x  B + Λ±(x  A, v )′ x  A

x =′′ x  A
′ + Λ±(x  B

′ , v )′ x  B

v =′′ Γ±(x , v )′′ ′ v

+ =

+

Figure 5: Generalized MD update with , 
invertible NNs

Λ  θ
± Γ  θ

±

v ∼ N (0, 1) d ∼ U(±)
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L2HMC: Leapfrog Layer
20



L2HMC Update

Algorithm

1. input: 

Resample: ; 

Construct initial state: 

2. forward: Generate proposal  by passing initial  through 
leapfrog layers

Accept / Reject:

3. backward (if training):

Evaluate the loss function1  and backprop

4. return: 
Evaluate MH criteria  and return accepted con�g,

1. For simple  example, 

x

v ∼ N (0, 1) d ∼ U(±)

ξ = (x, v, ±)

ξ′ ξ N  LF

ξ  

LF layer
ξ  ⟶1 ⋯ ⟶ ξ  =N  LF ξ :=′ (x , v )′′ ′′

 A(ξ ∣ξ) = min 1,  J ξ , ξ′ {
π(ξ)
π(ξ )′

∣ ( ′ )∣}

L ← L  (ξ , ξ)θ
′

x  i+1

(1)

x  ←i+1  {x  w/ prob A(ξ ∣ξ) ✅′′ ′′

x  w/ prob 1 − A(ξ ∣ξ) 🚫′′

+ =

+

Figure 6: Leapfrog Layer used in generalized MD update

x ∈ R2 L  =θ A(ξ ∣ξ) ⋅∗ x − x( ∗ )2
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4D  Model

Link Variables

Write link variables :

where  , and  are the generators of 

Conjugate Momenta

Introduce  conjugate to 

Wilson Action

where 

SU(3)

U  (x) ∈μ SU(3)

  

U  (x)μ = exp i ω  (x)λ[ μ
k k]

= e , with Q ∈ su(3)iQ

ω  (x)μ
k ∈ R λk SU(3)

P  (x) =μ P  (x)λμ
k k ω  (x)μ

k

S  =G −
 

Tr U  (x) + U  (x)
6
β ∑ [ μν μν

† ]

U  (x) =μν U  (x)U  (x +μ ν  )U  (x +μ̂ μ
† )U  (x)ν̂ ν

†

Figure 7: Illustration of the lattice
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HMC: 4D 
Hamiltonian: 

 update: 

 is the step size

 update: 

 is the force term

SU(3)
H[P ,U ] =  P +2

1 2 S[U ] ⟹

U  =
dt
dωk

 ∂P k
∂H

 λ =
dt

dωk k P λ ⟹k k
 =

dt

dQ
P

  

Q(ε)

−i logU(ε)

U(ε)

Λ : U ⟶ U ′

= Q(0) + εP (0) ⟹

= −i logU(0) + εP (0)

= e U(0) ⟹i εP (0)

= e U: iεP ′

ε

P  =
dt
dP k

−  ∂ωk
∂H

 =
dt

dP k

−  =
∂ωk
∂H

−  =
∂Q
∂H

−  ⟹
dQ

dS

  

P (ε)

Γ : P ⟶ P ′

= P (0) − ε    

dQ

dS

∣

∣

t=0

= P (0) − εF [U ]

= P −  F [U ]:
2
ε

F [U ]
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HMC: 4D 
Momentum Update:

Link Update:

We maintain a batch of Nb lattices,
all updated in parallel

.dtype = complex128

.shape
= [Nb, 4, Nt, Nx, Ny, Nz, 3, 3]

SU(3)

Γ : P ⟶ P :=′ P −  F [U ]
2
ε

Λ : U ⟶ U :=′ e UiεP ′

U

U
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Networks 4D 
 
 

-Network:

UNet: 

 

-Network:

PNet: 

+ =

+

SU(3)

U

(U ,P ) ⟶ s  , t  , q  ( U U U )

P

(U ,P ) ⟶ s  , t  , q  ( P P P )
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Networks 4D 
 
 

-Network:

UNet: 

 

-Network:

PNet: 

let’s look at this
+ =

+

SU(3)

U

(U ,P ) ⟶ s  , t  , q  ( U U U )

P

(U ,P ) ⟶ s  , t  , q  ( P P P )

↑
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-Network (pt. 1)

P-Network

input1: output2: 

1.  denotes an activation function

2.  are trainable parameters

P

U ,F =( ) : (e ,F )iQ

  

h  0

h  1

h  n

z

= σ w  Q + w  F + b( Q F )

= σ w  h  + b  ( 1 0 1)

⋮

= σ w  h  + b( n−1 n−2 n)

= σ w  h  + b  ⟶: ( n n−1 n)

(s  , t  , q  )P P P

s  =P λ  tanh(w  z +s s b  )s
t  =P w  z +t b  t

q  =P λ  tanh(w  z +q q b  )q

σ(⋅)

λ  , λ  ∈s q R
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-Network (pt. 2)

P-Network

Use  to update 1:

forward :

backward :

1. Note that , i.e. 

P

(s  , t  , q  )P P P Γ :± (U ,P ) → U ,P  ( ±)

(d = +)

Γ (U ,P ) =+ : P  =+ P ⋅ e − s  2
ε

P
 F ⋅ e + t  

2
ε

[ εq  P
P ]

(d = −)

Γ (U ,P ) =− : P  =− e P +  F ⋅ e + t  

−  s  2
ε

P {
2
ε

[ εq  P
P ]}

Γ =( +)−1 Γ− Γ Γ (U ,P ) =+ [ − ] Γ Γ (U ,P ) =− [ + ] (U ,P )
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Results: 2D 

Improvement

We can measure the performance by comparing 
for the trained model vs. HMC.
Note: lower is better

U(1)

τ  int
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Interpretation
Deviation in Topological charge mixing Arti�cial influx of energy

Figure 8: Illustration of how different observables evolve over a single L2HMC trajectory.

x  P
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Interpretation

Figure 9: The trained model arti�cally increases the energy towards the middle of the trajectory, allowing the
sampler to tunnel between isolated sectors.

Average plaquette:  vs LF step⟨x  ⟩P Average energy: H − log ∣J ∣∑
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4D  Results

Figure 10:  vs.   during training

SU(3)

(a) 100 train iters (b) 500 train iters (c) 1000 train iters

log ∣J ∣ N  LF
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4D  Results: 

Figure 11: The difference in the average plaquette  between the trained model and HMC

SU(3) δU  μν

δU  ∣ μν ∣2
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4D  Results: 

Figure 12: The difference in the average plaquette  between the trained model and HMC

SU(3) δU  μν

δU  ∣ μν ∣2
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Next Steps
Further code development
 

Continue to use / test different network architectures
Gauge equivariant NNs for  update

Continue to test different loss functions for training
Scaling:

Lattice volume
Network size
Batch size
# of GPUs

saforem2/l2hmc-qcd

U  (x)μ

40
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Thank you!
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Links + References
This talk: 

Slides: ]
Code repo 

 saforem2/lattice23
📊 saforem2.github.io/lattice23
 saforem2/l2hmc-qcd

Title Slide Background (worms) animation
Link to HMC demo
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Extras
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Integrated Autocorrelation Time

104 105

NLF×MC Step

101

102

103

104

105

N
LF
×
τQ in

t

HMC

trained

β = 4
NLF=9
NLF=10
NLF=11
NLF=12
NLF=13

104 105 106

NLF×MC Step

β = 5
NLF=25
NLF=20
NLF=15
NLF=10

104 105 106

NLF×MC Step

β = 6

104 105 106

NLF×MC Step

β = 7

Figure 13: Plot of the integrated autocorrelation time for both the trained model (colored) and HMC (greyscale).
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Comparison

Figure 14: Comparison of  for the trained model  vs. HMC 

dQint/eval.avg

200 400 600 800

dQint/eval.step
0

0.1

0.2

0.3

0.4

0.5

(a) Trained model

dQint/hmc.avg

200 400 600 800

dQint/hmc.step
0

0.1

0.2

0.3

0.4

0.5

(b) Generic HMC

⟨δQ⟩ =   δQ  

N
1 ∑i=k

N
i Figure 14 (a) Figure 14 (b)
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Plaquette analysis: 

Deviation from  limit, Average , with  (dotted-lines)

0 2 4 6 8 10 12
leapfrog step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

⟨x
P
−
x∗ P

⟩

β = 7
β = 6
β = 5
β = 4
β = 3

0 2 4 6 8 10 12
leapfrog step

0.775

0.800

0.825

0.850

0.875

0.900

0.925

⟨x
P
⟩

β = 7
β = 6
β = 5

β = 4

β = 3

Figure 15: Plot showing how average plaquette,  varies over a single trajectory for models trained at
different , with varying trajectory lengths 

x  P

V → ∞ x  P
∗ ⟨x  ⟩P x  P

∗

x  ⟨ P ⟩
β N  LF
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Loss Function
Want to maximize the expected squared charge difference1:

Where:
 is the tunneling rate:

 is the probability2 of accepting the proposal :

1. Where  is the proposed con�guration (prior to Accept / Reject)

2. And  is the Jacobian of the transformation from 

L  ξ , ξ = E  [ − δQ ξ , ξ ⋅ A(ξ ∣ξ)]θ ( ∗ ) p(ξ)
2 ( ∗ ) ∗

δQ

 δQ(ξ , ξ) = Q − Q∗ ∣ ∗ ∣

A(ξ ∣ξ)∗ ξ∗

 A(ξ ∣ξ) = min 1,     

∗ (
p(ξ)
p(ξ )∗

∣

∣

∂ξT
∂ξ∗

∣

∣)
ξ∗

   

∣
∣

∂ξT
∂ξ∗

∣
∣

ξ → ξ∗
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-Update1

forward :

backward :

1. Note that , i.e. 

v

(d = +)

Γ :+ (x, v) → v =′ : v ⋅ e − s  2
ε

v
 F ⋅ e + t  

2
ε

[ εq  v
v]

(d = −)

Γ :− (x, v) → v =′ : e v +  F ⋅ e + t  

−  s  2
ε

v {
2
ε

[ εq  v
v]}

Γ =( +)−1 Γ− Γ Γ (x, v) =+ [ − ] Γ Γ (x, v) =− [ + ] (x, v)
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-Update

forward :

backward :

x

(d = +)

Λ (x, v) =+ x ⋅ e − s  2
ε

x
 v ⋅ e + t  

2
ε

[ εq  x
x]

(d = −)

Λ (x, v) =− e x +  v ⋅ e + t  

−  s  2
ε

x {
2
ε

[ εq  x
x]}
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Lattice Gauge Theory (2D )

Link Variables

Wilson Action

Note:  is the product of links around 
square, called a “plaquette”

U(1)

U  (n) =μ e ∈ix  (n)μ C, where

x  (n) ∈μ [−π,π)

S  (x) =β β  cosx  ,
P

∑ P

x  =P x  (n) + x  (n +  ) − x  (n + ) − x  (n)[ μ ν μ̂ μ ν̂ ν ]

x  P 1 × 1

2D Lattice
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Figure 16: Jupyter Notebook
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Annealing Schedule
Introduce an annealing schedule during the training phase:

where , and 

Note:
for , this rescaling helps to reduce the height of the energy
barriers 
easier for our sampler to explore previously inaccessible regions of the
phase space

γ   ={ t}t=0
N

γ  , γ  , … , γ  , γ  { 0 1 N−1 N}

γ  <0 γ  <1 ⋯ < γ  ≡N 1 γ  − γ  ≪∣ t+1 t∣ 1

γ  <∣ t∣ 1
⟹
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Networks 2D 

Stack gauge links as shape =[Nb, 2, Nt, Nx] 

with shape = [Nb, 2, Nt, Nx, 2] 

-Network:

-Network:

U(1)

U  ( μ) ∈ C

x  (n) =μ : cos(x), sin(x)[ ]

x  ( μ) ∈ R
x

ψ  :θ (x, v) ⟶ s  , t  , q  ( x x x)

v

φ  :θ (x, v) ⟶ s  , t  , q  ( v v v)
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Networks 2D 

Stack gauge links as shape =[Nb, 2, Nt, Nx] 

with shape = [Nb, 2, Nt, Nx, 2] 

-Network:

-Network:

  lets look at this

U(1)

U  ( μ) ∈ C

x  (n) =μ : cos(x), sin(x)[ ]

x  ( μ) ∈ R
x

ψ  :θ (x, v) ⟶ s  , t  , q  ( x x x)

v

φ  :θ (x, v) ⟶ s  , t  , q  ( v v v) ⟵
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Toy Example: GMM ∈ R2
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Physical Quantities
To estimate physical quantities, we:

calculate physical observables at increasing spatial resolution
perform extrapolation to continuum limit

Figure 17: Increasing the physical resolution ( ) allows us to make predictions about numerical values of
physical quantities in the continuum limit.

a → 0
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