MLMC: Machine Learning Monte Carlo for Lattice Gauge Theory

Overview

- 1. Background: {MCMC,HMC}
 - Leapfrog Integrator
 - Issues with HMC
 - Can we do better?
- 2. L2HMC: Generalizing MD
 - 4D SU(3) Model
 - Results
- 3. References
- 4. Extras

Background: MCMC

Markov Chain Monte Carlo (MCMC)

🕝 Goal

Generate **independent** samples $\{x_i\}$, such that¹

 $|\{x_i\}\sim p(x)\propto e^{-S(x)}$

where S(x) is the *action* (or potential energy)

• Want to calculate observables \mathcal{O} : $\langle \mathcal{O}
angle \propto \int [\mathcal{D}x] \;\; \mathcal{O}(x) \, p(x)$

If these were independent, we could approximate: $\langle \mathcal{O}
angle \simeq rac{1}{N} \sum_{n=1}^N \mathcal{O}(x_n)$

$$\sigma_{\mathcal{O}}^2 = rac{1}{N} \mathrm{Var}[\mathcal{O}(x)] \Longrightarrow \sigma_{\mathcal{O}} \propto rac{1}{\sqrt{N}}$$

1. Here, \sim means "is distributed according to"

Markov Chain Monte Carlo (MCMC)

🕝 Goal

Generate **independent** samples $\{x_i\}$, such that¹

 $|\{x_i\}\sim p(x)\propto e^{-S(x)}$

where S(x) is the *action* (or potential energy)

• Want to calculate observables \mathcal{O} : $\langle \mathcal{O}
angle \propto \int [\mathcal{D}x] \;\; \mathcal{O}(x) \, p(x)$

Instead, nearby configs are correlated, and we incur a factor of $au_{
m int}^{\cal O}$:

$$\sigma_{\mathcal{O}}^2 = rac{ au_{ ext{int}}^{\mathcal{O}}}{N} ext{Var}[\mathcal{O}(x)]$$

1. Here, \sim means "is distributed according to"

Background: HMC

Hamiltonian Monte Carlo (HMC)

• Want to (sequentially) construct a chain of states:

$$x_0 o x_1 o x_i o \cdots o x_N$$

such that, as $N
ightarrow \infty$:

$$\{x_i, x_{i+1}, x_{i+2}, \cdots, x_N\} \overset{N o \infty}{\longrightarrow} p(x) \propto e^{-S(x)}$$

</> Trick

- Introduce fictitious momentum $v \sim \mathcal{N}(0,1)$
 - Normally distributed **independent** of *x*, i.e.

$$p(x,v) = p(x) \, p(v) \propto e^{-S(x)} e^{-rac{1}{2}v^T v} = e^{-\left[S(x) + rac{1}{2}v^T v
ight]} = e^{-H(x,v)}$$

Hamiltonian Monte Carlo (HMC)

- Idea: Evolve the (\dot{x},\dot{v}) system to get new states $\{x_i\}$!
- Write the joint distribution p(x, v):

$$p(x,v) \propto e^{-S[x]}e^{-rac{1}{2}v^Tv} = e^{-H(x,v)}$$

$$egin{aligned} imes \ extsf{``> Hamiltonian Dynamics} \ H &= S[x] + rac{1}{2} v^T v \Longrightarrow \ \dot{x} &= + \partial_v H, \; \dot{v} = - \partial_x H \end{aligned}$$

Figure 1: Overview of HMC algorithm

Leapfrog Integrator (HMC)

</>
Hamiltonian Dynamics $(\dot{x},\dot{v})=(\partial_v H,-\partial_x H)$

 $egin{aligned} \textcircled{O} & extsf{Leapfrog Step} \ & extsf{input} & (x,v) o (x',v') extsf{output} \ & ilde v := \Gamma(x,v) \ = v - rac{arepsilon}{2} \partial_x S(x) \ & x' := \Lambda(x, ilde v) \ = x + arepsilon \, \widetilde v \ & v' := \Gamma(x', ilde v) \ = ilde v - rac{arepsilon}{2} \partial_x S(x') \end{aligned}$

₩ Warning!

Resample $v_0 \sim \mathcal{N}(0,1)$ at the beginning of each trajectory

Note: $\partial_x S(x)$ is the force

HMC Update

ullet We build a trajectory of $N_{
m LF}$ leapfrog steps¹

$$(x_0,v_0)
ightarrow (x_1,v_1)
ightarrow \cdots
ightarrow (x',v')$$

• And propose x' as the next state in our chain

$$egin{aligned} \Gamma:(x,v) & o v':=v-rac{arepsilon}{2}\partial_x S(x)\ \Lambda:(x,v) & o x':=x+arepsilon v \end{aligned}$$

• We then accept / reject x' using Metropolis-Hastings criteria, $A(x'|x) = \min\left\{1, rac{p(x')}{p(x)} \left|rac{\partial x'}{\partial x}
ight|
ight\}$

1. We **always** start by resampling the momentum, $v_0 \sim \mathcal{N}(0,1)$

HMC Demo

Figure 2: HMC Demo

Issues with HMC

- What do we want in a good sampler?
 - Fast mixing (small autocorrelations)
 - Fast burn-in (quick convergence)
- Problems with HMC:
 - Energy levels selected randomly ightarrow slow mixing
 - Cannot easily traverse low-density zones \rightarrow slow convergence

Figure 3: HMC Samples generated with varying step sizes arepsilon

Topological Freezing

Topological Charge:

$$Q = rac{1}{2\pi}\sum_P \lfloor x_P
floor \in \mathbb{Z}$$
 .

note:
$$\lfloor x_P
floor = x_P - 2\pi \left\lfloor rac{x_P + \pi}{2\pi}
ight
floor$$

Critical Slowing Down

• Q gets stuck!

• as
$$eta \longrightarrow \infty$$
:

$$\circ \ Q \longrightarrow {
m const.}$$

$$\circ~\delta Q = (Q^* - Q) o 0 \Longrightarrow$$

• # configs required to estimate errors grows exponentially: $au_{ ext{int}}^Q \longrightarrow \infty$

Can we do better?

- Introduce two (invertible NNs) vNet and xNet¹:
 - vNet: $(x,F) \longrightarrow (s_v,\,t_v,\,q_v)$
 - xNet: $(x,v) \longrightarrow (s_x,\,t_x,\,q_x)$

• Use these (s,t,q) in the generalized MD update:

Figure 4: Generalized MD update where Λ^{\pm}_{θ} , Γ^{\pm}_{θ} are **invertible NNs**

1. L2HMC: 📃 (Foreman, Jin, and Osborn 2021, 2022)

L2HMC: Generalizing the MD Update

L2HMC Update

• Introduce $d\sim \mathcal{U}(\pm)$ to determine the direction¹ of our update

1. $v' = \Gamma^{\pm}(x, v)$ update v2. $x' = x_B + \Lambda^{\pm}(x_A, v')$ update first half: x_A 3. $x'' = x'_A + \Lambda^{\pm}(x'_B, v')$ update other half: x_B 4. $v'' = \Gamma^{\pm}(x'', v')$ update v

Figure 5: Generalized MD update with $\Lambda^{\pm}_{ heta}$, $\Gamma^{\pm}_{ heta}$ **invertible NNs**

1. Resample both $v \sim \mathcal{N}(0,1)$, and $d \sim \mathcal{U}(\pm)$ at the beginning of each trajectory

L2HMC: Leapfrog Layer

2. Update half of x via $\bar{m}_k \odot x_k$:

 $\mathbf{x}' = \mathbf{x}_m + ar{m} \odot \mathbf{\Lambda}^{\pm} \left[\mathbf{x}_{ar{m}}; oldsymbol{\zeta}_{ar{\mathbf{x}}_k}
ight]$

3. Update (other) half via $m^k \odot \mathbf{x}'_k$:

 $\mathbf{x}'' = \mathbf{x}'_m + ar{m} \odot \mathbf{\Lambda}^{\pm} \left[\mathbf{x}'_m; \boldsymbol{\zeta}_{\mathbf{x}'}
ight]$

4. Half-step full v update:

$$\begin{array}{c} \mathbf{v} \text{ scaling} & \text{force scaling} \\ \Gamma^{+}[\mathbf{v}_{k};\,\boldsymbol{\zeta}_{\mathbf{v}}] \equiv \mathbf{v}_{k} \odot \exp\left(\frac{\varepsilon_{\mathbf{v}}^{k}}{2} s_{\mathbf{v}}^{k}(\boldsymbol{\zeta}_{\mathbf{v}_{k}})\right) - \frac{\varepsilon_{\mathbf{v}}^{k}}{2} \left[\partial_{x} S(x_{k}) \odot \exp\left(\varepsilon_{\mathbf{v}}^{k} q_{\mathbf{v}}^{k}(\boldsymbol{\zeta}_{\mathbf{v}_{k}})\right) + \frac{t_{\mathbf{v}}^{k}(\boldsymbol{\zeta}_{\mathbf{v}_{k}})}{t_{\mathbf{v}}^{k}(\boldsymbol{\zeta}_{\mathbf{v}_{k}})}\right] \\ \text{trainable step sizes} & \mathbf{x} \text{ scaling} & \mathbf{v} \text{ scaling} & \mathbf{v} \text{ scaling} \\ \Lambda^{+}[\bar{\mathbf{x}}_{k};\,\boldsymbol{\zeta}_{\bar{\mathbf{x}}_{k}}] \equiv \left[\bar{\mathbf{x}}_{k} \odot \exp\left(\varepsilon_{\mathbf{x}}^{k} s_{\mathbf{x}}^{k}(\boldsymbol{\zeta}_{\bar{\mathbf{x}}_{k}})\right) + \varepsilon_{\mathbf{x}}^{k}\left[v_{k}' \odot \exp\left(\varepsilon_{\mathbf{x}}^{k} q_{\mathbf{x}}^{k}(\boldsymbol{\zeta}_{\bar{\mathbf{x}}_{k}})\right) + \frac{t_{\mathbf{x}}^{k}(\boldsymbol{\zeta}_{\bar{\mathbf{x}}_{k}})}{t_{\mathbf{x}}^{k}(\boldsymbol{\zeta}_{\bar{\mathbf{x}}_{k}})}\right] \end{array}$$

L2HMC Update

Algorithm

1. input: *x*

- Resample: $v \sim \mathcal{N}(0,1); \; d \sim \mathcal{U}(\pm)$
- Construct initial state: $\xi = (x,v,\pm)$
- 2. forward: Generate proposal ξ' by passing initial ξ through $N_{\rm LF}$ leapfrog layers

$$\xi \stackrel{ ext{LF layer}}{\longrightarrow} \xi_1 \longrightarrow \cdots \longrightarrow \xi_{N_{ ext{LF}}} = oldsymbol{\xi}' := (x'',v'')$$

• Accept / Reject:

$$A(oldsymbol{\xi}'| \xi) = \min \left\{ 1, rac{\pi(oldsymbol{\xi}')}{\pi(oldsymbol{\xi})} \left| \mathcal{J}\left(oldsymbol{\xi}', oldsymbol{\xi}
ight)
ight|
ight\}$$

3. backward (if training):

• Evaluate the loss function $\mathcal{L} \leftarrow \mathcal{L}_{ heta}(m{\xi'}, m{\xi})$ and backprop

4. return: x_{i+1}

Evaluate MH criteria $\left(1
ight)$ and return accepted config,

$$x_{i+1} \leftarrow egin{cases} x'' ext{ w/ prob } A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \ x ext{ w/ prob } 1 - A(\xi''|\xi) &
onumber \$$

1. For simple
$$\mathbf{x} \in \mathbb{R}^2$$
 example, $\mathcal{L}_ heta = A(\xi^*|\xi) \cdot \left(\mathbf{x}^* - \mathbf{x}
ight)^2$

Figure 6: Leapfrog Layer used in generalized MD update

4D SU(3) Model

🕲 Link Variables

• Write link variables
$$U_\mu(x)\in SU(3)$$
: $U_\mu(x)=\expig[i\,\omega^k_\mu(x)\lambda^kig]\ =e^{iQ}, ext{ with } Q\in\mathfrak{su}(3)$ where $\omega^k_\mu(x)\in\mathbb{R}$, and λ^k are the generators of $SU(3)$

</> Conjugate Momenta

- Introduce $\overline{P_{\mu}(x)}=P_{\mu}^{k}(x)\lambda^{k}$ conjugate to $\overline{\omega_{\mu}^{k}(x)}$

Wilson Action

$$S_G = -rac{eta}{6}\sum{
m Tr}\left[U_{\mu
u}(x) + U^\dagger_{\mu
u}(x)
ight]$$

where $U_{\mu
u}(x)=U_{\mu}(x)U_{
u}(x+\hat{\mu})U^{\dagger}_{\mu}(x+\hat{
u})U^{\dagger}_{
u}(x)$

Figure 7: Illustration of the lattice

HMC: 4D SU(3)Hamiltonian: $H[P,U] = \frac{1}{2}P^2 + S[U] \Longrightarrow$

•
$$\underline{U \text{ update}}: \frac{d\omega^k}{dt} = \frac{\partial H}{\partial P^k}$$

 $\frac{d\omega^k}{dt} \lambda^k = P^k \lambda^k \Longrightarrow \frac{dQ}{dt} = P$
 $Q(\varepsilon) = Q(0) + \varepsilon P(0) \Longrightarrow$
 $-i \log U(\varepsilon) = -i \log U(0) + \varepsilon P(0)$
 $U(\varepsilon) = e^{i \varepsilon P(0)} U(0) \Longrightarrow$
 $\Lambda: U \longrightarrow U' \coloneqq e^{i \varepsilon P'} U$

arepsilon is the step size

•	<u><i>P</i> update</u> :	$\frac{dP^k}{dt}$	$=-rac{\partial}{\partial}$	$\frac{\partial H}{\partial \omega^k}$
	$\frac{dP^k}{dt} = -$	$rac{\partial H}{\partial \omega^k}$	$=-rac{\partial H}{\partial Q}$	$=-rac{dS}{dQ}\Longrightarrow$
		$P(oldsymbol{arepsilon})$	= P(0)	$-\left.oldsymbol{arepsilon} \left. rac{dS}{dQ} ight _{t=0} ight.$
			= P(0)	$-oldsymbol{arepsilon}F[U]$
	$\Gamma: P$ –	ightarrow P'	$\coloneqq P - \frac{1}{2}$	$rac{arepsilon}{2}F[U]$

F[U] is the force term

HMC: 4D SU(3)

• Momentum Update:

$$\Gamma: P \longrightarrow P' := P - rac{arepsilon}{2} F[U]$$

• Link Update:

$$\Lambda:U\longrightarrow U':=e^{iarepsilon P'}U$$

- We maintain a batch of Nb lattices, all updated in parallel
 - U.dtype = complex128
 - U.shape

= [Nb, 4, Nt, Nx, Ny, Nz, 3, 3]

Networks 4D $S\overline{U(3)}$

 $U ext{-Network:}$ UNet: $(U,P) \longrightarrow (s_U,\,t_U,\,q_U)$

P-Network: PNet: $(U,P) \longrightarrow (s_P,\,t_P,\,q_P)$

Networks 4D $\overline{SU(3)}$

 $U ext{-Network:}$ UNet: $(U,P) \longrightarrow (s_U,\,t_U,\,q_U)$

P-Network: PNet: $(U,P) \longrightarrow (s_P,\,t_P,\,q_P)$

> ↑ let's look at this

$P ext{-Network}$ (pt. 1)

$$(U,F) \longrightarrow$$
 P-Network $) \longrightarrow (s_P,t_P,q_P)$

• input¹:
$$(U,F)\coloneqq (e^{iQ},F)$$

 $h_0=\sigma \left(w_QQ+w_FF+b
ight)$
 $h_1=\sigma \left(w_1h_0+b_1
ight)$
:

$$egin{aligned} h_n &= \sigma \left(w_{n-1} h_{n-2} + b_n
ight) \ oldsymbol{z} &\coloneqq \sigma \left(w_n h_{n-1} + b_n
ight) \longrightarrow \end{aligned}$$

1. $\sigma(\cdot)$ denotes an activation function 2. $\lambda_s,\,\lambda_q\in\mathbb{R}$ are trainable parameters

٠

• output²: (s_P, t_P, q_P) • $s_P = \lambda_s \tanh(w_s z + b_s)$

•
$$t_P = w_t \mathbf{z} + b_t$$

•
$$q_P = \lambda_q \tanh(w_q \pmb{z} + b_q)$$

P-Network (pt. 2)

$$(U,F) \longrightarrow$$
 P-Network $\longrightarrow (s_P,t_P,q_P)$

• Use (s_P, t_P, q_P) to update $\Gamma^\pm: (U, P) o (U, P_\pm)^1$: • forward (d=+):

$$\Gamma^+(U,P)\coloneqq P_+=P\cdot e^{rac{arepsilon}{2}s_P}-rac{arepsilon}{2}\left[F\cdot e^{arepsilon q_P}+t_P
ight]$$

• backward (d = -):

$$\Gamma^-(U,P)\coloneqq P_-=e^{-rac{arepsilon}{2}s_P}\left\{P+rac{arepsilon}{2}\left[F\cdot e^{arepsilon q_P}+t_P
ight]
ight\}$$

1. Note that ${(\Gamma^+)}^{-1}=\Gamma^-$, i.e. $\Gamma^+\left[\Gamma^-(U,P)
ight]=\Gamma^-\left[\Gamma^+(U,P)
ight]=(U,P)$

Results: 2D U(1)

Interpretation

Figure 8: Illustration of how different observables evolve over a single L2HMC trajectory.

Interpretation

Average plaquette: $\langle x_P
angle$ vs LF step

Average energy: $H - \sum \log |\mathcal{J}|$

Figure 9: The trained model artifically increases the energy towards the middle of the trajectory, allowing the sampler to tunnel between isolated sectors.

4D SU(3) Results

-500 0 500 1000 1500 logdet


```
(a) 100 train iters
```

(b) **500** train iters

(c) 1000 train iters

Figure 10: $\log |\mathcal{J}|$ vs. $N_{
m LF}$ during training

4D SU(3) Results: $\delta U_{\mu u}$

Figure 11: The difference in the average plaquette $\left|\delta U_{\mu
u}
ight|^2$ between the trained model and HMC

4D SU(3) Results: $\delta U_{\mu u}$

Figure 12: The difference in the average plaquette $\left|\delta U_{\mu
u}
ight|^2$ between the trained model and HMC

38

Next Steps

- Further code development
 - Saforem2/12hmc-qcd
- Continue to use / test different network architectures
 - Gauge equivariant NNs for $U_\mu(x)$ update
- Continue to test different loss functions for training
- Scaling:
 - Lattice volume
 - Network size
 - Batch size
 - # of GPUs

Thank you!

h samforeman.me

Saforem2

O Acknowledgements

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

	8	79	9 / 2	1691	0	12	hmc-qc	:d	codefa	ctor	А	
		а	ırXiv	2112.0	01582	2	arXiv	21()5.0341	8		
Config	Hyd	Ira	Ú	PyTorcl	n 1	F T	ensorF	low	LuL Vi	suali	ze in	W&E

Acknowledgements

- Links:
 - Link to github
 - reach out!
- References:
 - Link to slides
 - 🖓 link to github with slides
 - [Foreman et al. 2022; Foreman, Jin, and Osborn 2022, 2021)
 - E (Boyda et al. 2022; Shanahan et al. 2022)

- Huge thank you to:
 - Yannick Meurice
 - Norman Christ
 - Akio Tomiya
 - Nobuyuki Matsumoto
 - Richard Brower
 - Luchang Jin
 - Chulwoo Jung
 - Peter Boyle
 - Taku Izubuchi
 - Denis Boyda
 - Dan Hackett
 - ECP-CSD group
 - ALCF Staff + Datascience Group

Links + References

- This talk: saforem2/lattice23
 - Slides: saforem2.github.io/lattice23]
- Code repo () saforem2/12hmc-qcd
- Title Slide Background (worms) animation
- Link to HMC demo

References

- Boyda, Denis et al. 2022. "Applications of Machine Learning to Lattice Quantum Field Theory." In *Snowmass 2021*. https://arxiv.org/abs/2202.05838.
- Foreman, Sam, Taku Izubuchi, Luchang Jin, Xiao-Yong Jin, James C. Osborn, and Akio Tomiya. 2022. "HMC with Normalizing Flows." *PoS* LATTICE2021: 073. https://doi.org/10.22323/1.396.0073.
- Foreman, Sam, Xiao-Yong Jin, and James C. Osborn. 2021. "Deep Learning Hamiltonian Monte Carlo." In 9th International Conference on Learning Representations. https://arxiv.org/abs/2105.03418.
- ----. 2022. "LeapfrogLayers: A Trainable Framework for Effective Topological Sampling." *PoS* LATTICE2021 (May): 508. https://doi.org/10.22323/1.396.0508.
- Shanahan, Phiala et al. 2022. "Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning," September. https://arxiv.org/abs/2209.07559.

Extras

Integrated Autocorrelation Time

Figure 13: Plot of the integrated autocorrelation time for both the trained model (colored) and HMC (greyscale).

Comparison

(a) Trained model

(b) Generic HMC

Figure 14: Comparison of $\langle \delta Q
angle = rac{1}{N} \sum_{i=k}^N \delta Q_i$ for the trained model Figure 14 (a) vs. HMC Figure 14 (b)

Plaquette analysis: x_P

Deviation from $V o \infty$ limit, x_P^* Average $\langle x_P
angle$, with x_P^* (dotted-lines)

Figure 15: Plot showing how **average plaquette**, $\langle x_P
angle$ varies over a single trajectory for models trained at different β , with varying trajectory lengths $N_{
m LF}$

Loss Function

• Want to maximize the *expected* squared charge difference¹:

$$\mathcal{L}_{ heta}\left(\xi^{*},\xi
ight)=\mathbb{E}_{p\left(\xi
ight)}igg[-igg{\delta Q}^{2}\left(\xi^{*},\xi
ight)\cdot A(\xi^{*}|\xi)igg]$$

- Where:
 - δQ is the tunneling rate:

$${oldsymbol \delta Q}(\xi^*,\xi) = |Q^*-Q|$$

• $A(\xi^*|\xi)$ is the probability² of accepting the proposal ξ^* :

$$A(\xi^*|\xi) = \min\left(1, rac{p(\xi^*)}{p(\xi)} \left|rac{\partial \xi^*}{\partial \xi^T}
ight|
ight)$$

1. Where ξ^* is the *proposed* configuration (prior to Accept / Reject) 2. And $\left|\frac{\partial \xi^*}{\partial \xi^T}\right|$ is the Jacobian of the transformation from $\xi \to \xi^*$

v-Update¹

• forward (d = +):

$$\Gamma^+:(x,v) o v'\coloneqq v\cdot e^{rac{arepsilon}{2}s_v}-rac{arepsilon}{2}\left[F\cdot e^{arepsilon q_v}+t_v
ight]$$

• backward (d = -):

$$\Gamma^-:(x,v) o v'\coloneqq e^{-rac{arepsilon}{2}s_v}\left\{v+rac{arepsilon}{2}\left[F\cdot e^{arepsilon q_v}+t_v
ight]
ight\}$$

1. Note that $(\Gamma^+)^{-1}=\Gamma^-$, i.e. $\Gamma^+\left[\Gamma^-(x,v)
ight]=\Gamma^-\left[\Gamma^+(x,v)
ight]=(x,v)$

x-Update

• forward (d = +):

$$\Lambda^+(x,v) = x \cdot e^{rac{arepsilon}{2}s_x} - rac{arepsilon}{2}\left[v \cdot e^{arepsilon q_x} + t_x
ight]$$

ullet backward (d=-):

$$\Lambda^-(x,v) = e^{-rac{arepsilon}{2}s_x} \left\{ x + rac{arepsilon}{2} \left[v \cdot e^{arepsilon q_x} + t_x
ight]
ight\}$$

Lattice Gauge Theory (2D U(1))

 $igodoldsymbol{\mathscr{O}}$ Link Variables $U_\mu(n)=e^{ix_\mu(n)}\in\mathbb{C}, \hspace{1em} ext{where} \ x_\mu(n)\in[-\pi,\pi)$

Wilson Action

$$S_eta(x)=eta\sum_P \cos x_P,$$

$$m{x_{P}} = [x_{\mu}(n) + x_{
u}(n+\hat{\mu}) - x_{\mu}(n+\hat{
u}) - x_{
u}(n)]$$

Note: x_P is the product of links around 1 imes 1 square, called a "plaquette"

Figure 16: Jupyter Notebook

Annealing Schedule

• Introduce an *annealing schedule* during the training phase:

$$\left\{\gamma_t
ight\}_{t=0}^N = \left\{\gamma_0, \gamma_1, \dots, \gamma_{N-1}, \gamma_N
ight\}$$

where $\gamma_0 < \gamma_1 < \cdots < \gamma_N \equiv 1$, and $|\gamma_{t+1} - \gamma_t| \ll 1$

- Note:
 - for $|\gamma_t| < 1$, this rescaling helps to reduce the height of the energy barriers \Longrightarrow
 - easier for our sampler to explore previously inaccessible regions of the phase space

56

Networks 2D U(1)

• Stack gauge links as <code>shape(U_{\mu})=[Nb, 2, Nt, Nx] \in \mathbb{C}</code>

$$x_\mu(n)\coloneqq [\cos(x),\sin(x)]$$

with shape (x_μ) = [Nb, 2, Nt, Nx, 2] $\in \mathbb{R}$

- *x*-Network:
 - $\bullet \ \psi_{\theta}: (x,v) \longrightarrow (s_x,\,t_x,\,q_x)$
- *v*-Network:

$$\bullet \, \varphi_{\theta}: (x,v) \longrightarrow (s_v,\,t_v,\,q_v)$$

Networks 2D U(1)

• Stack gauge links as <code>shape(U_{\mu})=[Nb, 2, Nt, Nx] \in \mathbb{C}</code>

$$x_\mu(n)\coloneqq [\cos(x),\sin(x)]$$

with shape (x_μ) = [Nb, 2, Nt, Nx, 2] $\in \mathbb{R}$

• *x*-Network:

•
$$\psi_ heta:(x,v) \longrightarrow (s_x,\,t_x,\,q_x)$$

• *v*-Network:

• $arphi_ heta:(x,v) \longrightarrow (s_v,\,t_v,\,q_v) \longleftarrow$ lets look at this

Toy Example: GMM $\in \mathbb{R}^2$

Physical Quantities

- To estimate physical quantities, we:
 - calculate physical observables at increasing spatial resolution
 - perform extrapolation to continuum limit

Figure 17: Increasing the physical resolution (a
ightarrow 0) allows us to make predictions about numerical values of physical quantities in the continuum limit.

