
Xiao-Yong Jin (Argonne National Laboratory)

August 3, 2023

Lattice 2023, Fermilab

1

Neural Network Gauge Field Transformation

for 4D SU(3) gauge fields
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Outline

• Change of variable, parametrized


• What to optimize


• Previous 2D U(1) results


• Preliminary 4D SU(3) results


• Outlook
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Change of variables
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• Use a continuously differentiable bijective map  from target field  to 
the mapped field , same group manifold for us


• Sample  with HMC according to the new action: Field Transformation 
HMC (FTHMC)


• Want the effective action to have lower potential barriers, or more uniform 
dynamics (smaller difference between slow and fast modes)


• The Jacobian determinant and its derivative must remain simple

ℱ−1 U
V = ℱ−1(U)

V

⟨𝒪⟩ =
1
Z ∫ 𝒟U𝒪(U)e−S(U) =

1
Z ∫ 𝒟V𝒪(ℱ(V))e−S(ℱ(V))+ln|ℱ*| where ℱ* =

∂ℱ(V)
∂V

SFT(V) = S(ℱ(V)) − ln |ℱ*(V) |
Luscher 2010


Luchang Jin 2021

Sam Foreman 2021



Parametrized bijection map: Generalized Stout Smearing
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• Gauge covariant, dynamics remain the same with local gauge transformations, 


• Lie group element, exponential map from the group algebra (differentials in tangent directions)


• Generalize it with neural networks


• Make the coefficients arbitrary functions of gauge invariant quantities


•  a list of traced Wilson loops local to , and independent of 


•  is an arbitrary function, parameterized by neural networks


•  ensures a positive definite Jacobian

Ωx ∈ SU(3)

X, Y, … x, μ Ux,μ

𝒩

c tan−1[ ⋅ ]

ℱ : Vx,μ → Ux,μ = eΠx,μVx,μ where Πx,μ = ∑
l

ϵl∂x,μWl(V)

ϵx,μ,l = c tan−1[𝒩l(X, Y, …)]

Ux,μ ⟶ U′￼x,μ = Ω†
xUx,μΩx+ ̂μ

Nagai&Tomiya 2021

X.Jin 2021



What to optimize

• Minimize the difference in the force between the transformed action and 
the original action on a stronger training coupling (smaller )


• Choices of loss functions


• Sums of root mean powers 
used in 2D U(1)


• Log mean exp norm 
used in 4D SU(3)

βT
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Δx,μ = (∑
c

(∂x,μ,cSFT(V; β) − ∂x,μ,cS(V; βT))
2

)
1/2

LSRMP = ∑
p∈{2,4,6,∞}

Cp

4Vol ∑
x,μ

(Δ2
x,μ)

p/2

LLMEN = ln ∑
x,mu

exp(Δx,μ) − ln(4Vol)



Localized Coefficients, by Convolutional Neural Networks

• Pick a subset of gauge links to update at a time (red links)


• Compute Wilson loops independent of the to-be-updated links (green loops)


• Pass through a series of convolutional neural networks and obtain coefficients
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X.Jin 2021, arXiv:2201.01862

https://arxiv.org/abs/2201.01862


Results from 2D U(1) lattice fields, correlation of topological charge

8

Neural Network Field Transformation and Its Application in HMC Xiao-Yong Jin

1
10

100
1000

10000
100000

1/10 1/9 1/8 1/7 1/6 1/5 1/4
𝛾(𝛿

=16
)

1/𝛽

𝑉 = 642, trained at 𝛽 = 5𝑉/𝛽 = 819.20, trained at 𝑉 = 642, 𝛽 = 5𝑉 = 642, trained at 𝛽 = 6𝑉/𝛽 = 682.67, trained at 𝑉 = 642, 𝛽 = 6

Figure 3: Power law scaling of W(X = 16) with HMC using two trained models of neural network
parameterized field transformation. Dashed line from figure 2 indicates direct HMC values.
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Figure 4: Acceptance rate, MD step size, and improvement in tunneling of topological charges with trained
models of field transformation with two fixed values of +/V, corresponding to + = 642, 662, 682, 702, 722,
742, and 762. NTHMC denotes HMC with neural network parameterized field transformation, using models
trained at V = 5 and 6 with + = 642.

improvement in autocorrelation of HMC with neural network parameterized field transformations
(NTHMC) against direct HMC, using the same trained models as in figure 3. With acceptance rate
around 80%, the step sizes required by HMC reduces with increasing V, while the step sizes required
by NTHMC increases. Therefore with the trained models of neural network parameterized field
transformations, in order to achieve a constant acceptance rate, we are able to reduce the numbers of
force evaluations per trajectory as the lattice coupling V increases.

We see the similar behavior with a fixed lattice size of 642. Figure 5 contains two models shown
in figure 3, and one additional model labeled NTHMC†, which is also from training at V = 6 but with
the 8-norm and 10-norm coe�cients in the loss function, equation (10), set to 28 = 210 = 5. This
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Figure 2: Left: Topological charge autocorrelation from direct HMC with 642 lattices. Right: Power law
scaling of W(X = 16) with HMC versus 1/V with fixed +/V, or constant physical volumes.

generated lattice configurations. The dashed line in the figure is a quadratic fit in the log-log scale to
all the points to guide the eye.

We train the neural network parameterized field transformation by minimizing the di�erence
between the force of the transformed action and the force of the original U(1) gauge action on *̃ at a
fixed V = 2.5. Concretely the loss function on a transformed field *̃ is,

L(V, *̃) =
’

?2{2,4,6,8,10,1}

2?

+1/?

�����
�����
m(FT(V, *̃)

m*̃
�
m((V = 2.5, *̃)

m*̃

�����
�����
?

, (10)

where | | · | |? denotes ?-norm, and 2? controls the optimization to favor volume averages or peaks
on individual links. We set 22 = 24 = 26 = 28 = 21 = 1 and 210 = 0 for the models presented here,
unless specified otherwise. We start from randomized neural networks weights, train the models
from V = 3, and after that load the trained model and continue training at V = 4. We repeat this
procedure at V = 5 and 6. We generate 217 independent gauge configurations at each V before
training. At each V value, the training uses Adam optimizer [10], and goes through pre-generated
217 configurations once, with a batch size of 128. With 642 lattices, the training for each V value
took about 35 minutes on a Tesla V100-SXM2-16GB GPU.

The trained models used as transformations in HMC appear to improve the tunneling of
topological charges in successive Markov Chain states. Figure 3 shows the same power law scaling
as in the right panel of figure 2, with the dashed line denotes the values from direct HMC without
transformation. The figure contains HMC runs with two di�erent models trained with a lattice
volume of 642 at V = 5 and 6 respectively. We employ the models for a fixed volume at 642 at
di�erent V values, and for fixed +/V values with volumes of 662, 682, 702, 722, 742, and 762.
It seems that a single model applied to di�erent volumes and V values shows the same scaling
coe�cients as direct HMC without transformations. The tunneling improves from the model trained
at V = 5 to the model trained at V = 6.

For understanding actual simulation cost, we study how the Molecular Dynamics (MD) step size
changes, with di�erent models, as we use a fixed trajectory length of 4, and tune the step size to have
an acceptance rate at around 80%. Figure 4 shows the acceptance rate, step size, and corresponding
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Scaling of the integrated autocorrelation length

Fixed neural network architecture

Trained weights at four different conditions

HMC

X.Jin 2021, arXiv:2201.01862

https://arxiv.org/abs/2201.01862


Current work, onward to 4D SU(3) gauge fields

• The number of terms grows, and cost grows combinatorially


• Tractable Jacobian: updating 4 dir and even-odd separately


• Smearing with only links from 
other directions and parity


• For one link


• 6 plaquette


• 48 chair

9(a) (b) (c)

Figure 1: Wilson loops used in smearing update to the red link in a 3D lattice.
From left to right, (a) the links in black used to update the red link, (b) four
plaquette loops, (c) two 6-link chair shaped loops with one side perpendicular
to, and at the right side of, the red link.

(a) (b) (c) (d)

Figure 2: Input to the neural network that computes smearing coefficients
for updating the red link in a 3D lattice. From left to right, (a) the links in
black used to compute Wilson loops as input to a neural network, (b) two
6-link rectangle loops parallel to the red link, (c) four 6-link rectangle loops
perpendicular to the red link on one side, (d) four plaquette perpendicular to
the red link on one side.
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Input to the coefficient neural network

• All the dependent links (a)


• Traced Wilson loops as input


• Parallel rectangles (b)


• Perpendicular rectangles (c)


• Perpendicular plaquette (d)
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Figure 2: Input to the neural network that computes smearing coefficients
for updating the red link in a 3D lattice. From left to right, (a) the links in
black used to compute Wilson loops as input to a neural network, (b) two
6-link rectangle loops parallel to the red link, (c) four 6-link rectangle loops
perpendicular to the red link on one side, (d) four plaquette perpendicular to
the red link on one side.

We generate decorrelated configurations at 𝛽 = 0.7796, with lattice volume83 × 16, using 4 HMC streams, trajectory length 4, saving configurations every
16 trajectories (or 64 MDTU).

4.1 Loss Functions

Denote the difference in force computed from transformed action and the
original action with different couplings,

Δ𝑥,𝜇,𝑐 = 𝜕𝑥,𝜇,𝑐𝑆FT(𝑉;𝛽) − 𝜕𝑥,𝜇,𝑐𝑆(𝑉;𝛽T), (8)

with the subscript 𝑐 denote the degree of freedom of the gauge Lie algebra,
and per link (𝑥,𝜇) norm squared as,

Δ2𝑥,𝜇 = ∑𝑐 (𝜕𝑥,𝜇,𝑐𝑆FT(𝑉;𝛽) − 𝜕𝑥,𝜇,𝑐𝑆(𝑉;𝛽T))2, (9)

or the norm,

Δ𝑥,𝜇 = (∑𝑐 (𝜕𝑥,𝜇,𝑐𝑆FT(𝑉;𝛽) − 𝜕𝑥,𝜇,𝑐𝑆(𝑉;𝛽T))2)1/2 . (10)
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Training models and evaluations

• Trained at DBW2 , , 


• Tuned to optimize force matching , 


• Adam optimizer, LR warm up and decay


• Single A100 40GB on Polaris


• Evaluated at


• DBW2 , , 


• DBW2 , , 

β = 0.7796 83 × 16 a ≃ 0.2 fm

βT = 0.7099 a ≃ 0.3 fm

β = 0.7796 83 × 16 a ≃ 0.2 fm

β = 0.8895 123 × 24 a ≃ 0.13 fm
11

scales from McGlynn&Mawhinney 2014



Selected models, preliminary

• (GC) Global coefficients only


• Trained with 64 configs, 8 epochs, 3 hours, 30 GB GPU Mem


• Single force evaluation: 1.6 sec, 10 GB GPU Mem


• (NN) Neural network local coefficients


• Trained with 256 configs, 16 epochs, 11 hours, 20 GB GPU Mem


• Single force evaluation: 1.1 sec, 8 GB GPU Mem
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[StoutSmearSlice(coeff=CoefficientVariable(p0, chair=c0, rng=rng), dir=dir, is_odd=eo)

    for _ in range(3) for dir in range(4) for _ in range(3) for eo in {False,True}]

[StoutSmearSlice(coeff=CoefficientNets([Dense(units=8, activation='swish'),

                                        Normalization(),

                                        Dense(units=54, activation=None)]), dir=dir, is_odd=eo)

    for _ in range(4) for dir in range(4) for _ in range(1) for eo in {False,True}]



 versus , ΔH ΔE(τ = 4) 83 × 16

• Single step Omelyan 2MN (ABABA)


• 


• 1 loop Clover Energy


• Wilson flow time, 

δt = 0.0025, 0.005, 0.01, 0.02

τ = 4

13

1e-06

1e-05

1e-04

1e-03

1e-07 1e-06 1e-05 1e-04 1e-03 1e-02

Δ𝐸(
𝜏=

4)

Δ𝐻

0.001Δ𝐻1/3
HMC
GC
NN



 versus , ΔH ΔE(τ = 4) 123 × 24

• Single step Omelyan 2MN (ABABA)


• 


• 1 loop Clover Energy


• Wilson flow time, 

δt = 0.0025, 0.005, 0.01, 0.02

τ = 4
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Code

• https://github.com/nftqcd/nthmc using TensorFlow


• Supports


• Generalized stout smearing


• HMC


• Staggered D, CG solver


• R/W SciDAC lime, R/O ILDG lime
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• TensorFlow and Performance


• Hard to optimize custom ops in 
Python


• Autograd wastes memory


• XLA helps (~100X) on Nvidia


• Some takes >1hour JIT compiling

https://github.com/nftqcd/nthmc


Outlook

• Trained field transformation to match the force with those from a stronger coupling


• When used as a change of variable the model provides reduction in  by a factor of 4 
and mild increase in , in MD with a small step


• Directly applying  trained model to  and weaker coupling retains some 
benefit


• We need


• Better evaluations for use in HMC


• Frameworks that allows us better controls of performance, memory usage


• Look for better transformation models

ΔH
ΔE(τ = 4)

83 × 16 123 × 24
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