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Change of variables

e Use a continuously differentiable bijective map F~! from target field U to
the mapped field V = F~!(U), same group manifold for us

(O) = lJ@U@(U)e—S(U) — lJ@V@(g(v))e—S(?(V))Hn\%\ where &, — 0F (V)
~ z oV

o Sample V with HMC according to the new action: Field Transformation

HMC (FTHM Luscher 2010
- ( C) SFT<V) — S(P}(V)) — In \ ?*(V) \ Luchang Jin 2021

. _ _ _ Sam Foreman 2021
e Want the effective action to have lower potential barriers, or more uniform

dynamics (smaller difference between slow and fast modes)

e The Jacobian determinant and its derivative must remain simple



Parametrized bijection map: Generalized Stout Smearing

« Gauge covariant, dynamics remain the same with local gauge transformations, €2 € SU(3)
o — OF
Ux,u —> Ux,ﬂ =Q'U_ €

X~ X, U= x+p0

e Lie group element, exponential map from the group algebra (differentials in tangent directions) Nagai&Tomiya 2021
I . —_ LIL _
F:V,, - U, ="V, whereTl , = » ed, W(V)

e Generalize it with neural networks X.Jin 2021 l

e Make the coetficients arbitrary functions of gauge invariant quantities

_ —1
€, = Clan [A/Z(X, Y, )]
e X, 71, ... alist of traced Wilson loops local to x, ¢, and independent of U, ,

e /J is an arbitrary function, parameterized by neural networks

e C tan_l[ - | ensures a positive definite Jacobian



What to optimize

e Minimize the difference in the force between the transtformed action and
the original action on a stronger training coupling (smaller /)

1/2
Ax,ﬂ = ( Z (ax,ﬂ,cSFT(W p) — ax,ﬂ,(;S(V; ﬁT))z)

C

e Choices of loss functions

C p/2
e Sums of root mean powers Lermp = Z = Z (Ayzc,ﬂ>
used in 2D U(l) pe{2,4,6,00} 4Vol X,
e LOg mean exp norm Liveny = In Z exp(A, ) — In(4Vol)

used in 4D SU(3) X,mu



X.Jin 2021, arXiv:2201.01862

Localized Coetficients, by Convolutional Neural Networks
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e Pick a subset of gauge links to update at a time (red links)

e Compute Wilson loops independent of the to-be-updated links (green loops)

e Pass through a series of convolutional neural networks and obtain coeftficients


https://arxiv.org/abs/2201.01862
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X.Jin 2021, arXiv:2201.01862

Results from 2D U(1) lattice fields, correlation of topological charge
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Fixed neural network architecture

Trained weights at four different conditions
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https://arxiv.org/abs/2201.01862

Current work, onward to 4D SU(3) gauge fields

e The number of terms grows, and cost grows combinatorially

e Tractable Jacobian: updating 4 dir and even-odd separately

e Smearing with only links from
other directions and parity

e For one link
e 0 plaquette

e 48 chair

7

A

/




Input to the coeltlicient neural network

e All the dependent links (a)

e Traced Wilson loops as input
e Parallel rectangles (b)
e Perpendicular rectangles (c)

e Perpendicular plaquette (d)
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Training models and evaluations

_ 3 scales from McGlynn&Mawhinney 2014
e Trained at DBW2 / = 0.7796, 8° X 16, a ~ 0.2 fm

« Tuned to optimize force matching S = 0.7099, a ~ 0.3 fm

e Adam optimizer, LR warm up and decay
e Single A100 40GB on Polaris

e Evaluated at

e DBW2 8 =0.7796, 8 x 16, a ~ 0.2 fm

« DBW2 8 =0.8895,12° x 24, a ~ 0.13 fm
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Selected models, preliminary

e (GC) Global coetficients only

[StoutSmearSlice(coeff=Coefficientvariable(p0O, chair=c0, rng=rng), dir=dir, i1s_odd=eo)
for _ 1n range(3) for dir 1n range(4) for _ 1n range(3) for eo 1in {False,True}]

e Trained with 64 configs, 8 epochs, 3 hours, 30 GB GPU Mem
e Single force evaluation: 1.6 sec, 10 GB GPU Mem

e (NN) Neural network local coefficients

[StoutSmearSlice(coeff=CoefficientNets([Dense(units=8, activation='swish'),
Normalization(),
Dense(units=54, activation=None)]), dir=dir, 1s_odd=eo0)
for _ 1n range(4) for dir in range(4) for _ 1n range(l) for eo 1n {False,True}]

e Trained with 256 contfigs, 16 epochs, 11 hours, 20 GB GPU Mem

e Single force evaluation: 1.1 sec, 8 GB GPU Mem
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AH versus AE(t = 4), 8° X 16
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AH versus AE(t = 4), 12° x 24
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Code

e https://github.com/nftqcd/nthmc using TensorFlow

e Supports e TensorFlow and Performance
e (Generalized stout smearing e Hard to optimize custom ops in
Python
e HMC

e Autograd wastes memory

e Staggered D, CG solver
e XLA helps (~100X) on Nvidia

e R/W SciDAC lime, R/O ILDG lime
e Some takes >1hour JIT compiling
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https://github.com/nftqcd/nthmc

Outlook

e Trained field transformation to match the force with those from a stronger coupling

o« When used as a change of variable the model provides reduction in AH by a factor of 4
and mild increase in AE(r = 4), in MD with a small step

o Directly applying 8° X 16 trained model to 12° X 24 and weaker coupling retains some
benefit

e We need
e Better evaluations for use in HMC
e Frameworks that allows us better controls of performance, memory usage

e ook for better transformation models
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