Simulating \mathbb{Z}_2 lattice gauge theory on a quantum computer

Charles et al. - 2305.02361 [hep-lat]

Hank Lamm

August 3, 2023
This work is an outcome of the QCIPU program @ Fermilab

Ruth Van de Water
Fermilab

→ Clement Charles
Grad Student @ Maryland

Elizabeth Hardt
Argonne

→ Michael Wagman
Fermilab

Florian Herren
Fermilab

→ Sara Starecheski
Undergrad @ UIUC

→ Norman Hogan
Grad Student @ NCSU

→ Erik Gustafson
NASA
3-week summer school for 17 students + year-long internship for 4-5 students with goal to develop diverse quantum workforce with skills needed to succeed in academia and industry

Young field provides opportunity to build inclusive community

- Students paid competitive hourly wage
 - *Essential* to enable participation by students from all socioeconomic backgrounds.
- Topical lectures by experts in the field
 - Quantum physics & math, quantum algorithms, error mitigation & correction, quantum hardware. Self-contained and accessible to all preparation levels.
- Pair programming on quantum simulators & real devices
 - Computational exercises in Python + Qiskit on classical and quantum algorithms. Final project simulating 1+1d lattice gauge theory on real devices.
- Panels and informal discussions on career opportunities
 - Panelists from both academia and industry. Information about applying to and paying for graduate school especially important for first-generation college students.
- Year-long interns perform publishable research

PHYSICAL REVIEW D 106, 114501 (2022)

Primitive quantum gates for an SU(2) discrete subgroup: Binary tetrahedral

Erik J. Gustafson,1,2* Henry Lamm,1,3 Felicity Lovelace,1,3 and Damian Musa1,3

1Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
2Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
3Stanford University Online High School, Redwood City, California 94063, USA

Simulating Z_2 lattice gauge theory on a quantum computer

Clemente Cheval,1,3• Erik J. Gustafson,1,3 Elizabeth Hatch,2,3• Florian Herren,4 Norman Hogan,5 Henry Lamm,1,3 Sara Stahlke6,7,8,10 and Michael L. Wigram7

1Department of Physics, The University of the West Indies, St. Augustine Campus, Trinidad & Tobago
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
4Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames Research Center, Moffett Field, CA 94035, USA
5ESKA Research Institute for Advanced Computer Science (ESKAICS), Mountain View, CA, 94043, USA
6Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
7Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
8Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
9Department of Physics, Santa Laurence College, Honolulu, NY 10704, USA
10Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

(Received 6 September 2022; accepted 9 November 2022; published 8 December 2022)

8/2/2022

Hank Lamm | Simulating \mathbb{Z}_2 on Quantum Computer
Quantum Computing for Particle Physics, it’s a need

• The world is quantum, and we are lucky anything is amenable to classical computers
 – Large-scale quantum computers can tackle computations in HEP otherwise inaccessible
 – This opens up new frontiers & extends the reach of LHC, LIGO, EIC & DUNE

• Ab initio cross sections for colliders and neutrino experiments
• Cosmic inflation and the evolution of matter asymmetry in the early universe
• Explorations of BSM, supersymmetry, and quantum gravity
• Hadronization and Hydrodynamics in Heavy-Ion collisions

While broad, these topics often are formulated as lattice field theories

Quantum Simulation for High-Energy Physics
Bauer, Davoudi et al. - PRX Quantum 4 (2023) 2, 027001
Wonderful survey of physics questions, methods, and outstanding problems in field
2 is the smallest and only even prime number

1+1d \mathbb{Z}_2 lattice gauge theory on **quantum computer**

Premature optimization is the root of all evil
The ladder of discrete gauge theories in HEP calculations

Coherence Time Increasing

Gluon Field Digitization for Quantum Computers
NuQS collaboration - Phys.Rev.D 100 (2019) 11, 114501
Demonstrated that S(1080) approximates certain 3+1d SU(3) observables

Digitising SU(2) gauge fields and the freezing transition
Understanding the scaling of freezing transitions with approximations

\[\beta_{f,U(1)} = \frac{\log(1 + \sqrt{2})}{1 - \cos\left(\frac{2\pi}{N}\right)} \approx \kappa_2 N^2, \text{ which extends to } \beta_{f,\text{SU}(N_c)} \approx \kappa N^{N_c^2 - 1}/2 \]

But whereas \(Z_N \) can be taken to \(\infty \), limited number for \(\text{SU}(N_c) \)

\[\beta \propto \frac{1}{\log(a)} \implies a_f \propto e^{-\beta_f} \]
A tale of two Hamiltonians

Kogut-Susskind Hamiltonian [with $O(a^2)$ errors]

$$H = \sum_{n=1}^{N_s-1} \left[\frac{1}{2} \sigma_{n,n+1}^x + \frac{\eta}{2} \left(\vec{\psi}_n \sigma_{n,n+1}^z \psi_{n+1} + h.c. \right) \right] + m_0 \sum_{n=1}^{N_s} (-1)^n \vec{\psi}_n \psi_n,$$

Qubit Hamiltonian via Jordan-Wigner

$$H = \frac{1}{2} \sum_{n=0}^{N_s-1} \sigma_{n,n+1}^z - \frac{m_0}{2} \sum_{n=0}^{N_s-1} (-1)^n Z_n + \frac{\eta}{4} \sum_{n=0}^{N_s-2} (X_n X_{n+1} + Y_n Y_{n+1}) \sigma_{n,n+1}^z.$$

Hamiltonian Formulation of Wilson’s Lattice Gauge Theories
Kogut & Susskind *Phys.Rev.D* 11 (1975) 395-408
Formulated $O(a^2)$ lattice Hamiltonian for LGT with staggered matter

Always remember: lattice Hamiltonian is a choice

Improved Hamiltonians for Quantum Simulation of Gauge Theories
Carena, Lamm, Li, Liu *PRL* 129 (2022) 5
Developed quantum circuits for $O(a^3)$ pure-gauge Hamiltonian

Quantum Simulation of Lattice QCD with Improved Hamiltonians
Ciavarella 2307.05593 [hep-lat]
Formulated Hamiltonian with reduced truncation errors

Improved Fermion Hamiltonians for quantum simulations
Gustafson & Van de Water - in prep (Talk @ 4:20 PM on Thurs.)
Formulating Hamiltonians for ASQTAD fermions
Hamiltonian Gates for Trotterization with restricted connectivity

Restricting to longest linear graph
for heavy-polygon with p sides: $\frac{N_p - 2}{N_p - 1} \leq 86\%$ BAD!

$\text{ibm_nairobi} \rightarrow 43\%$ WORSE!
Performing scale setting with 2-pt Minkowski correlator

- Want to measure a correlator after preparing in a superposition of vacuum and “particle” state

\[C(t) = \langle \phi(N_s) \mid U^\dagger(t) \, O \, U(t) \mid \phi(N_s) \rangle = \cos(Mt) + \ldots, \]

- Trotterization introduces discretization errors into correlator, and thus scale setting \(M \)

\[\mathcal{C}(t/\varepsilon) = \langle \phi(N_s) \mid U^\dagger(t/\varepsilon)^N t \, O \, U(t/\varepsilon)^N t \mid \phi(N_s) \rangle \]

“Particle” state and operator insertion are given by “meson” excitation operator

\[O = X_n \sigma^{z}_{n,n+1} X_{n+1} \]

\[\mathcal{U}_{sp} = \]

- \(|p_0\rangle \)
- \(|\sigma_{0,1}\rangle \)
- \(|e_1\rangle \)
- \(|\sigma_{1,2}\rangle \)
- \(|p_2\rangle \)
- \(|\sigma_{2,3}\rangle \)
- \(|e_3\rangle \)
First error mitigation: Pauli Twirling

Converts **coherent errors** to **stochastic ones**

Example: CNOT gate

Simulating one-dimensional quantum chromodynamics on a quantum computer:
Real-time evolutions of tetra- and pentaquarks
Y. Y. Atas et al., 2207.03473 [quant-ph]
Early example of use in 1+1d SU(3) lattice simulation
Second error mitigation: Readout error mitigation

Error arising from readout typically \textbf{\textasciitilde20\%} albeit dependent on correlator value

Genuine 12-qubit entanglement on a superconducting quantum processor
Good example of inversion matrix method for readout error mitigation
Third error mitigation: Rescaling

Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer
First demonstration of rescaling in a lattice simulation
Fourth error mitigation: Dynamical Decoupling

Perform gates operators on spectators to **prevent noise**

For our lattice simulations on IBM devices, we found **XY4** the best balance

Dynamical decoupling for superconducting qubits: a performance survey
N. Ezzell et al. 2207.03670 [quant-ph]
Nice state-of-the-art review
Putting it all together

Error mitigation allows up to $6x$ longer evolution
Multiple volumes, multiple masses

\[
\begin{array}{c}
G(\kappa) \\
\quad t/\epsilon
\end{array}
\]

\[
\begin{array}{c}
\Delta a M \\
\quad a M_0
\end{array}
\]

<table>
<thead>
<tr>
<th>(N_s)</th>
<th>(m_0)</th>
<th>(\epsilon)</th>
<th>(a t M)</th>
<th>((a t M)_{\text{exact}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.3</td>
<td>0.89(13)</td>
<td>0.9473</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>0.3</td>
<td>1.02(18)</td>
<td>0.9386</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>0.3</td>
<td>1.619(53)</td>
<td>1.5204</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>0.3</td>
<td>1.591(27)</td>
<td>1.5168</td>
</tr>
</tbody>
</table>
Endgame

- The road to quantum practicality in HEP will be long and winding
- Error mitigation provides small, but non-trivial extensions in evolution time
- Scale setting directly on the quantum computer is possible
- Current QCIPU project is computing hadronic tensor in this theory