

Simulating Z₂ lattice gauge theory on a quantum computer

Charles et al. - 2305.02361 [hep-lat]

Hank Lamm

August 3, 2023

This work is an outcome of the QCIPU program @ Fermilab

Ruth Van de Water Fermilab

Clement Charles \rightarrow Grad Student @ Maryland

Elizabeth Hardt Argonne

Michael Wagman Fermilab

Florian Herren Fermilab

Sara Starecheski Undergrad @ UIUC

Norman Hogan Grad Student @ NCSU

Erik Gustafson NASA

Quantum Computing Internship For Physics Undergraduates 2020 - Present

3-week summer school for 17 students + year-long internship for 4-5 students with goal to develop diverse quantum workforce with skills needed to succeed in academia and industry

Young field provides opportunity to build inclusive community

Students paid competitive hourly wage

-*Essential* to enable participation by students from all socioeconomic backgrounds.

Topical lectures by experts in the field

-Quantum physics & math, quantum algorithms, error mitigation & correction, quantum hardware. Self-contained and *accessible to all preparation levels*.

- Pair programming on quantum simulators & real devices

 Computational exercises in Python + Qiskit on classical and quantum
 algorithms. Final project simulating <u>1+1d lattice gauge theory</u> on real devices.
- Panels and informal discussions on career opportunities

-Panelists from **both academia and industry**. Information about applying to and paying for graduate school especially important for first-generation college students.

• Year-long interns perform publishable research

PHYSICAL REVIEW D 106, 114501 (2022)

Primitive quantum gates for an SU(2) discrete subgroup: Binary tetrahedral

Erik J. Gustafson[•],^{1,*} Henry Lamm[•],^{1,*} Felicity Lovelace,^{2,‡} and Damian Musk^{•3,§}
¹Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
²Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
³Stauford University Online High School, Redwood City, California 94063, USA

(Received 6 September 2022; accepted 9 November 2022; published 8 December 2022)

FERMILAB-PUB-23-171-SQMS-T

Simulating \mathbb{Z}_2 lattice gauge theory on a quantum computer

Clement Charles,^{1,2} Erik J. Gustafson,^{3,4,5} Elizabeth Hardt,^{6,7} Florian Herren,³ Norman Hogan,⁸ Henry Lamm,³ Sara Starecheski,^{9,10} Ruth S. Van de Water,³ and Michael L. Wagman³

¹Department of Physics, The University of the West Indics, St. Augustine Campus, Trinidad & Tokago ²Physics Division, Lourence Berkeley National Laboratory, Berkeley, C. 49(720, USA ³Fermi Yational Accelerator Laboratory, Bataria, Illinois, 60510, USA ⁴Guantum Artificial Intelligence Laboratory (QaAIL), ⁶USA Ameser Research Center, Muffett Field, CA, 9(405, USA ⁶Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA ⁷Aduanced Photon Source, Argonne Ritainois 60439, USA ⁸Department of Physics, University of Illinois at University, Raleigh, North Carolina 27605, USA ⁸Department of Physics, Sarah Lavrence College, Bronxille, NY 10708, USA ⁹Department of Physics, North Carolina State University, Raleigh, North Carolina 27605, USA ⁹Department of Physics, North Carolina State University, Raleigh, North Carolina 27605, USA ⁹Department of Physics, Narth Carone College, Bronxille, NY 10708, USA ⁹Department of Physics, View of Illinois at University, Raleigh, North Carolina 21605, USA ⁹Department of Physics, Narth Carolina State University, Raleigh, North Carolina State, USA ⁹Department of Physics, Narth Carolina State University, Raleigh, North Carolina 21605, USA ⁹Department of Physics, Narth Carolina State University, Raleigh, North Carolina 21601, USA ¹⁰Department of Physics, Narth Carolina State University, Raleigh, North Carolina 21601, USA ¹⁰Department of Physics, Narth Carolina 216000, USA ¹⁰Department of Physics, USA ¹⁰Department of Physics, Narth Carolina 21600, USA ¹⁰Department of Physics, USA ¹⁰Department of Physics, USA ¹⁰Department of Physics, USA ¹⁰Department of Physics, Narth Carolina 21600, USA ¹⁰Department of Physics, USA ¹⁰Department of Physic

′н

 $\oplus R_{-}(\theta x_{-})$

Quantum Computing for Particle Physics, it's a need

- The world is quantum, and we are lucky anything is amenable to classical computers
 - Large-scale quantum computers can tackle computations in HEP otherwise inaccessible
 - This opens up new frontiers & extends the reach of LHC, LIGO, EIC & DUNE

- Ab initio cross sections for colliders and neutrino experiments
- Cosmic inflation and the evolution of matter asymmetry in the early universe
- Explorations of BSM, supersymmetry, and quantum gravity
- Hadronization and Hydrodynamics in Heavy-lon collisions

While broad, these topics often are formulated as lattice field theories

Quantum Simulation for High-Energy Physics Bauer, Davoudi et al. - PRX Quantum 4 (2023) 2, 027001 Wonderful survey of physics questions, methods, and outstanding problems in field

Premature optimization is the root of all evil

2 is the smallest and only even prime number

1+1d Z₂ lattice gauge theory on **quantum computer**

Experiments with a Gauge-Invariant Ising System Michael Creutz, Laurence Jacobs, and Claudio Rebbi *Phys. Rev. Lett.* 42, 1390 (1979) Early simulation of 3+1d 8⁴ Euclidean Z₂ pure gauge theory

The ladder of discrete gauge theories in HEP calculations Coherence Time Increasing

NuQS collaboration - Phys.Rev.D 100 (2019) 11, 114501 Demonstrated that S(1080) approximates certain 3+1d SU(3) observables

Digitising SU(2) gauge fields and the freezing transition Hartung et al. - Eur.Phys.J.C 82 (2022) 3, 237 Understanding the scaling of freezing transitions with approximations But whereas \mathbb{Z}_N can be **taken to** ∞ , **limited** number for $SU(N_c)$

$$eta \propto rac{1}{\log(a)} \implies a_f \propto e^{-eta_f}$$

Kogut-Susskind Hamiltonian [with O(a²) errors]

$$H = \sum_{n=1}^{N_s - 1} \left[\frac{1}{2} \sigma_{n,n+1}^x + \frac{\eta}{2} (\bar{\psi}_n \sigma_{n,n+1}^z \psi_{n+1} + h.c.) \right] + m_0 \sum_{n=1}^{N_s} (-1)^n \bar{\psi}_n \psi_n,$$

Qubit Hamiltonian via Jordan-Wigner

Hamiltonian Formulation of Wilson's Lattice Gauge Theories Kogut & Susskind *Phys.Rev.D 11 (1975) 395-408* Formulated O(a²) lattice Hamiltonian for LGT with staggered matter

Alway remember: lattice Hamiltonian is a choice

Improved Hamiltonians for Quantum Simulation of Gauge Theories Carena, Lamm, Li, Liu *PRL 129 (2022) 5* Developed quantum circuits for O(a⁴) pure-gauge Hamiltonian Quantum Simulation of Lattice QCD with Improved Hamiltonians Ciavarella 2307.05593 [hep-lat] Formulated Hamiltonian with reduced truncation errors

Improved Fermion Hamiltonians for quantum simulations Gustafson & Van de Water - in prep (Talk @ 4:20 PM on Thurs.) Formulating Hamiltonians for ASQTAD fermions

7 8/2/2022 Hank Lamm | Simulating Z₂ on Quantum Computer

Hamiltonian Gates for Trotterization with restricted connectivity

Restricting to longest linear graph for heavy-polygon with p sides: $rac{N_p-2}{N_p-1} \leq 86\%$ BAD! ibm_nairobi ightarrow 43% WORSE!

$$|e_{n+1}\rangle - R_Z(-m\varepsilon) - \mathcal{U}_1 = |\sigma_{n,n+1}\rangle - R_X(\varepsilon) - R_Z(m\varepsilon) - \mathcal{U}_1 = R_Z(m\varepsilon) - \mathcal{U}_1 = \mathcal{U}_1 = \mathcal{U}_1 = \mathcal{U}_1 = \mathcal{U}_2$$

Performing scale setting with 2-pt Minkowski correlator

• Want to measure a correlator after preparing in a superposition of vacuum and "particle" state

 $C(t) = \left\langle \phi(N_s) \right| \mathcal{U}^{\dagger}(t) \ O \ \mathcal{U}(t) \left| \phi(N_s) \right\rangle$ = cos(Mt) + ...,

• Trotteriztion introduces discretization errors into correlator, and thus scale setting M $\mathfrak{C}(t/\varepsilon) = \langle \phi(N_s) | \mathcal{U}^{\dagger}(t/\varepsilon)^{N_t} O \mathcal{U}(t/\varepsilon)^{N_t} | \phi(N_s) \rangle$

"Particle" state and operator insertion are given by "meson" excitation operator

First error mitigation: Pauli Twirling

Simulating one-dimensional quantum chromodynamics on a quantum computer: Real-time evolutions of tetra- and pentaquarks Y. Y. Atas *et al.*, 2207.03473 [quant-ph] Early example of use in 1+1d SU(3) lattice simulation

Second error mitigation: Readout error mitigation

Error arising from readout typically ~20% albeit dependent on correlator value

Genuine 12-qubit entanglement on a superconducting quantum processor M. Gong et al. Phys. Rev. Lett. 122, 110501 (2019) Good example of inversion matrix method for readout error mitigation

Third error mitigation: Rescaling

Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, Phys. Rev. D 106 First demonstration of rescaling in a lattice simulation

Fourth error mitigation: Dynamical Decoupling

Perform gates operators on spectators to prevent noise

For our lattice simulations on IBM devices, we found XY4 the best balance

13 8/2/2022 Hank Lamm | Simulating Z₂ on Quantum Computer

Dynamical decoupling for superconducting qubits: a performance survey N. Ezzell et al. 2207.03670 [quant-ph] Nice state-of-the-art review

Putting it all together

 $a_t \omega$

Multiple volumes, multiple masses

Endgame

- The road to quantum practicality in HEP will be **long** and **winding**
- Error mitigation provides small, but non-trivial extensions in evolution time
- Scale setting directly on the quantum computer is possible
- Current QCIPU project is computing hadronic tensor in this theory

 $\langle P|\chi^{\dagger}(tn^{\mu})\chi(0)|P\rangle = \sum_{i,j,k=\{x,y\}} \frac{c_{ij}}{4} \langle P,a|U_{i,j,k}|P,a\rangle$

Parton Physics on Quantum Computers Lamm, Lawrence, Yamauchi - *Phys.Rev.Res* 2 (2020) 1, 013272 Formulation of Practical HEP Quantum Advantage Problem