Flavor diagonal nucleon charges from clover fermions on MILC HISQ ensembles

Tanmoy Bhattacharya, Rajan Gupta, Huey-Wen Lin, Santanu Mondal, Sungwoo Park⁽¹⁾⁽²⁾, Boram Yoon

> ⁽¹⁾ JLab, VA, USA ⁽²⁾ LLNL, CA, USA

Lattice 2023, July 31, 2023

Physics from flavor diagonal nucleon charges

• $g_A^q = \Delta q$: Quark contributions to the nucleon spin

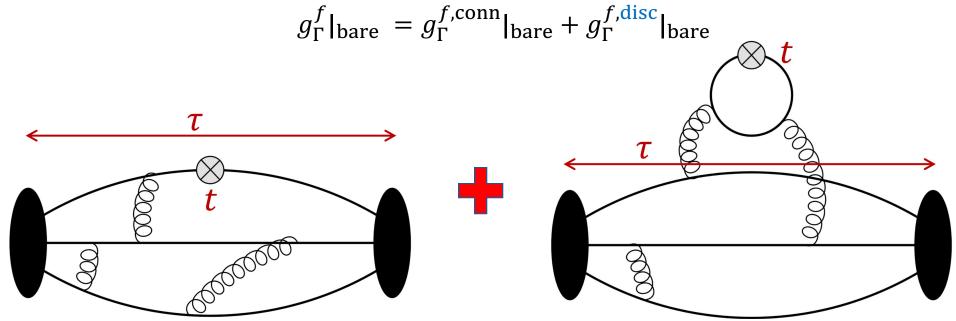
$$\frac{1}{2} = \sum_{u,d,s,\cdots} \left(\frac{1}{2} \Delta q + L_q \right) + J_g$$

X. Ji (1997),

 L_q : orbital angular momentum of the quark J_q : total angular momentum of the gluons

• g_T^q : Quark EDM contributions to the neutron EDM d_n

nEDM collab. (2020)


$$|d_n| = |d_u^{\gamma} g_T^u + d_d^{\gamma} g_T^d + d_s^{\gamma} g_T^s + \dots| \le 1.8 \times 10^{-26} e \text{ cm}$$

• $g_{S}^{q} = \frac{\partial M_{N}}{\partial m_{q}}$: Slope of the nucleon mass with respect to the quark mass

 $\sigma_{\pi N} = m_l g_s^{u+d}$: Quark contributions to the nucleon mass $\sigma_s = m_s g_s^s$

Connected and disconnected diagrams

• Calculation of flavor diagonal charges are complicated due to the additional contribution of the disconnected diagrams.

Calculated with covariant Gaussian source smearing, multiple source-sink separation $0.9 \leq \tau \leq 1.4$, accelerated with coherent sequential inversions and the truncated solver method with bias correction. [PNDME, PRD98, 034503 (2018)]

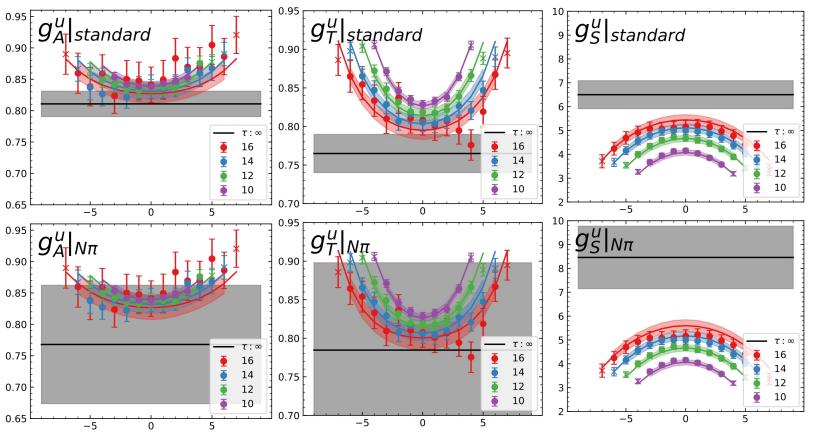
All-to-all quark propagator estimated by stochastic method using Z_4 random sources, accelerated with the truncated solver method with bias correction and hoping parameter expansion. [PNDME. PRD92,094511 (2015)]

Disconnected on 2+1+1-flavor HISQ Ensembles

Ensemble ID	a [fm]	<i>Μ</i> _π [MeV]	$M_{\pi}L$	N ^{conn} conf	N ^{disc} light/strange
a15m310	~0.15	320	3.93	1917	1917 / 1917
a12m310	~0.12	310	4.55	1013	1013 / 1013
a12m220	~0.12	228	4.38	744	958 / 870
a09m310	~0.09	313	4.51	2263	1017 / 1024
a09m220	~0.09	226	4.79	964	712 / 847
a09m130	~0.09	138	3.90	1290	1270 / 994
a06m310	~0.06	320	4.52	500	808 / 976
a06m220	~0.06	235	4.41	649	1001 / 1002

PNDME, PRD98, 034503 (2018) : Statistics for connected diagrams Analyzed for the disconnected diagrams

- Ensembles generated by MILC Collaboration
- 8 ensembles including one physical $M_{\pi}^{\rm phys}$ ensemble
- HYP smeared $N_f = 2 + 1 + 1$ MILC HISQ lattices,
- Clover fermion with a tree-level tadpole improved *c*_{SW}

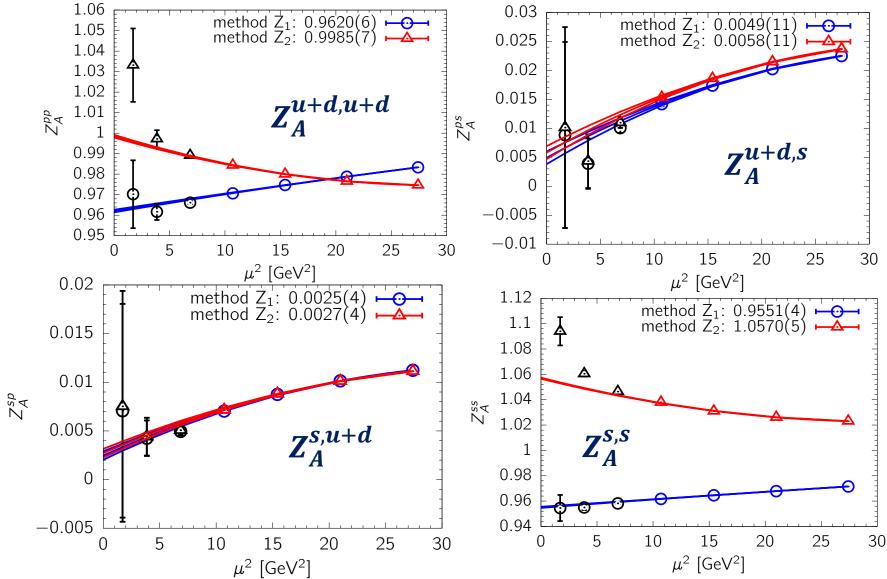

Removing excited state contaminations (ESC)

• Simultaneous fits to 2- and 3-point (connected + disconnected) functions using empirical Bayesian prior on the excited mass spectrum M_i and A_i

$$C^{\rm 2pt}(\tau) = \sum_{i=0} |\mathcal{A}_i|^2 e^{-M_i \tau}. \quad C_{\Gamma}^{\rm 3pt}(\tau;t) = \sum_{i,j=0} \mathcal{A}_i \mathcal{A}_j^* \langle i | O_{\Gamma} | j \rangle e^{-M_i t - M_j (t-\tau)},$$

- Repeat the analysis to quantify the model variation of the results by choosing different sets of (τ, t_{skip}) and number of states in the excited state fits (2 or 3^* -state fits)
 - t_{skip} : number of data points next to the source and the sink for each τ , skipped in the excited state fits
 - τ : source-sink separation
- The Final results are taken from the average over the model values, weighting each by its Akaike information criteria weights. [SP, PoS LATTICE2022 118]

ESC from $N\pi$ and $N\pi\pi$

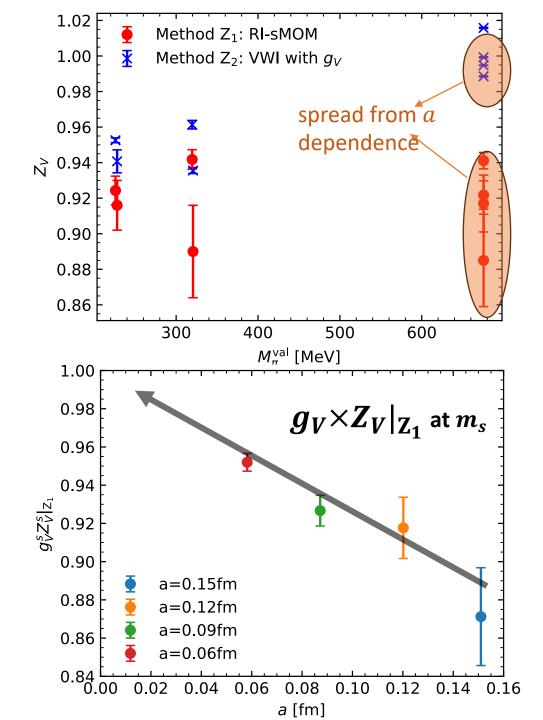

[SP, *PoS* LATTICE2022 118]

- We carry out two types of analyses:
 - 1. The "standard" fit to $C_{2pt}(\tau)$ uses wide priors for all the excited-state amplitudes, A_i , and masses, M_i , to stabilize the fits.
 - 2. The " $N\pi$ " fit in which a narrow prior is used for M_1 with the central value given by the non-interacting energy of the lowest allowed $N\pi$ or $N\pi\pi$ state on the lattice
 - For g_{Γ}^{s} , the leading multihadron ES is expected to be ΣK \rightarrow "standard" analysis

Operator mixing calculation in RI-sMOM

• We explicitly evaluated the 3×3 flavor (u, d, s) mixing matrices in **RI-sMOM** $g_{\Gamma}^{f} = \sum_{F'} Z_{\Gamma}^{ff'} g_{\Gamma}^{f'}|_{\text{bare}}$ Landau gauge fixed quark **Projected amputated** propagators using momentum Green's function source with $p \propto (1,1,1,1)$ $\operatorname{Tr}[(..)\mathbb{P}] \equiv \Lambda_{\Gamma}^{\operatorname{PA}}$ $\left(Z_{\Gamma}^{-1}\right)^{ff'} = \sum_{i} \frac{1}{Z_{i}^{f}} \operatorname{Tr}\left[\left(\frac{1}{Z_{\Gamma}^{f}}\right)^{f}\right]$ $\times \delta^{ff}$ $)\mathbb{P}(p',$ • **Z**₁ method: $Z_{\psi}(p) \equiv \frac{i}{12p^2} \operatorname{Tr}[S^{-1}(p)p \cdot \gamma]$ • **Z**₂ method: $Z_{\psi}^{\text{VWI}}(p) \equiv \Lambda_V^{\text{PA}}(p)/g_V \leftarrow$ Using Vector Ward Identity (VWI), $g_V Z_V = 1$ And g_V from separate nucleon matrix element calculation 7

Ex) $Z_A^{\overline{\text{MS}},2\text{GeV}}(\mu) = \mathbf{Z} + c_1 \mu^2 + c_2 \mu^4$ extrapolation

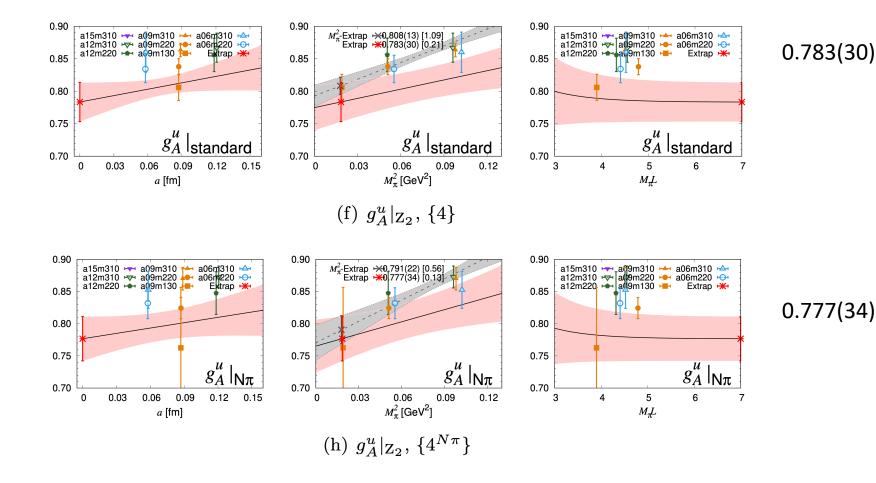


Removing $O(\mu^2 a^2)$ artifact after the perturbative matching and RG running to \overline{MS} , 2GeV

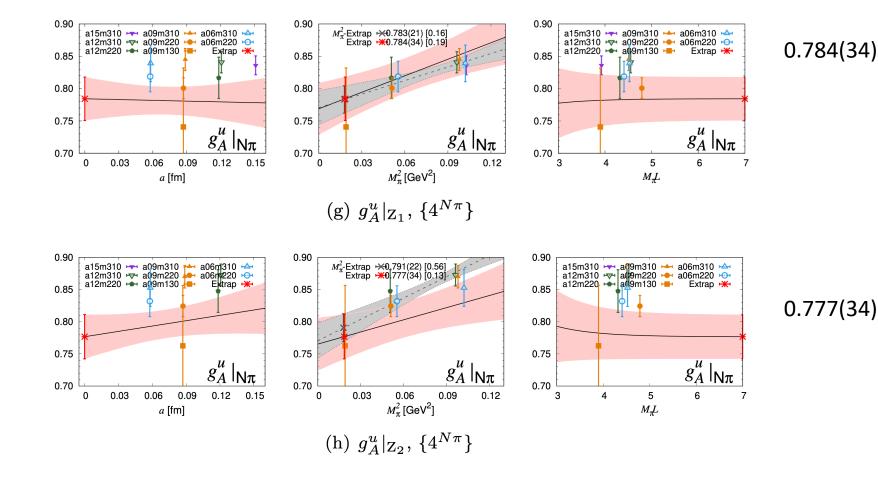
 $a \approx 0.12 fm$

- Diagonals of mixing matrix $(Z_A^{u+d,u+d}, Z_A^{s,s})$ show different μ -dependence (lattice artifact)
- Light and strange flavor mixing is a sub-percent contribution

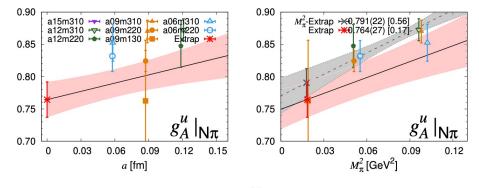
 $\Rightarrow Z_{\Gamma}|_{Z_1} - Z_{\Gamma}|_{Z_2}$ becomes smaller as $a \rightarrow 0$

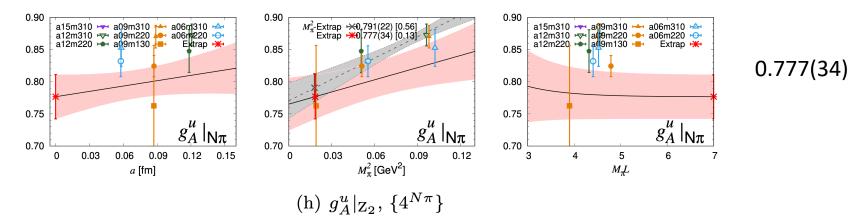

Z_V from methods Z_1 , Z_2

- $Z_V|_{Z_1}$ and $Z_V|_{Z_2} (= 1/g_V)$ have different M_{π}^{val} and a dependence
- $g_V \times Z_V|_{Z_1}$ deviates from 1 (Vector Ward-Identity) at large quark mass
- To study the systematic effect in two different methods, {Z₁, Z₂} we do chiral-continuum extrapolate g_Γ|_{Z₁} and g_Γ|_{Z₂}, separately, and compare the results.


Chiral-Continuum (Finite Volume) Extrapolation

- We compare following CC(FV) extrapolation results:
 - ESC: "standard" vs " $N\pi$ " analysis (except for g_{Γ}^{s})
 - Renormalization: Method Z_1 vs Z_2
 - Extrapolation: CC vs CCFV


g_A^u extrapolation: ESC "standard" vs " $N\pi$ "


g_A^u extrapolation: Renorm. " Z_1 " vs " Z_2 "

g_A^u extrapolation: CC vs CCFV

(d) $g_A^u|_{\mathbf{Z}_2}, \{4^{N\pi}\}, d_3 = 0$

0.764(27)

Results past and present for g_{Γ}^{q}

	2023 (PRELIMINARY)		PNDME 2018 PRD 98, 091501 (2018) PRD 98, 094501 (2018)					
q	g^q_A	g_T^q	g^q_S	g^q_A	g_T^q			
и	0.780(34)(7)(8)(3)	0.784(28)(11)(0)(18)	8.8(13)(2)	0.777(25)(30)	0.784(28)(10)			
d	-0.415(37)(2)(32)(37)	-0.202(12)(2)(16)(4)	8.7(9)(1)	-0.438(18)(30)	-0.204(11)(10)			
S	-0.052(11)(2)(1)	-0.0016(12)(0)(1)	0.45(11)(3)	-0.053(8)	-0.00319(72)			
(Error notation $g_A^u = 0.780(34)_{\text{STAT}}(7)_{\text{NPR}}(8)_{\text{ESC}}(3)_{\text{FV}}$)								

- NPR and FV errors are all smaller or comparable to the statistical error
- ESC error is larger in $g_{A,T}^d$ than $g_{A,T}^u$
- FV effect for g_S^q is under investigation

• $g_S^{u,d}$: with " $N\pi$ " analysis is motivated by the ChPT analysis of nucleon sigma term Gupta et al., PRL 127, 242002 (2021)

	2021 (st.)	2021 (Nπ)	2023 (st.)	2023 (Nπ)
$\sigma_{\pi N}$	41.9(4.9)	59.6(7.4)	44(5)(0)	60(6)(1)
σ_s			42(10)(3)	68(12)(4)

• m_{ud} and m_s taken from from FLAG 21

Summary

- We analyzed flavor diagonal nucleon charges using clover fermion on 8 MILC HISQ lattices
- Excited state fits: "standard" and " $N\pi$ " analysis
 - $g_{A,T}^{u,d}$: not sensitive, $g_S^{u,d}$ ($\sigma^{\pi N}$): sensitive to the $N\pi/N\pi\pi$ state mass prior
- Renormalization:
 - Z_1 and Z_2 methods give consistent result
 - no significant flavor mixing, especially at smaller *a*
- Chiral-continuum extrapolation
 - Finite volume correction is small for $M_{\pi}L > 4$
 - Leading chiral logarithm $M_{\pi}^2 \log M_{\pi}^2$: cannot resolve
- In progress
 - Comparison with clover-on-clover calculation
 - More statistics for the physical pion mass MILC HISQ ensemble a09m130

Acknowledgements

- We thank the MILC collaboration for providing the 2+1+1-flavor HISQ lattices.
- The calculations used the CHROMA software suite.
- We thank DOE for computer time allocations at NERSC and OLCF.
- We thank the USQCD collaboration for computer time
- Institutional Computing at LANL for computer time