ETH zürich

ETH, Institute for Theoretical Physics High Performance Computational Physics group

Meron-Cluster Algorithms for Quantum Link Models

Joao C. Pinto Barros Lattice 2023, Fermilab Together with: T. Budde and M. K. Marinkovic

Outline

- 1. What model and Why
- 2. Meron Cluster Algorithms
- 3. Satisfying Gauss' Law

Outline

1. What model and Why

2. Meron Cluster Algorithms

3. Satisfying Gauss' Law

What is it about?

- An efficient algorithm to simulate fermions coupled to (Abelian) gauge fields;
- Operates on the Hamiltonian formalism,
- Main challenges: satisfying Gauss' law and deal with the fermion sign problem.
- E. Huffman's talk: (Thursday, Algorithms, 17:20)
 - Gauss' law satisfied with post-selection of configurations on the target sector;
 - Sign problem solved using Meron-cluster algorithm approach.

What is it about?

- An efficient algorithm to simulate fermions coupled to (Abelian) gauge fields;
- Operates on the Hamiltonian formalism,
- Main challenges: satisfying Gauss' law and deal with the fermion sign problem.
- E. Huffman's talk: (Thursday, Algorithms, 17:20)
 - · Gauss' law satisfied with post-selection of configurations on the target sector;
 - Sign problem solved using Meron-cluster algorithm approach.

This talk: (Soon on arXiv)

- Gauss' law satisfied by building configurations constructively;
- Sign problem solved as a consequence of satisfying Gauss' law (strictly 1 + 1-d).

Marina Krstic Marinkovic

What models are considered?

Abelian gauge theories in 1 + 1 dimensions.

For U(1) quantum link models with spin S:

$$H = -t \sum_{n} c_{n}^{\dagger} S_{n}^{\dagger} c_{n+1} + \text{h.c.} + m \sum_{n} (-1)^{n} c_{n}^{\dagger} c_{n} + g \sum_{n} (S_{n}^{z})^{2} + U \sum_{n} \left(c_{n}^{\dagger} c_{n} - 1/2 \right) \left(c_{n+1}^{\dagger} c_{n+1} - 1/2 \right)$$

- We can simulate any spin *S* can be made arbitrary;
- In the worst case, it scales like $\mathcal{O}(S^2)$;
- Very efficient for m = 0 but can work at arbitrary m. Restricted to t = 2U.

Why it is important

- Provide reliable benchmarks for Quantum Simulators;
- Provide a step toward the construction of efficient algorithms for more complicated theories (e.g. QCD);
- Cross-validation and better performance over other methods (e.g. tensor networks for large spin *S*);
- Construction of the algorithm by re-writing the partition provides a new way of describing the model;

Outline

1. What model and Why

2. Meron Cluster Algorithms

3. Satisfying Gauss' Law

Mechanics of the Meron-Cluster Algorithm

Construction of the path integral

$$\langle \mathcal{O} \rangle = \lim_{\beta \to \infty} \frac{\operatorname{Tr}(\mathcal{O}e^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})}$$

Mechanics of the Meron-Cluster Algorithm

Mechanics of the Meron-Cluster Algorithm

7/15

How to Include Gauge Fields?

Simplest case: spin 1/2 Quantum Link Model

$$H = -t\sum_{n} c_{n}^{\dagger} \sigma_{n}^{\dagger} c_{n+1} + \text{h.c.} + m\sum_{n} (-1)^{n} c_{n}^{\dagger} c_{n} + U\sum_{n} \left(c_{n}^{\dagger} c_{n} - 1/2 \right) \left(c_{n+1}^{\dagger} c_{n+1} - 1/2 \right)$$

All we need to take care of is to satisfy Gauss' law

$$G_n = E_{n+1} - E_n - \rho_n, \quad G_n |\psi\rangle = 0. \quad \rho_n = c^{\dagger}(n) c(n) + \frac{1 - (-1)^n}{2}$$

How to Include Gauge Fields?

Simplest case: spin 1/2 Quantum Link Model

$$H = -t\sum_{n} c_{n}^{\dagger} \sigma_{n}^{\dagger} c_{n+1} + \text{h.c.} + m\sum_{n} (-1)^{n} c_{n}^{\dagger} c_{n} + U\sum_{n} \left(c_{n}^{\dagger} c_{n} - 1/2 \right) \left(c_{n+1}^{\dagger} c_{n+1} - 1/2 \right)$$

All we need to take care of is to satisfy Gauss' law

$$G_n = E_{n+1} - E_n - \rho_n, \quad G_n |\psi\rangle = 0. \quad \rho_n = c^{\dagger}(n) c(n) + \frac{1 - (-1)^n}{2}$$

Positive and negative charges always alternate at every time slice;

ETH, Institute for Theoretical Physics High Performance Computational Physics group

Outline

1. What model and Why

2. Meron Cluster Algorithms

3. Satisfying Gauss' Law

Satisfying Gauss' Law in the Spin 1/2 Quantum Link Model

- Clusters can be classified according to their contribution to the total number of charges in the system:
 - Neutral clusters: bring no net charge into the system;
 - Positive: bring net positive charge into the system;
 - Negative: bring net negative charge into the system;

Satisfying Gauss' Law in the Spin 1/2 Quantum Link Model

- Clusters can be classified according to their contribution to the total number of charges in the system:
 - Neutral clusters: bring no net charge into the system;
 - Positive: bring net positive charge into the system;
 - Negative: bring net negative charge into the system;

- Neutral clusters are non-winding;
- Charged clusters wind;
- Positive and negative charged clusters alternate.

ETH zürich

Satisfying Gauss' in the Spin 1/2 Quantum Link Model

Conditional Flipping: The Meron-Automaton Solution

Topological structure of the clusters is encoded in a tree. Charge clusters are at the top and are associated with neighboring clusters.

Conditional Flipping: The Meron-Automaton Solution

Topological structure of the clusters is encoded in a tree. Charge clusters are at the top and are associated with neighboring clusters.

Neutral cluster combinatorics: exhaust all valid possibilities as we follow the tree.

Conditional Flipping: The Meron-Automaton Solution

Topological structure of the clusters is encoded in a tree. Charge clusters are at the top and are associated with neighboring clusters.

Neutral cluster combinatorics: exhaust all valid possibilities as we follow the tree.

Charged cluster combinatorics: sample words from a regular language (recognized by a finite-state automaton).

CP Symmetry Breaking on the Spin 1/2 Quantum Link Model

Conclusions The Algorithm

Construction of a cluster algorithm that can update efficiently fermionic and gauge degrees of freedom satisfying Gauss' law.

- The algorithm is generalizable to arbitrary spin *S*;
- Study the approach to infinite spin Schwinger model.

Conclusions The Algorithm

Construction of a cluster algorithm that can update efficiently fermionic and gauge degrees of freedom satisfying Gauss' law.

- The algorithm is generalizable to arbitrary spin *S*;
- Study the approach to infinite spin Schwinger model.

- Can a similar algorithm be constructed in higher dimensions?
- Can we simulate other types of constrained systems (e.g. canonical ensemble, which has fixed particle number)?

Conclusions Overview

Classical computers face fundamental challenges (e.g. real-time evolution).

Quantum simulators hold the promise of addressing these issues.

BUT

Improvement is not impossible.

In fact, it is crucial to complement, guide, and validate quantum simulators.

