Meron-Cluster Algorithms for Quantum Link Models

Joao C. Pinto Barros
Lattice 2023, Fermilab
Together with: T. Budde and M. K. Marinkovic
Outline

1. What model and Why

2. Meron Cluster Algorithms

3. Satisfying Gauss’ Law
Outline

1. **What** model and **Why**

2. Meron Cluster Algorithms

3. Satisfying Gauss’ Law
What is it about?

- An efficient algorithm to simulate fermions coupled to (Abelian) gauge fields;
- Operates on the Hamiltonian formalism,
- Main challenges: satisfying Gauss’ law and deal with the fermion sign problem.

E. Huffman’s talk: (Thursday, Algorithms, 17:20)

- Gauss’ law satisfied with post-selection of configurations on the target sector;
- Sign problem solved using Meron-cluster algorithm approach.
What is it about?

• An efficient algorithm to simulate fermions coupled to (Abelian) gauge fields;
• Operates on the Hamiltonian formalism,
• Main challenges: satisfying Gauss’ law and deal with the fermion sign problem.

E. Huffman’s talk: (Thursday, Algorithms, 17:20)
• Gauss’ law satisfied with post-selection of configurations on the target sector;
• Sign problem solved using Meron-cluster algorithm approach.

This talk: (Soon on arXiv)
• Gauss’ law satisfied by building configurations constructively;
• Sign problem solved as a consequence of satisfying Gauss’ law (strictly 1 + 1-d).
What models are considered?

Abelian gauge theories in $1 + 1$ dimensions.

For $U(1)$ quantum link models with spin S:

\[
H = -t \sum_n c_n^+ S_n^+ c_{n+1} + \text{h.c.} + m \sum_n (-1)^n c_n^+ c_n + g \sum_n (S_n^z)^2 + U \sum_n (c_n^+ c_n - 1/2) (c_{n+1}^+ c_{n+1} - 1/2)
\]

- We can simulate any spin S can be made arbitrary;
- In the worst case, it scales like $\mathcal{O}(S^2)$;
- Very efficient for $m = 0$ but can work at arbitrary m. Restricted to $t = 2U$.
Why it is important

- Provide reliable benchmarks for Quantum Simulators;

- Provide a step toward the construction of efficient algorithms for more complicated theories (e.g. QCD);

- Cross-validation and better performance over other methods (e.g. tensor networks for large spin S);

- Construction of the algorithm by re-writing the partition provides a new way of describing the model;
Outline

1. What model and Why

2. Meron Cluster Algorithms

3. Satisfying Gauss’ Law
Mechanics of the Meron-Cluster Algorithm

Construction of the path integral

\[\langle O \rangle = \lim_{\beta \to \infty} \frac{\text{Tr}(O e^{-\beta H})}{\text{Tr}(e^{-\beta H})} \]
Mechanics of the Meron-Cluster Algorithm

Construction of the path integral

$$\langle O \rangle = \lim_{\beta \to \infty} \frac{\text{Tr}(O e^{-\beta H})}{\text{Tr}(e^{-\beta H})}$$
Mechanics of the Meron-Cluster Algorithm

Construction of the path integral

\[\langle O \rangle = \lim_{\beta \to \infty} \frac{\text{Tr}(O e^{-\beta H})}{\text{Tr}(e^{-\beta H})} \]

Configuration space:

S. Chandrasekharan, U.-J. Wiese - PRL, 1999
E. Huffman, D. Banerjee - arXiv:2305.08917
How to Include Gauge Fields?

Simplest case: spin 1/2 Quantum Link Model

\[H = -t \sum_n c_n^\dagger \sigma_n^z c_{n+1} + \text{h.c.} + m \sum_n (-1)^n c_n^\dagger c_n + U \sum_n (c_n^\dagger c_n - 1/2) (c_{n+1}^\dagger c_{n+1} - 1/2) \]

All we need to take care of is to satisfy Gauss’ law

\[G_n = E_{n+1} - E_n - \rho_n, \quad G_n \ket{\psi} = 0. \quad \rho_n = c_n^\dagger (n) c(n) + \frac{1 - (-1)^n}{2} \]
How to Include Gauge Fields?

Simplest case: spin 1/2 Quantum Link Model

\[H = -t \sum_n c_n^\dagger \sigma_n^+ c_{n+1} + \text{h.c.} + m \sum_n (-1)^n c_n^\dagger c_n + U \sum_n \left(c_n^\dagger c_n - 1/2 \right) \left(c_{n+1}^\dagger c_{n+1} - 1/2 \right) \]

All we need to take care of is to satisfy Gauss’ law

\[G_n = E_{n+1} - E_n - \rho_n, \quad G_n \langle \psi \rangle = 0. \quad \rho_n = c_n^\dagger (n) c(n) + \frac{1-(-1)^n}{2} \]

Positive and negative charges always alternate at every time slice;
Outline

1. What model and Why

2. Meron Cluster Algorithms

3. Satisfying Gauss’ Law
Clusters can be classified according to their contribution to the total number of charges in the system:

- **Neutral** clusters: bring no net charge into the system;
- **Positive**: bring net positive charge into the system;
- **Negative**: bring net negative charge into the system;
Clusters can be classified according to their contribution to the total number of charges in the system:

- **Neutral** clusters: bring no net charge into the system;
- **Positive**: bring net positive charge into the system;
- **Negative**: bring net negative charge into the system;

Neutral clusters are non-winding;
Charged clusters wind;
Positive and negative charged clusters alternate.
Satisfying Gauss’ in the Spin 1/2 Quantum Link Model
Conditional Flipping: The Meron-Automaton Solution

Topological structure of the clusters is encoded in a tree. Charge clusters are at the top and are associated with neighboring clusters.
Conditional Flipping: The Meron-Automaton Solution

Topological structure of the clusters is encoded in a tree. Charge clusters are at the top and are associated with neighboring clusters.

Neutral cluster combinatorics: exhaust all valid possibilities as we follow the tree.
Conditional Flipping: The Meron-Automaton Solution

Topological structure of the clusters is encoded in a tree. Charge clusters are at the top and are associated with neighboring clusters.

Neutral cluster combinatorics: exhaust all valid possibilities as we follow the tree.

Charged cluster combinatorics: sample words from a regular language (recognized by a finite-state automaton).
Symmetry Breaking on the Spin 1/2 Quantum Link Model

Small mass limit: Pair creation is common, **Symmetric phase**

Large mass limit: Pair creation is rare, **CP-broken phase**

\[\chi_\epsilon = \left\langle \left(\frac{1}{L} \sum_n \sigma_n^z \right)^2 \right\rangle \]

Non-universal critical mass:

\[m_c \sim 0.24 \]

2d Ising critical exponents give curve collapse:

\[\nu = 1, \beta = 1/8 \]
Conclusions

The Algorithm

Construction of a cluster algorithm that can update efficiently fermionic and gauge degrees of freedom satisfying Gauss' law.

- The algorithm is generalizable to arbitrary spin S;
- Study the approach to infinite spin - Schwinger model.
Conclusions

The Algorithm

Construction of a cluster algorithm that can update efficiently fermionic and gauge degrees of freedom satisfying Gauss' law.

- The algorithm is generalizable to arbitrary spin S;

- Study the approach to infinite spin - Schwinger model.

- Can a similar algorithm be constructed in higher dimensions?

- Can we simulate other types of constrained systems (e.g. canonical ensemble, which has fixed particle number)?
Conclusions
Overview

Classical computers face fundamental challenges (e.g. real-time evolution).

Quantum simulators hold the promise of addressing these issues.

BUT

Improvement is not impossible.

In fact, it is crucial to **complement**, **guide**, and **validate** quantum simulators.