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Introduction 1

Classical Lattice simulations, based on Markov Chain Monte Carlo (MCMC)
algorithms, proved successful in computing for example the hadron spectrum and
the non-trivial QCD vacuum structure. They are also crucial in first principle
computation of many phenomenologically interesting observables: such as the
(g − 2)µ, elements of the CKM matrix,...

However, they are subject to limitations which most of times are due to the lack of
statistical interpretation (the well known sign problem). This prevents us from the
(direct) study of real-time dynamics, the QCD properties with non-zero baryonic
chemical potential or topological theta term; and from the (direct) computation of
transport coefficients and scattering amplitudes with more than one hadron in
the initial or final state, and so on.
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Introduction 2

Our collaboration is particularly interested in the study of thermodynamic properties of
lattice gauge theories: for this reason we are testing a variety of strategies to perform
numerical computations of thermal averages on Quantum Computers.

⟨O⟩β =
1

Z (β)
Tr

[
Oe−βĤ

]
where

β =
KB

T
and Z (β) = lim

N→∞

∑
{xτ}

⟨x0| e−
β
N
Ĥ |x1⟩ ⟨x2| · · · |xN−1⟩ ⟨xN | e−

β
N
Ĥ |x0⟩

In classical simulations, one can make use of the path-integral formulation to compute
such observables, but in many cases, the sign problem arises. In this context, Quantum
Computers represent a promising technology as it is possible to devise MCMC
quantum algorithms which do not suffer for the sign problem.
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]
where

β =
KB

T
and Z (β) = lim

N→∞

∑
{xτ}

⟨x0| e−
β
N
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Introduction 3

In his talk (Today), G. Clemente already introduced some of the main
approaches (that we are exploring) for thermal average estimations: quantum
MCMC, quantum annealing, variational-based approaches.

In my talk I am going to focus on the Quantum Metropolis Sampling (QMS)
algorithm, first introduced by K. Temme et al. [Nature 471 (2011) 87]. We applied
it to a simple toy model: a (2 + 1)D gauge theory on a two-points lattice with periodic
boundary conditions and D4 symmetry groups. (Details later).
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Quantum Metropolis Sampling 1

Quantum Metropolis Sampling follows the same scheme of a classical Metropolis
algorithm: it consists in a Markov Chain that extracts the Hamiltonian eigenstates
|ϕk⟩ with probability e−βEk/Z (β) (where Ek is the eigenvalue of |ϕk⟩)

In its original formulation, the algorithm requires 4 quantum registers:

|acc⟩4 |Enew⟩3 |Eold⟩2 |ϕ⟩1

The state of the system |ϕ⟩1 have to be initialized to an Hamiltonian eigenstate, |ϕk⟩.
This can be easily done by initializing it to |0⟩, and then performing a Quantum Phase
Estimation (QPE) between registers 1 and 2 (which generally requires a Trotterization
[M. Troyer and U. J. Wiese (2005)]) followed by a measure on the energy register,
obtaining the starting state

|0⟩4 |0⟩3 |Ek⟩2 |ϕk⟩1
Then, the algorithm consists of three steps
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Quantum Metropolis Sampling 2

1. Metropolis proposal
From a set of unitary operators C (which must respect some properties that will be
outlined later), it is classically drawn an element C which is applied to the state
register. Then a phase estimation is performed between registers 1 and 3.

|0⟩4 |0⟩3 |Ek⟩2 |ϕk⟩1 →
C
∑
p

x
(C)
k,p |0⟩4 |0⟩3 |Ek⟩2 |ϕp⟩1 →

QPE
∑
p

x
(C)
k,p |0⟩4 |Ep⟩3 |Ek⟩2 |ϕp⟩1

2. Acceptance evaluation
Apply an oracle W (Ep,Ek) between the energy registers and the acceptance qubit∑

p

x
(C)
k,p |0⟩4 |Ep⟩3 |Ek⟩2 |ϕp⟩1 →

W (Ep ,Ek )
∑
p

x
(C)
k,p |Wk,p⟩4 |Ep⟩3 |Ek⟩2 |ϕp⟩1

|Wk,p⟩4 =
√

f (∆Ep,k) |1⟩4 +
√
1− f (∆Ep,k) |0⟩4 and f (∆Ep,k) = min(1, e−β∆E )
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Quantum Metropolis Sampling 3
3. Accept/Reject
In this step, a measurement on the register |Wk,p⟩4 is performed with two possible
results:

- 1: the proposed state is accepted, Enew is measured and the resulting eigenstate
is used at step 1.

- 0: the proposal is rejected. The system state must be reverted trying to project
back to the old eigenstate (to a state with the old energy is sufficient).

Notes
• it is possible to use only one quantum register for the energies, using a classical
register to store Eold and slightly modifying the oracle W ;

• in the case of lattice gauge theories, the set C and measurements must obey a
further condition: to respect gauge invariance;

• the set C should contain as many operators as necessary to ensure ergodicity and
detailed balance. However it is possible to demonstrate that 2 non-commuting
operators are sufficient to generate the whole unitary group representing the
transition between physical states.
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Simulations and related studies

Of course, this algorithm cannot be ran on current Quantum Computers. Our study is
based on simulations without noise. For our simulations we used SUQA (Simulator of
Universal Quantum Algorithms) [https://github.com/QC-PISA/suqa.git].

Some of us already verified the applicability of this algorithm to a simple toy model
(which is affected by the sign problem in classical simulations): a system of three spins
in a frustrated configuration [G. Clemente et al., PRD 101 (2020) 7]. In this study,
some of my collaborators et al., showed that QMS is able to reproduce correct results
and studied its systematic errors.

In a new study, we studied in more details the systematics of this algorithm on the
same toy model, comparing it with the Quantum-Quantum Metropolis
Algorithm [M.-H. Yung and A. Aspuru-Guzik, PNAS USA 109 754 (2012)].
Results can be found at [arXiv:2308.01279]
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The model we study
We tested this algorithm on a pure-gauge D4 lattice gauge theory, using the same toy
model used by Lamm et al. in [Phys. Rev. D 100 (2019) no.3, 034518].

The model live on a 2D lattice with 2
points and periodic boundary conditions.
Four links connect the points among each
other along the two directions.

The Hamiltonian of the system, in the basis of the links, reads Ĥ = ĤV + ĤK

HV =
1

g2

∑
U⃗

V (U⃗) |U⃗⟩ ⟨U⃗|
(
|U⃗⟩ = |U3⟩ |U2⟩ |U1⟩ |U0⟩

)

HK = −LogTK where ⟨U⃗|TK |U⃗⟩ ∼=
3∏

i=0

e
1
g2

Tr[ρ(U′
i )

−1ρ(Ui )].
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The model we study
Due to gauge invariance with respect to local transformations [see A. Mariani’s talk]

dimHphys =
∑

S∈conj .classes

(
|G |
|S |

)|E |−|V |
= 176

However we had to use a 12-qubits state.
The spectrum of the theory can be analytically computed
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Results

We fixed
1

g2
= 0.8 and performed different simulations using several values of

temperatures, and number of qubits in the energy register (nqe). Our goal is to study
the deviation of the sampled spectrum. Each simulation required to run QMS on
12 + nqe + 1 qubits.

We also measured plaquette distributions in separate runs to verify that
non-commuting observables are correctly sampled. Also, the measurement could cause
further systematics.

The explored values are summarized in the following:

β = 10−7, 0.1, 0.5

nqe = 3, 4, 5, 6, 7
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results
β = 0, nqe = 3, 5, 7

At β = 0, the measured spectrum
reproduces really well the smeared
real spectrum. The maximum
distances between points and
QPEd-smeared distribution is 2σ at
the most.
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results
β = 0, nqe = 5
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results
β = 0.1, nqe = 3, 5, 7

At β = 0.1 the distribution of energy
measurements reproduces quite well
the smeared spectrum (for high
numbers of qubits).
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results
β = 0.1, nqe = 5
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results
β = 0.5, nqe = 3, 5, 7

At β = 0.5 the measured energy
distribution is clearly non-reliable for
higher nqe .
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results
β = 0.5, nqe = 5
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Observation

QMS runs return good results for β = 0 and 0.1.

Simulations at higher β are more biased with respect to those at lower β, both in the
spectrum and the plaquette estimation.

This could be due to a drop in the acceptance: e−β∆E becomes smaller and smaller as
β increases. Together with the spectrum discreteness, this could generate an effective
ergodicity loss.

Possible way to fix it: randomized state initialization.
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Conclusions
We described the algorithm we use and how to represent the non-Abelian discrete
gauge group D4 in a 2 point (2 + 1)D lattice with periodic boundary conditions.

Gauge preserving moves and measurements must be performed in order to explore
physical states only.

It is possible to find a set of moves C that permits to obtain an ergodic Markov Chain
among physical states, and it substantially requires two operators.

For the first time, a quantum MCMC algorithm has been tested on a non-Abelian
group to study thermal averages.

Results of the simulations are in good agreement with analytical expectations at lower
β, while a divergence can be observed at higher values.

Thank you!
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