

Thermodynamics of non-Abelian D₄ lattice gauge theory via Quantum Metropolis Sampling

E. Ballini (Trento), G. Clemente (DESY), M. D'Elia and K. Zambello (Pisa)

Overlook

Introduction

The Quantum Metropolis Sampling Description Notes Related studies

The model we study

Results

Conclusions

Classical Lattice simulations, based on Markov Chain Monte Carlo (MCMC) algorithms, proved **successful** in computing for example the **hadron spectrum** and the non-trivial **QCD vacuum structure**. They are also crucial in first principle computation of many phenomenologically interesting observables: such as the $(g - 2)_{\mu}$, elements of the CKM matrix,...

However, they are subject to limitations which most of times are due to the lack of statistical interpretation (the well known **sign problem**). This prevents us from the (direct) study of **real-time dynamics**, the QCD properties with **non-zero baryonic chemical potential** or **topological theta term**; and from the (direct) computation of **transport coefficients** and **scattering amplitudes with more than one hadron** in the initial or final state, and so on.

Classical Lattice simulations, based on Markov Chain Monte Carlo (MCMC) algorithms, proved **successful** in computing for example the **hadron spectrum** and the non-trivial **QCD vacuum structure**. They are also crucial in first principle computation of many phenomenologically interesting observables: such as the $(g - 2)_{\mu}$, elements of the CKM matrix,...

However, they are subject to limitations which most of times are due to the lack of statistical interpretation (the well known **sign problem**). This prevents us from the (direct) study of **real-time dynamics**, the QCD properties with **non-zero baryonic chemical potential** or **topological theta term**; and from the (direct) computation of **transport coefficients** and **scattering amplitudes with more than one hadron** in the initial or final state, and so on.

Our collaboration is particularly interested in the study of thermodynamic properties of lattice gauge theories: for this reason we are testing a variety of strategies to perform numerical computations of thermal averages on Quantum Computers.

$$\langle \mathcal{O}
angle_eta = rac{1}{Z(eta)} {\sf Tr} \left[\mathcal{O} e^{-eta \hat{H}}
ight]$$

where

$$\beta = \frac{K_B}{T} \quad \text{and} \quad Z(\beta) = \lim_{N \to \infty} \sum_{\{x_\tau\}} \langle x_0 | e^{-\frac{\beta}{N}\hat{H}} | x_1 \rangle \langle x_2 | \cdots | x_{N-1} \rangle \langle x_N | e^{-\frac{\beta}{N}\hat{H}} | x_0 \rangle$$

In classical simulations, one can make use of the path-integral formulation to compute such observables, but in many cases, the sign problem arises. In this context, Quantum Computers represent a promising technology as it is possible to devise MCMC quantum algorithms which **do not suffer for the sign problem**.

Our collaboration is particularly interested in the study of thermodynamic properties of lattice gauge theories: for this reason we are testing a variety of strategies to perform numerical computations of thermal averages on Quantum Computers.

$$\langle \mathcal{O}
angle_eta = rac{1}{Z(eta)} {\sf Tr} \left[\mathcal{O} e^{-eta \hat{H}}
ight]$$

where

$$\beta = \frac{K_B}{T} \quad \text{and} \quad Z(\beta) = \lim_{N \to \infty} \sum_{\{x_\tau\}} \langle x_0 | e^{-\frac{\beta}{N}\hat{H}} | x_1 \rangle \langle x_2 | \cdots | x_{N-1} \rangle \langle x_N | e^{-\frac{\beta}{N}\hat{H}} | x_0 \rangle$$

In classical simulations, one can make use of the path-integral formulation to compute such observables, but in many cases, the sign problem arises. In this context, Quantum Computers represent a promising technology as it is possible to devise MCMC quantum algorithms which **do not suffer for the sign problem**.

In his talk (Today), G. Clemente already introduced some of the main approaches (that we are exploring) for thermal average estimations: quantum MCMC, quantum annealing, variational-based approaches.

In my talk I am going to focus on the **Quantum Metropolis Sampling (QMS)** algorithm, first introduced by K. Temme et al. [Nature 471 (2011) 87]. We applied it to a simple toy model: a (2 + 1)D gauge theory on a two-points lattice with periodic boundary conditions and D_4 symmetry groups. (Details later).

Quantum Metropolis Sampling follows the same scheme of a classical Metropolis algorithm: it consists in a Markov Chain that extracts the Hamiltonian eigenstates $|\phi_k\rangle$ with probability $e^{-\beta E_k}/Z(\beta)$ (where E_k is the eigenvalue of $|\phi_k\rangle$)

In its original formulation, the algorithm requires 4 quantum registers:

 $\ket{acc}_4 \ket{E_{new}}_3 \ket{E_{old}}_2 \ket{\phi}_1$

The state of the system $|\phi\rangle_1$ have to be initialized to an Hamiltonian eigenstate, $|\phi_k\rangle$. This can be easily done by initializing it to $|\mathbf{0}\rangle$, and then performing a Quantum Phase Estimation (QPE) between registers 1 and 2 (which generally requires a Trotterization [M. Troyer and U. J. Wiese (2005)]) followed by a measure on the energy register, obtaining the starting state

 $\ket{0}_{4}\ket{0}_{3}\ket{E_{k}}_{2}\ket{\phi_{k}}_{1}$

Then, the algorithm consists of three steps

Quantum Metropolis Sampling follows the same scheme of a classical Metropolis algorithm: it consists in a Markov Chain that extracts the Hamiltonian eigenstates $|\phi_k\rangle$ with probability $e^{-\beta E_k}/Z(\beta)$ (where E_k is the eigenvalue of $|\phi_k\rangle$)

In its original formulation, the algorithm requires 4 quantum registers:

 $|acc\rangle_4 |E_{new}\rangle_3 |E_{old}\rangle_2 |\phi\rangle_1$

The state of the system $|\phi\rangle_1$ have to be initialized to an Hamiltonian eigenstate, $|\phi_k\rangle$. This can be easily done by initializing it to $|\mathbf{0}\rangle$, and then performing a Quantum Phase Estimation (QPE) between registers 1 and 2 (which generally requires a Trotterization [M. Troyer and U. J. Wiese (2005)]) followed by a measure on the energy register, obtaining the starting state

 $\left|0\right\rangle_{4}\left|\mathbf{0}\right\rangle_{3}\left|E_{k}\right\rangle_{2}\left|\phi_{k}\right\rangle_{1}$

Then, the algorithm consists of three steps

1. Metropolis proposal

From a set of unitary operators C (which must respect some properties that will be outlined later), it is classically drawn an element C which is applied to the state register. Then a phase estimation is performed between registers 1 and 3.

$$|0\rangle_{4} |\mathbf{0}\rangle_{3} |E_{k}\rangle_{2} |\phi_{k}\rangle_{1} \rightarrow^{C} \sum_{p} x_{k,p}^{(C)} |0\rangle_{4} |\mathbf{0}\rangle_{3} |E_{k}\rangle_{2} |\phi_{p}\rangle_{1} \rightarrow^{QPE} \sum_{p} x_{k,p}^{(C)} |0\rangle_{4} |E_{p}\rangle_{3} |E_{k}\rangle_{2} |\phi_{p}\rangle_{1}$$

2. Acceptance evaluation

Apply an oracle $W(E_p, E_k)$ between the energy registers and the acceptance qubit

$$\sum_{P} x_{k,p}^{(C)} |0\rangle_{4} |E_{P}\rangle_{3} |E_{k}\rangle_{2} |\phi_{P}\rangle_{1} \rightarrow^{W(E_{P},E_{k})} \sum_{P} x_{k,p}^{(C)} |\mathcal{W}_{k,P}\rangle_{4} |E_{P}\rangle_{3} |E_{k}\rangle_{2} |\phi_{P}\rangle_{1}$$

 $|\mathcal{W}_{k,p}\rangle_4 = \sqrt{f(\Delta E_{p,k})} |1\rangle_4 + \sqrt{1 - f(\Delta E_{p,k})} |0\rangle_4$ and $f(\Delta E_{p,k}) = \min(1, e^{-\beta \Delta E})$

1. Metropolis proposal

From a set of unitary operators C (which must respect some properties that will be outlined later), it is classically drawn an element C which is applied to the state register. Then a phase estimation is performed between registers 1 and 3.

$$|0\rangle_{4} |\mathbf{0}\rangle_{3} |E_{k}\rangle_{2} |\phi_{k}\rangle_{1} \rightarrow^{C} \sum_{p} x_{k,p}^{(C)} |0\rangle_{4} |\mathbf{0}\rangle_{3} |E_{k}\rangle_{2} |\phi_{p}\rangle_{1} \rightarrow^{QPE} \sum_{p} x_{k,p}^{(C)} |0\rangle_{4} |E_{p}\rangle_{3} |E_{k}\rangle_{2} |\phi_{p}\rangle_{1}$$

2. Acceptance evaluation

Apply an oracle $W(E_p, E_k)$ between the energy registers and the acceptance qubit

$$\sum_{p} x_{k,p}^{(C)} |0\rangle_{4} |E_{p}\rangle_{3} |E_{k}\rangle_{2} |\phi_{p}\rangle_{1} \rightarrow^{W(E_{p},E_{k})} \sum_{p} x_{k,p}^{(C)} |\mathcal{W}_{k,p}\rangle_{4} |E_{p}\rangle_{3} |E_{k}\rangle_{2} |\phi_{p}\rangle_{1}$$

$$|\mathcal{W}_{k,p}\rangle_4 = \sqrt{f(\Delta E_{p,k})} |1\rangle_4 + \sqrt{1 - f(\Delta E_{p,k})} |0\rangle_4$$
 and $f(\Delta E_{p,k}) = \min(1, e^{-\beta \Delta E})$

3. Accept/Reject

In this step, a measurement on the register $|\mathcal{W}_{k,p}\rangle_4$ is performed with two possible results:

- 1: the proposed state is **accepted**, E_{new} is measured and the resulting eigenstate is used at step 1.
- 0: the proposal is **rejected**. The system state must be reverted trying to project back to the old eigenstate (to a state with the old energy is sufficient).

Notes

- it is possible to use only one quantum register for the energies, using a classical register to store E_{old} and slightly modifying the oracle W;
- in the case of lattice gauge theories, the set C and measurements must obey a further condition: to respect gauge invariance;
- the set C should contain as many operators as necessary to ensure ergodicity and detailed balance. However it is possible to demonstrate that 2 non-commuting operators are sufficient to generate the whole unitary group representing the transition between physical states.

3. Accept/Reject

In this step, a measurement on the register $\left|\mathcal{W}_{k,p}\right\rangle_4$ is performed with two possible results:

- 1: the proposed state is **accepted**, E_{new} is measured and the resulting eigenstate is used at step 1.
- 0: the proposal is **rejected**. The system state must be reverted trying to project back to the old eigenstate (to a state with the old energy is sufficient).

Notes

- it is possible to use only one quantum register for the energies, using a classical register to store E_{old} and slightly modifying the oracle W;
- in the case of lattice gauge theories, the set C and measurements must obey a further condition: to respect gauge invariance;
- the set C should contain as many operators as necessary to ensure ergodicity and detailed balance. However it is possible to demonstrate that 2 non-commuting operators are sufficient to generate the whole unitary group representing the transition between physical states.

Simulations and related studies

Of course, this algorithm cannot be ran on current Quantum Computers. Our study is based on simulations without noise. For our simulations we used **SUQA** (Simulator of Universal Quantum Algorithms) [https://github.com/QC-PISA/suqa.git].

Some of us already verified the applicability of this algorithm to a simple toy model (which is affected by the sign problem in classical simulations): a system of three spins in a frustrated configuration **[G. Clemente et al., PRD 101 (2020) 7]**. In this study, some of my collaborators et al., showed that QMS is able to reproduce correct results and studied its systematic errors.

In a new study, we studied in more details the systematics of this algorithm on the same toy model, comparing it with the Quantum-Quantum Metropolis Algorithm [M.-H. Yung and A. Aspuru-Guzik, PNAS USA 109 754 (2012)]. Results can be found at [arXiv:2308.01279]

Simulations and related studies

Of course, this algorithm cannot be ran on current Quantum Computers. Our study is based on simulations without noise. For our simulations we used **SUQA** (Simulator of Universal Quantum Algorithms) [https://github.com/QC-PISA/suqa.git].

Some of us already verified the applicability of this algorithm to a simple toy model (which is affected by the sign problem in classical simulations): a system of three spins in a frustrated configuration [G. Clemente et al., PRD 101 (2020) 7]. In this study, some of my collaborators et al., showed that QMS is able to reproduce correct results and studied its systematic errors.

In a new study, we studied in more details the systematics of this algorithm on the same toy model, comparing it with the Quantum-Quantum Metropolis Algorithm [M.-H. Yung and A. Aspuru-Guzik, PNAS USA 109 754 (2012)]. Results can be found at [arXiv:2308.01279]

Simulations and related studies

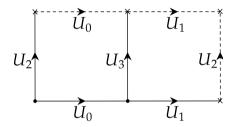
Of course, this algorithm cannot be ran on current Quantum Computers. Our study is based on simulations without noise. For our simulations we used **SUQA** (Simulator of Universal Quantum Algorithms) [https://github.com/QC-PISA/suqa.git].

Some of us already verified the applicability of this algorithm to a simple toy model (which is affected by the sign problem in classical simulations): a system of three spins in a frustrated configuration [G. Clemente et al., PRD 101 (2020) 7]. In this study, some of my collaborators et al., showed that QMS is able to reproduce correct results and studied its systematic errors.

In a new study, we studied in more details the systematics of this algorithm on the same toy model, comparing it with the Quantum-Quantum Metropolis Algorithm [M.-H. Yung and A. Aspuru-Guzik, PNAS USA 109 754 (2012)]. Results can be found at [arXiv:2308.01279]

The model we study

We tested this algorithm on a pure-gauge D_4 lattice gauge theory, using the same toy model used by Lamm et al. in [Phys. Rev. D 100 (2019) no.3, 034518].



The model live on a 2D lattice with 2 points and periodic boundary conditions. Four links connect the points among each other along the two directions.

The Hamiltonian of the system, in the basis of the links, reads $\hat{H} = \hat{H_V} + \hat{H_K}$

$$H_{V} = \frac{1}{g^{2}} \sum_{\vec{U}} V(\vec{U}) |\vec{U}\rangle \langle \vec{U}| \qquad \left(|\vec{U}\rangle = |U_{3}\rangle |U_{2}\rangle |U_{1}\rangle |U_{0}\rangle \right)$$
$$H_{K} = -\text{Log} T_{K} \quad \text{where} \quad \langle \vec{U}| T_{K} |\vec{U}\rangle \cong \prod_{i=0}^{3} e^{\frac{1}{g^{2}}\text{Tr}\left[\rho(U_{i}')^{-1}\rho(U_{i})\right]}.$$

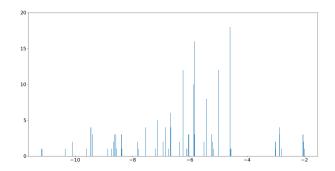
The model we study

Due to gauge invariance with respect to local transformations [see A. Mariani's talk]

$$\dim \mathcal{H}_{phys} = \sum_{S \in conj. classes} \left(\frac{|G|}{|S|} \right)^{|E| - |V|} = 176$$

However we had to use a 12-qubits state.

The spectrum of the theory can be analytically computed



Results

We fixed $\frac{1}{g^2} = 0.8$ and performed different simulations using several values of temperatures, and number of qubits in the energy register (n_{qe}) . Our goal is to study the deviation of the sampled spectrum. Each simulation required to run QMS on $12 + n_{qe} + 1$ qubits.

We also measured plaquette distributions in separate runs to verify that non-commuting observables are correctly sampled. Also, the measurement could cause further systematics.

The explored values are summarized in the following:

$$\beta = 10^{-7}, \quad 0.1, \quad 0.5$$

 $n_{ae} = 3, \quad 4, \quad 5, \quad 6, \quad 7$

Results

We fixed $\frac{1}{g^2} = 0.8$ and performed different simulations using several values of temperatures, and number of qubits in the energy register (n_{qe}) . Our goal is to study the deviation of the sampled spectrum. Each simulation required to run QMS on $12 + n_{qe} + 1$ qubits.

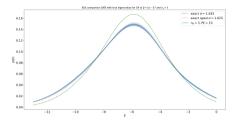
We also measured plaquette distributions in separate runs to verify that non-commuting observables are correctly sampled. Also, the measurement could cause further systematics.

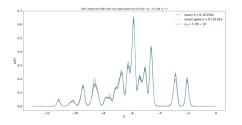
The explored values are summarized in the following:

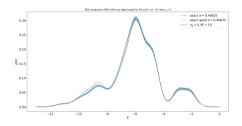
$$\beta = 10^{-7}, \quad 0.1, \quad 0.5$$

 $n_{qe} = 3, \quad 4, \quad 5, \quad 6, \quad 7$

$$\beta = 0, \ n_{qe} = 3, 5, 7$$

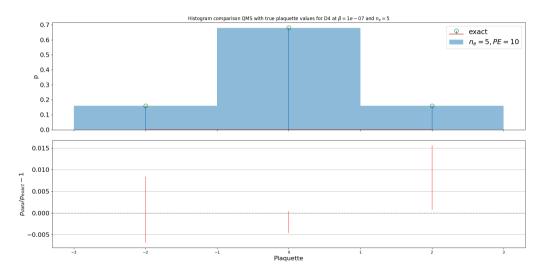




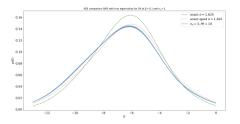


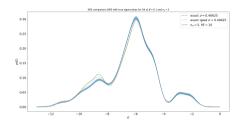
At $\beta = 0$, the measured spectrum reproduces really well the smeared real spectrum. The maximum distances between points and QPEd-smeared distribution is 2σ at the most.

 $\beta = 0$, $n_{qe} = 5$

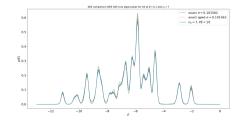


$$\beta = 0.1, n_{qe} = 3, 5, 7$$

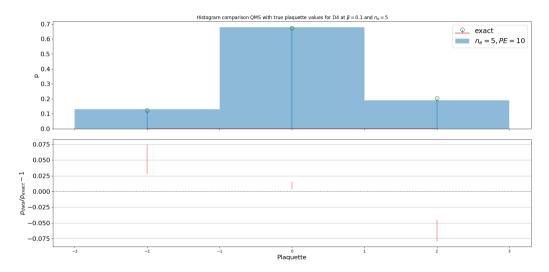




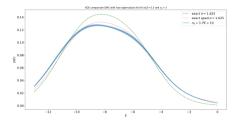
At $\beta = 0.1$ the distribution of energy measurements reproduces quite well the smeared spectrum (for high numbers of qubits).

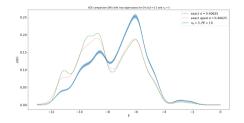


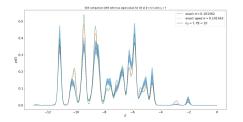
$$\beta = 0.1, \; n_{qe} = 5$$



$$\beta = 0.5, n_{qe} = 3, 5, 7$$

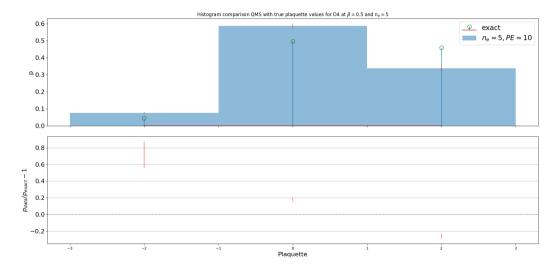






At $\beta = 0.5$ the measured energy distribution is clearly non-reliable for higher n_{qe} .

$$\beta = 0.5, n_{qe} = 5$$



Observation

QMS runs return good results for $\beta = 0$ and 0.1.

Simulations at higher β are more biased with respect to those at lower β , both in the spectrum and the plaquette estimation.

This could be due to a drop in the acceptance: $e^{-\beta\Delta E}$ becomes smaller and smaller as β increases. Together with the spectrum discreteness, this could generate an effective ergodicity loss.

Possible way to fix it: randomized state initialization.

Observation

QMS runs return good results for $\beta = 0$ and 0.1.

Simulations at higher β are more biased with respect to those at lower β , both in the spectrum and the plaquette estimation.

This could be due to a drop in the acceptance: $e^{-\beta\Delta E}$ becomes smaller and smaller as β increases. Together with the spectrum discreteness, this could generate an effective ergodicity loss.

Possible way to fix it: randomized state initialization.

Conclusions

We described the algorithm we use and how to represent the non-Abelian discrete gauge group D_4 in a 2 point (2+1)D lattice with periodic boundary conditions.

Gauge preserving moves and measurements must be performed in order to explore physical states only.

It is possible to find a set of moves C that permits to obtain an ergodic Markov Chain among physical states, and it substantially requires two operators.

For the first time, a quantum MCMC algorithm has been tested on a non-Abelian group to study thermal averages.

Results of the simulations are in good agreement with analytical expectations at lower β , while a divergence can be observed at higher values.