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Introduction
Python is a particularly appealing language to carry out data analysis, owing in
part to its user-friendly character as well as its access to well maintained and
powerful libraries like NumPy and SciPy. Still, for the purpose of analyzing data
in a lattice QCD context, some desirable functionality is missing from these
libraries. Moreover, scripting languages tend to be slower than compiled ones.
To help address these points we present the LatticeToolbox [1], a collection of
Python modules to facilitate lattice QCD data analysis. Modules are sped up
behind the scenes using Numba and parallelizers.

Motivation and strategy
The LatticeToolbox was originally developed by H. Sandmeyer in the context
of HotQCD projects. Taking a cue from other open data movements like
the ILDG, we have refactored the code, improved its performance, then
made it publicly available on GitHub [1]. As part of the refactoring, we try
to modularize as shown below. We have a large set of unit tests which we
regularly run to ensure the code is robust against changes. As a modest step
toward interoperability, we dedicate a section of the code to interfacing with
configuration binaries and other lattice software.
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Figure 1: Rough sketch of organizational hierarchy. Base modules encapsu-
late combinations of well maintained Python modules. These are used to con-
struct and enhance math and physics objects, which in turn build up modules.
Here the configuration reader and HRG are given as two examples.

Interfacing
Having evolved in the context of HotQCD and MILC projects, the code
interfaces with some software and conventions of these groups. We
also try to make the code flexible to conventions in the broader lattice
community. For instance:

• Reading in gauge configurations (NERSC, eventually ILDG)

• Jackknifing of C. Schmidt’s DenseCode output

• Reading .gpl files from P. LePage’s tools
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Examples of streamlined coding

import numpy as np
import latqcdtools.base.logger as logger
from latqcdtools.physics.HRG import HRG
from latqcdtools.base.readWrite import readTable, writeTable
from latqcdtools.base.initialize import initialize, finalize

# Write terminal output to log file. Includes git commit hash.
initialize(’HRG.log’)

T = np.arange(4, 166, 0.5)

# Read in hadron names, masses, charges, baryon number, strangeness,
# charm, and degeneracy factor. This table is provided with LatticeToolbox.
hadrons, M, Q, B, S, C, g = readTable(’QM_hadron_list_ext_strange_2020.txt’,

usecols=(0,1,2,3,4,5,6),
dtype="U11,f8,i8,i8,i8,i8,i8")

w = np.array([1 if ba==0 else -1 for ba in B])

# Instantiate HRG object.
QMhrg = HRG(M,g,w,B,S,Q,C)

# This computation is vectorized since T is a numpy array.
logger.info(’Computing chi2B.’)
chi = QMhrg.gen_chi(T, B_order=2, Q_order=0, S_order=0, C_order=0,

muB_div_T=0.3, muQ_div_T=0, muS_div_T=0, muC_div_T=0)

# Output T and chi2B as columns in this table.
writeTable("chi2B.txt", T, chi, header=[’T [MeV]’,’QM-HRG’])

finalize()

Listing 1: An example of how the LatticeToolbox can be used to carry out a
simple hadron resonance gas computation of χB

2 . As one can see from the
gen_chi call, arbitrary conserved-charge cumulants are supported.

import numpy as np
from latqcdtools.base.readWrite import readTable
from latqcdtools.base.printErrorBars import get_err_str
from latqcdtools.math.num_deriv import diff_deriv
from latqcdtools.math.spline import getSpline
from latqcdtools.statistics.statistics import gaudif
from latqcdtools.statistics.bootstr import bootstr_from_gauss
from latqcdtools.physics.continuumExtrap import continuumExtrapolate
from latqcdtools.physics.referenceScales import r0_phys, CY_A_DIV_R0
from latqcdtools.physics.lattice_params import latticeParams

Nts = [6,8,10,12,14,16,18, 20]
Tlist = []
Telist = []

for Nt in Nts:

T = []
Ns = Nt*3

# Read in Polyakov loop measurements,
data = readTable(’Nt’+str(Nt)+’.txt’)
beta, PM, PE = data[0], data[1], data[2]

# Create array of temperatures in physical units
for b in beta:

# Use the most recent parameterization of r0 to set the scale
lp = latticeParams(Ns, Nt, b, scaleType=’r0’, paramYear=CY_A_DIV_R0)
T.append( lp.getT() )

t = np.linspace(T[0],T[-1],1001)

# Extract Tc from inflection point of <|P|>, using natural spline
def getTc(pm):

spl = getSpline(T, pm, natural=True)
dPdT = diff_deriv(t, spl)
maxIndex = np.argmax(dPdT)
return t[maxIndex]

# Error in Tc estimate comes from 1000 Gaussian bootstrap samples
Tc, Tce = bootstr_from_gauss(getTc, PM, PE, 1000)
Tlist.append(Tc)
Telist.append(Tce)

# Perform O(a^4) continuum-limit extrapolation
result, result_err, chidof = continuumExtrapolate( Nts, Tlist, Telist ,show_results=True,

plot_results=True, xtype = "Nt",
order = 2,
xlabel = "$1/N_\\tau^2$",
ylabel = "$T$ [MeV]" )

# Do a Z-test against literature result,
Tcr0 = r0_phys(year=2014, units="MeVinv") * result[0]
Tcr0e = r0_phys(year=2014, units="MeVinv") * result_err[0]
Tcr0_lit = 0.7457
Tcr0_lite = 0.0045
q = gaudif(Tcr0,Tcr0e,Tcr0_lit,Tcr0_lite)

Listing 2: Given are results for ⟨|P |⟩ at various Nτ from pure SU(3) lattice cal-
culations. This code (1) estimates the inflection point of ⟨|P |⟩ as a function of
T to get Tc; (2) performs a parallelized bootstrap of (1) to get σTc ; (3) repeats
for all Nτ and performs a continuum-limit extrapolation; and (4) compares Tcr0
against the literature result using a Z-test. The bootstrapping method is ag-
nostic to the to-be-bootstrapped function.

Physics modules
We conclude with some physics modules that might be of interest both to lattice
practitioners and those studying QCD phenomenology:

• HotQCD parameterizations of, e.g. afK(β), r1ms(β)

• Physical parameters and their errors, e.g. mπ, mρ

• Hadron Resonance Gas model [2]

• QCD Equation of State [3]

• Static quark potential and Polyakov loop observables

• We will continue adding more!


