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Challenges of the classical paradigm

“Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy.” – Richard Feynman

Markov Chain Monte Carlo (MCMC) proved successful in computing particle spectrum
and vacuum structure, but unsuccessful for some specific systems or tasks:

> real-time dynamics;
> thermal equilibrium with non-zero baryonic chemical potential µ > 0;
> non-zero topological theta term θ ̸= 0 (or external fields in general);
> computation of transport coefficients (such as conductivities);
> frustrated systems.

The quantum to classical mapping is not always viable in some cases: either missing
statistical interpretation or expensive inversions show up.
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Thermal averages: why quantum?

In order to characterize the phase diagram of lattice QFT models, we are interested in
computing thermal averages of observables O over a Gibbs ensamble at temperature 1

β

⟨O⟩β = Tr[Oe−βĤ ]/Z ,

Z = lim
N→∞

∑
{xτ}

⟨x0|e−Ĥ β
N |x1⟩ ⟨x1|. . .|xN⟩ ⟨xN |e−Ĥ β

N |x0⟩ .

Often this is possible via the path-integral formulation and Monte Carlo techniques, but
in many cases one incurs in the so called sign problem:

If exists ⟨xτ |e−Ĥ β
N |xτ+1⟩ ̸∈ R≥0 =⇒ exist paths with Euclidean action S [{xτ}] ̸∈ R

=⇒ weight e−S ≯ 0 in the path-integral =⇒ no statistical intepretation

Unlike traditional Monte Carlo, quantum computing shows no sign problem:

In principle, it is possible to efficiently simulate at finite baryon density and with a
topological θ term at thermal equilibrium, both extremely valuables for phenomenology.
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Computing Gibbs ensembles: overview of main approaches

Many approaches have been proposed, to mention a few:
> quantum metropolis methods; [B. Terhal, D. Di Vincenzo (2000), K. Temme et al., Nature 471

(2011) 87,. . . ] [GC et al., PRD 101 (2020) 7][E. Ballini, GC, M. D’Elia, L. Maio, and K. Zambello (2023,

coming soon) ] (see Lorenzo Maio’s talk Today)
> quantum simulated annealing; [R.D. Somma et al. (2008), M.-H. Yung and A. Aspuru-Guzik, Proc.

Natl. Acad. Sci. USA 109 (2012) 754,. . . ] [R. Aiudi, C. Bonanno, C. Bonati, GC, M. D’Elia, L. Maio,

D. Rossini, S. Tirone, and K. Zambello (2023, on arXiv today!)]

> approaches based on Variational Quantum Eigensolver (VQE) techniques; [J. Whitfield

et al. (2011), J. Selisko et al. (2022),. . . ] [M. Consiglio et al. (2023)] (see Xiaoyang’s talks)
> approaches based on Quantum Imaginary Time Evolution (QITE); [A. Tan Teck Keng

(2023)] (see Juan William’s talks)
> others. . .

In this talk, I introduce a novel algorithm for thermal average estimation with nearest
term advantage based on VQE techniques and a reweighting procedure.
[GC, soon to be published].
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Sketch of the algorithm

The algorithm can be roughly decomposed in two stages:

1. prepare a fiducial mixed state approximating a fiducial truncated density matrix
through Variational Quantum Eigensolving (VQE);

2. reweight and measure observables using the auxiliary register as a quantum channel
for postselection.

Working in vectorized form of a truncated density matrix (K = dimHaux ≤ dimHsys)∣∣∣Ψ(K)

θ⃗

〉
=

K−1∑
k=0

γk |k⟩ ⊗
∣∣∣ψk(θ⃗)

〉
∈ Htot = Haux ⊗Hsys

↑ vectorization ↑

ρ̂mix

[ ∣∣∣Ψ(K)

θ⃗

〉 ]
≡ TrHaux

[ ∣∣∣Ψ(K)

θ⃗

〉〈
Ψ

(K)

θ⃗

∣∣∣ ] =
K−1∑
k=0

|γk |2
∣∣∣ψk(θ⃗)

〉〈
ψk(θ⃗)

∣∣∣
At this stage, {γk} are completely arbitrary and chosen by the user, while ψk(θ⃗) are
prepared via VQE to approximate the lowest K Hamiltonian eigenstates {ϕk}.
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Sketch of the algorithm: VQE stage

> Approximate eigenstates∣∣∣ψk(θ⃗)
〉
≡ U(θ⃗) |k⟩sys automatically

orthonormal;
> Cost functional (for example):

C
[ ∣∣∣Ψ(θ⃗)

〉 ]
=

〈
Ψ(θ⃗)

∣∣∣1 ⊗ H0

∣∣∣Ψ(θ⃗)
〉
;

> with decreasing mixing coefficients
γk > γk+1 > 0, a variational
minimization of the cost function forces
the first K columns of U(θ⃗) to
converge to the exact eigenstates∣∣∣ψk(θ⃗)

〉
→ |ϕk⟩ (a bit subtler than this,

actually).

k<K

|0⟩

|0⟩

aux: Γ

sys: X
kj
j U(θ⃗)

(a) Condensed form
|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

aux Γ(γ⃗)

sys U(θ⃗)

(b) Example of explicit form qA = 3 and
qS = 4

(a similar ansatz structure is used also in [M. Consiglio et al. (2023)])

the VQE convergence performance appears to depend heavily on the structure of the
ansatz, especially for larger systems. Notice that U(θ⃗) must represent the full low-
energy physics, with accuracy decreasing as |γk |2.
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Sketch of the algorithm: reweighting stage

Once a mixed state
∣∣∣Ψ(K)

〉
is prepared for a certain γ⃗, the information about temper-

ature and observables is introduced through reweighting.

For any observable Ô, the target expectation value we want to measure is〈
Ô(β)

〉
Hsys

= TrHsys

[
Ôρ̂(β)

]
= lim

K→D

1
Z (K)(β)

K−1∑
k=0

e−βEk ⟨ϕk |Ô|ϕk⟩ ,

this must must match the measurement of some functional F [Ô] on the extended space:

〈
Ô(β)

〉
Hsys

= lim
K→D

〈
Ψ(K)

∣∣∣F [Ô]
∣∣∣Ψ(K)

〉
⟨Ψ(K)|F [1̂]|Ψ(K)⟩

= lim
K→D

TrHtot

[
F [Ô]

∣∣∣Ψ(K)
〉〈

Ψ(K)
∣∣∣ ]

TrHtot

[
F [1̂] |Ψ(K)⟩⟨Ψ(K)|

]
= lim

K→D

∑K−1
k,p=0 γkγ

∗
p TrHtot

[
F [Ô] |k⟩⟨p| ⊗ |ϕk⟩⟨ϕp|

]
∑K−1

k,p=0 γkγ
∗
p TrHtot

[
F [1̂] |k⟩⟨p| ⊗ |ϕk⟩⟨ϕp|

] ,
Therefore:

N e−βEk δk,p ⟨ϕk |Ô|ϕp⟩
!
= γkγ

∗
p ⟨k, ϕk |F [Ô]|p, ϕp⟩ , (1)
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Sketch of the algorithm: reweighting stage (cont.d)

The functional on the extended space can then be chosen of the form:

F [Ô] ≡ N Â⊗ Ô, where Â ≡
K−1∑
k=0

e−βEk

|γk |2
|k⟩⟨k|aux .

Many strategies for the actual measurements can be used. One possibility is to introduce
a vectorial measurement, which we define through a vector valued Hermitian operator

ˆ⃗E ≡
K−1∑
k=0

êk
1

|γk |2
|k⟩⟨k|aux ⊗ Ĥ0

=
M(Ĥ0)−1∑

i=0

(1̂ ⊗ Ŝ
(Ĥ0)
i )

†
[

K−1∑
k=0

êk
1

|γk |2
|k⟩⟨k|aux ⊗ Λ̂

(Ĥ0)
i

]
(1̂ ⊗ Ŝ

(Ĥ0)
i ),

where we use a diagonal-circuit decomposition for any Hermitian operator of interest

D̂ ≡
∑M(D̂)−1

i=0 Ŝ
(D̂)†
i Λ̂

(D̂)
i Ŝ

(D̂)
i → {(Λ̂(D̂)

i , Ŝ
(D̂)
i )}M

(D̂)−1
i=0 .

The previous vectorial measurement can then be used to define the functional as
approximation to the spectrum (errors are assess via a bootstrap procedure):

F [Ô] ≃
M(Ô)−1∑
m=0

(1 ⊗ Ŝ (Ô)
m )

†
[

K−1∑
k=0

e−βEk

|γk |2
|k⟩⟨k| ⊗ Λ̂(Ô)

m

]
(1 ⊗ Ŝ (Ô)

m ).
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Sketch of the algorithm: reweighting stage (cont.d)
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êk
1

|γk |2
|k⟩⟨k|aux ⊗ Λ̂

(Ĥ0)
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Some preliminary numerical results: frustrated triangle

Application to geometrically frustrated Ising model (J > 0), affected by sign problem
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Conclusions

To summarize:
> I presented a novel quantum algorithm for the estimation of thermal averages based

on VQE mixed state preparation followed by reweighted measurements;
> I sketched a basic construction of the algorithm, emphasizing the freedom available

at each stage, and opportunities for improvement;
> the two stages presented can be merged and iterated, and different cost functions

and reweightings can be considered. E.g., if efficient computation of entropy is
available, one can use that in the cost function to build directly a thermal density
matrix, as done by [M. Consiglio et al. (2023)].

Current challenges and future perspectives:
> I am currently exploring different variants and hyperparameterization of this

algorithm, whose quality of VQE convergence appears to depend heavily on the
structure of the ansatz, especially for larger systems. Reweighting is also noisier for
observables with many non-commuting pieces;

> with some collaborators, we aim to study and develop algorithms for thermal average
estimation, to be applied in cases with sign-problem and lattice gauge theories, in a
path towards the investigation of the QCD phase diagram on a quantum computer.

Thank you for the attention!
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Minimal Model with Sign Problem: the Frustrated Triangle

Hamiltonian for an antiferromagnetic (J > 0) Ising triangle

H = J(σx ⊗ σx ⊗ 1 + σx ⊗ 1 ⊗ σx + 1 ⊗ σx ⊗ σx),

The path-integral with a finite number N of layers with 3-qubits states |αi ⟩ in the
computational basis reads:

Z [β] = Tr
[
e−βH

]
=

∑
{αi}

N∏
i=1

⟨αi+1| e−
βH
N |αi ⟩ ,

where T ≡ e−
βH
N is the transfer matrix.

Here the sign-problem comes from non positive off-diagonal elements in the transfer
matrix (e.g. ⟨011| e−

βH
N |000⟩ < 0).

Useful as testbed to study algorithm-specific systematical errors: no discretization re-
quired (8 system states), exact energy representation (two distinct energy levels) and
no Trotterization error.
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