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This talk is not about results but about a principle 
and a way of approaching NFs for LGT



Spectral Flow: v1
NF: ∫ 𝑑𝑉 𝑒𝑆 = ∫ 𝑑𝑈 𝑒𝑆+𝑙𝑜𝑔𝐽

Target action 𝑆 = 𝑅𝑒𝑇𝑟 𝑃1 + 𝑅𝑒𝑇𝑟 𝑃2 + 𝑅𝑒𝑇𝑟 𝑃3 +𝑅𝑒𝑇𝑟 𝑃4
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Spectral Flow: v1
NF: ∫ 𝑑𝑉 𝑒𝑆 = ∫ 𝑑𝑈 𝑒𝑆+𝑙𝑜𝑔𝐽

Target action 𝑆 = 𝑅𝑒𝑇𝑟 𝑃1 + 𝑅𝑒𝑇𝑟 𝑃2 + 𝑅𝑒𝑇𝑟 𝑃3 +𝑅𝑒𝑇𝑟 𝑃4

1) Name (mask) plaquettes

2) Transform blue (active) link 𝑈 → 𝑈′

a) Transform active plaquette 𝐴 → 𝐴′ = 𝑓 𝐴 𝑇𝑟𝐹1, 𝑇𝑟𝐹2)
• Diagonalize 𝐴 = 𝑉† 𝐿 𝑉
• Transform diagonals 𝐿 → 𝐿′ = 𝑔 𝐿, 𝑇𝑟𝐹1, 𝑇𝑟𝐹2
• Undiagonalize 𝐴 = 𝑉† 𝐿′ 𝑉

b) Push update to the link 𝑈 → 𝑈′ = 𝐴′𝐴†𝑈
3) Expressive transformation should have 𝑙𝑜𝑔𝐽 ~ − 𝑅𝑒𝑇𝑟𝐴 −𝑅𝑒𝑇𝑟𝐵
4) (Ideal) Action after transformation 𝑆 → 𝑆′ = 𝑅𝑒𝑇𝑟𝑃3 + 𝑅𝑒𝑇𝑟𝑃4

Coupling layer 1

Maximal Torus Flow
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Coupling layer …

Maximal Torus Flow
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3) Expressive transformation should have v

4) (Ideal) Action after transformation 𝑆 → 𝑆′ = 0
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Coupling layer 2
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Key observations:

• Jacobian of expressive transformation 

should  compensate active/passive 

plaquettes in the action. However, it never 

happens in practice.

• Transformation is conditioned on invariant 

features fully ignoring equivariant 

information

• Degrees of freedom argument
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A deeper look

Target action

𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃)

Aim: ∫ 𝑑𝑈′exp 𝑆 𝑈 + 𝑙𝑜𝑔𝐽 = ∫ 𝑑𝑈

𝑈′ = 𝑓(𝑈)
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A deeper look

Target action

𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃)

Aim: ∫ 𝑑𝑈′exp 𝑆 𝑈 + 𝑙𝑜𝑔𝐽 = ∫ 𝑑𝑈

 −𝑙𝑜𝑔𝐽 = 𝑆 𝑈 = 𝑅𝑒𝑇𝑟 𝐴 + 𝑃 = 𝑅𝑒𝑇𝑟(𝐴 1 + 𝑄 )

𝑈′ = 𝑓(𝑈) We need take into dependence of passive 

loop on active. Both are transformed though 

an active link, let’s use it.

𝐴 = 𝑆𝐴𝑈
†, 𝑃 = 𝑈 𝑆𝑃 => 𝑃 = 𝐴†𝑆𝐴𝑆𝑃
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A deeper look

Target action

𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃)
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an active link, let’s use it.
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†, 𝑃 = 𝑈 𝑆𝑃 => 𝑃 = 𝐴†𝑆𝐴𝑆𝑃

Recall for spectral flow

And don’t forget Haar measure

 𝐻𝑎𝑎𝑟 𝐿′
𝑑𝐿′

𝑑𝐿
= 𝐻𝑎𝑎𝑟(𝐿) exp −𝑅𝑒 𝑇𝑟 𝐿 𝑉 1 + 𝑄 𝑉†

𝐿 is a diagonal matrix of eigen values
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 𝐿′ = ∫ exp −𝑅𝑒 𝑇𝑟 𝐿 (𝑉 1 + 𝑄 𝑉† 𝐻𝑎𝑎𝑟(𝐿)/𝐻𝑎𝑎𝑟 𝐿′ 𝑑𝐿

This transformation trivialized target action!

Denis:  I don’t want to solve it, 

I’ll use AI
Julian: I love old-style, I will 

solve it!

What would happen if we used different 

active loops (W2x1, W2x2,…)?

It would only change loop(s) Q!

𝐿 is a diagonal matrix of eigen values
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A deeper look

Coupling transformation 𝐿′ = 𝑓(𝐿|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) must be conditioned on features

𝒅𝒊𝒂𝒈(𝑽 𝟏 + 𝑸 𝑽†)

which are gauge-invariant and eigen decomposition invariant.

We can add 𝑑𝑖𝑎𝑔 because L is diagonal!Target action 𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃)

𝐿′ = ∫ exp −𝑅𝑒 𝑇𝑟 𝐿 𝑉 1 + 𝑄 𝑉† 𝐻𝑎𝑎𝑟(𝐿)/𝐻𝑎𝑎𝑟 𝐿′ 𝑑𝐿

How would transformation change if we had frozen loops 𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃 + 𝐹1 + 𝐹2)?

• With one iteration we can trivialize only plaquettes (active and passive) which contain active link

• In this case there is no useful information in frozen plaquettes

=> With dense mask we can(speaking only about 2D) trivialize all plaquettes in the action

𝐿 is a diagonal matrix of eigen values
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Spectral flow v2
Lessons:

1) Use dense mask as frozen loops contain no useful information

2) Build proper features

3) Use expressive transformation (splines)

4) Not all links need to be transformed

Spectral flow Coupling Layer:

• Apply mask

• Transform active links 𝑈 → 𝑈′

• Transform active plaquette 𝐴 → 𝐴′ = 𝑓 𝐴 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
• Diagonalize 𝐴 = 𝑉†𝐿 𝑉
• Compute loops 𝑄 (more on this later)

• Build “diagonal” features 𝑑𝑖𝑎𝑔(𝑉 1 + 𝑄 𝑉†)
• Transform 𝐿 → 𝐿′ = 𝑔(𝐿|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
• Undiagonilize 𝐴 = 𝑉†𝐿′ 𝑉

• Push update to the link 𝑈 → 𝑈′ = 𝐴′𝐴†𝑈

With expressive transformation 𝑔(𝐿|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
logJ should trivialize/compensate plaquettes in the action.

Only one coupling layer is needed!
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Remember Coupling transformation 𝐿′ = 𝑓(𝐿|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) must be diffeomorphism on circle!

This uniquely determined a solution from this family! Coupling transformation should satisfy: 

• 𝐿′ = 𝑒Θ
′=0 = 𝑓(𝐿 = 𝑒Θ=0|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) => 𝑓 𝐼 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝐼

A more deeper look
Target action 𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃)

𝐿′ = ∫ exp −𝑅𝑒 𝑇𝑟 𝐿 (𝑉 1 + 𝑄 𝑉†
𝐻𝑎𝑎𝑟 𝐿

𝐻𝑎𝑎𝑟 𝐿′
𝑑𝐿 ∗ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

In fact, there is a family of solutions. Which 

should we choose? 

𝐿′ =
1

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟(𝑇𝑟 (1 + 𝑄))
∫ exp −𝑅𝑒 𝑇𝑟 𝐿 (𝑉 1 + 𝑄 𝑉†

𝐻𝑎𝑎𝑟 𝐿

𝐻𝑎𝑎𝑟 𝐿′
𝑑𝐿

This normalizer will appear in logJ!

As a result after trivializing plaquettes we will have 

larger loops (Q) in the effective action

Denis:  Oh, we need 

hierarchical algorithm…

Ryan:  I have one!

Image credit: F. Romero-López
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Example trivializing 2D LGT

Effective action on every step contains all active 

(A) and passive (P) loops

𝑆𝑒𝑓𝑓 = ∑𝑅𝑒𝑇𝑟 𝐴𝑖 + 𝑃𝑖

Every transformation trivialize active and passive 

loops but create larger loops
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Interpretation

𝑊 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⇒ 𝑛𝑜𝑛𝑑𝑖𝑎𝑔 𝑊 , 𝑑𝑖𝑎𝑔 𝑊

𝑛𝑜𝑛𝑑𝑖𝑎𝑔 𝑊 = 𝑏, 𝑐, 𝑑, 𝑓, 𝑔, ℎ , 𝑑𝑖𝑎𝑔 𝑊 = (𝑎, 𝑒, 𝑖)

• Every loop is evaluated in local coordinate system (Gauge symmetry)

• Relevant degrees of freedom are transformed in a local coordinate system when loop is diagonal

• Relevant features are loops which are transformed to local diagonal coordinate system

• In “static” (conventional) coordinate 

system every loop is rotated with a 

gauge

• Target action is “scalar” and does not 

depend on choice of coordinate system

• There is a local coordinate system in which loop is diagonal

• These coordinate systems are not unique and transformed under symmetry 

(gauge) transformation

• They are transformed in a same way as loops in “static” coordinate system
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Interpretation

Example

• Active loop 𝑃01 𝑥 = 𝑉01 𝑥 †𝐷 𝑥 𝑉01 𝑥 is transformed in local C.S. - 𝐷 𝑥 ′ = 𝑓 𝐷 𝑥 . )

• Conditional information could be a loop  𝑃23 𝑦 = 𝑉23 𝑦 †𝐷 𝑦 𝑉23(𝑦)

• Map is defined by parallel transport and eigenvectors 𝑉01 𝑥 †𝐿(𝑥, 𝑦)𝑉23 𝑦 †

• Transformation L′ x = f L x 𝑉 𝑥 𝑈𝜇𝑉 𝑥 + 𝜇 , L(x + 𝜇))

• Relevant degrees of freedom are transformed in a local coordinate system when 

loop is diagonal

• Relevant features are loops evaluated in the same coordinate system

• Map between different coordinate systems is defined by eigen vectors 𝑉
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Uncovered but Important topics

• Defects. 2D LGT can be tilled and trivialized in hierarchical way. However, 3/4D LGT can not be tiled. In 3/4D there are limited 

number of links/loops which transformed more/less then others, I call them defects. 

• In 3/4D to deal with defects more expressive transformation must be used. It results in more complicated features and 

autoregressive coupling.

• Location update is one of such techniques, and it requires specific masking.

• We can think of a algorithm which automatically builds necessary featured loops from active links/loops

• In LGT volume scaling is determined by residual of interpolation. Keeping residual the same as volume growth will result in a 

same model quality. Naive analysis predicts increasing number of interpolation intervals as 𝑽
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Take away message

• Hierarchical approach is necessary for fully trivializing LGT

• LGT can be trivialized with expressive coupling transformation in O(log_2(V)) coupling steps. Model quality is controlled by 

interpolation residual

• Type of active loops does not matter if relevant features used

• For proper trivialization relevant features must be used. Those are loops evaluated in local diagonal coordinate system

• 2D LGT can be tiled and trivialized in hierarchical way for log_2(V). 3D/4D LGT has defects, loops transformed more/less than

others. This results in necessary of creating specific mask, specific features and autoregressive transformation.

Blind application of ML techniques delivers not the best results. Approach 

should be adapted with math and knowledge of the physical domain

This is not only about trivialization. This is about the expressivity of a general 

NF. The principle should be replicated for flow between any two distributions.
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I am glad to be 
here

Thank you!

Question?

21



Back up
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