Extracting Instantons from the Lattice + standing topological waves

Falk Zimmermann fzimmermann@hiskp.uni-bonn.de

Helmholtz-Institut für Strahlen- und Kernphysik

40th International Symposium on Lattice Field Theory August 2023

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

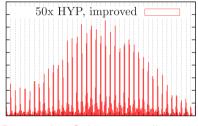
Setup: Ensemble & topological charge

Ensemble:

- 1. full QCD: twisted mass $n_f = 2 + 1 + 1$ ensemble
- 2. L = 32, T = 64
- 3. approximately 5000 configurations

pure gluonic definition of the topological charge density q(x):

- 1. $q(x) = tr[F_{\mu\nu}(x)\widetilde{F}_{\mu\nu}(x)]$
- "Highly-improved lattice field-strength tensor" [hep-lat/0203008v1]
- 3. $\rightarrow \mathcal{O}(a^4)$ -improved topological charge
- 4. Use 4D HYP-smearing to address different scales
- 5. works very well: no multiplicative renormalization needed



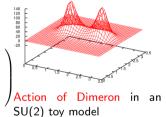
B55.32 the *Q* histogram aligns well with integer numbers (grid)

Instantons & Merons

Merons

- \blacktriangleright Localised pure gauge field excitation \Rightarrow named pseudoparticle
- Classical solution of the Yang-Mills equations of motions
 local minima of the action
 - \implies high weight in PI
- Path integral saddlepoint approximation around minima leads to:

$$\mathcal{A}_{\mu}^{Meron}(x) \;=\; rac{x_{\mu}}{x^2+
ho^2} \; \Sigma_{\mu
u} \,, \;\; \Sigma = rac{1}{2} \left(egin{array}{ccccc} 0 & +\sigma_3 & -\sigma_2 & -\sigma_1 \ -\sigma_3 & 0 & +\sigma_1 & -\sigma_2 \ +\sigma_2 & -\sigma_1 & 0 & -\sigma_3 \ +\sigma_1 & +\sigma_2 & +\sigma_3 & 0 \end{array}
ight)$$



with size parameter $\rho = 0$

- Topological charge q = 1/2
- \blacktriangleright Why merons? classical solution, long range tails \rightarrow area law
- Instanton = 2 Merons

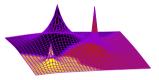
Identification of topological sectors

Basic algorithm:

- 1. compute gradient field for $\gamma(x) = q(x)$ or $\gamma(x) = q(x)z(x)$ or $\gamma(x) = \operatorname{sign} q(x)z(x)$
- 2. identify extrema > cut-off = seed sectors
- 3. grow by an additional layer around each maximum as long the points lay down-hill
- 4. and do not belong to another sector
- 5. alternate between sector
- 6. stop: no new points

Overlapping sectors

- 1. shared content
- 2. equally redistributed shared content



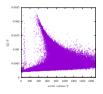
Sectors associated with 3 peaks

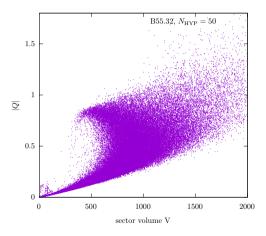
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Sectors of the Shark fin

Ensemble:

- topological excitations have higher density
- and self-duality
- ▶ ..
- will be used as prototype to identify pseudoparticles





▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Filtering for the supposed Instantons

Dimensions

- 1. Basic quantities: Q, Z (self-duality), S & size
- 2. shared content per sector & basic quantity
- 3. redistributed content

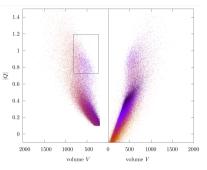
Remove correlations

- ▶ |Q| all other quantities
- ▶ same with V
- high correlation between Q and size
- and between the other "technical dimensions"

Select data from Fin region

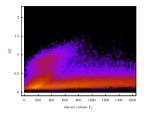
- ▶ square in (V, |Q|)
- ▶ 0.7 < *q* < 1.2
- ▶ compute 2σ environment \forall quantities but V, |Q|

Discard all sectors $\notin 2\sigma$: non-linear deviations of the data cloud from supposed instanton sectors cannot be noise \rightarrow remove physically different entities we are not interested in



supposed instanton region (LHS), tilting the sector cloud in $(V, |Q|, Z_{shared})$ removes some of the |Q| - V-correlation \rightarrow higher density in that region (RHS)

Different approaches & the resulting clusters

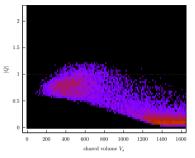


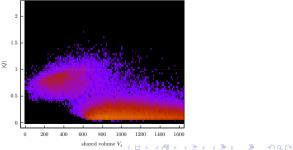
Instantons don't like to share ...

Variants

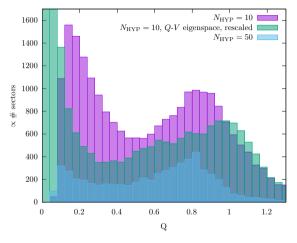
- 1. TR: $\gamma \equiv q(x) \cdot z(x)$
- 2. TL: $\gamma \equiv \operatorname{sign}(q(x))q(x) \cdot z(x)$ with redistribution
- 3. BL: $\gamma \equiv \operatorname{sign}(q(x))q(x) \cdot z(x)$

The shared volume might not be the physically most interesting dimension, but the instanton cluster separates quite well from the noise

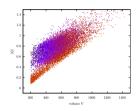




Topological charge distribution of the sectors



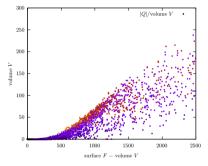
- ▶ Normalisation: #sectors $\propto V^{-1} \rightarrow \text{divide by } VS$
- Peak close to Q = 1 but there is some loss
- ▶ starts at $Q \approx 0.5 \rightarrow \text{Meron+Instanton-Cluster}$?



filtered fin, heat= $Z_{{\rm shared}}$ /w |Q| - V-correlation

- The Q ∈ [0.5, 1] is rather stable when varying the parameters (green,blue)
- Rotate in *Q*-*V*-plane to account for noise?
- Q needs to be rescaled st. the Peak remains at $Q \approx 1$
- $\label{eq:possible} \rightarrow \mbox{ possible Meron peak starts to appear (green)h}$
 - ▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 二重 釣A@

End of Part I:



sectors are almost surface-like & top excitations a little less...

Add-on Part: Oscillating AC & standing topological waves

Uncover AC osc.:

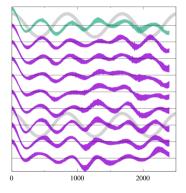
1. remove τ average and IR filter

$$c_\lambda(t, au) \;\equiv\; \sum_{ au'=1}^N [c(t, au') - \langle c
angle_ au(t)] rac{1}{\sqrt{2\pi\lambda^2}} e^{-rac{(au- au')^2}{2\lambda^2}} \,.$$

2. normalise each time slice, respectively

$$ar{c}(t, au) \;\equiv\; rac{c_\lambda(t, au) - \langle c_\lambda
angle_ au(t)}{\sigma_ au[c](t)}$$

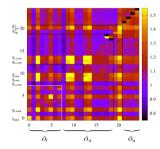
 ▶ std error computation doesn't apply → effective Nr measurements via entropy [PoS(LATTICE2022)045]



osc. in *t*-slices over config nr au $< q(au_0)(au_0 + au) >_{ au_0}$

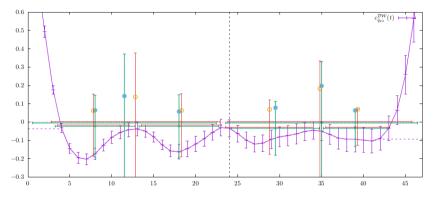
An effective number of independent DOF

$$N_{\rm eff}[c] \equiv \frac{\mathcal{H}[p, Corr]}{\mathcal{H}[p, \mathbb{1}]} = \frac{\log\left(\sqrt{2\pi \det^2(Corr)}\right) + N_{\rm conf}/2}{\log\left(\sqrt{(2\pi\sigma_f^2)^{N_{\rm conf}}}\right) + N_{\rm conf}/2}$$



Intensity of the AC-oscillation large for pseudoscalars singlets [ML: Non-renormalizability of the HMC algorithm, arXiv:1103.1810v2]

The standing topological wave:

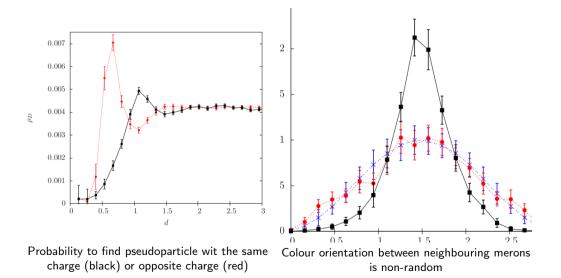


The crosses are estimations of the valley's surface (vertical bar) + the width of the valley (horizontal bar).

Dots on bars = error \Rightarrow evidence for wave

RHS: correlator that crossed the boundary of the lattice box.

Oscillations from SU(2) toy model (Dimerons)



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

HMC, a 5D-theory

The Hamiltonian used for Molecular Dynamics part of the HMC introduces canonical momenta P for the fields U and essentially defines a 5d-theory.

The momenta are defined by the choice of the kinetic term in H_{MD} and the Hamiltonian EOM.

$$H_{\mathrm{MD}}\equivrac{1}{2}\sum_{\mathrm{x},\mu}P_{\mathrm{x},\mu}^{2}+S_{\mathrm{G}}[U]+S_{\mathrm{PF}}[U,\phi,\phi^{\dagger}]$$

- AC oscillations originate from 5d-theory.
- \blacktriangleright theory includes QCD \rightarrow potentially complex
- similar modes seen with Fourier Acceleration [Sheta:2021hsd]:
 - bco weak coupling limit & landau gauge fixing?
 - fields decouple & perform simple harmonic motions
 - showed oscillations for vec potentials A_{μ}
- not weakly coupled, here.

Randomization of momenta $P_{x,\mu} \propto e^{-p^2/2}$ at the beginning of each trajectory shall ensure ergodicity \rightarrow identify bypass?

- 1. 2nd law of thermodynamics introduces arrow of time, nevertheless.
- 2. fixed trajectory length: system left in equivalent dynamical states w lots of potential energy V & grad $V \neq 0$ @end of trajectory ...

