

Quark Masses and Low Energy Constants in the Continuum from the Tadpole Improved Clover Ensembles

Bolun Hu

with

Zhicheng Hu, Jihao Wang, Ming Gong, Liuming Liu, Peng Sun, Wei Sun, Wei Wang and Yibo Yang

Lattice 2023 July/31/2023

Institute of Theoretical Physics, Chinese Academy of Sciences

1.Simulation setup

2.Renormalization (RI/MOM and SMOM)

3.Global fit using chiral perturbation theory (χ PT)

Ensembles used in this work

		_			_			_	_
name	β	Lattice spacing a	Volume	L	m_{π} L	π mass	η_s mass	n _{conf}	
C24P34	6.20	0.1053fm	24 ³ ×64	2.6fm	4.38	340MeV	748MeV	200]
C24P29	6.20	0.1053fm	24 ³ ×72	2.6fm	3.75	292MeV	658MeV	476]
C32P29	6.20	0.1053fm	32 ³ ×64	3.5fm	5.01	292MeV	658MeV	198]
C32P23	6.20	0.1053fm	32 ³ ×64	3.5fm	3.91	228MeV	643MeV	400	1
C48P23	6.20	0.1053fm	48 ³ ×96	5.4fm	5.79	225MeV	643MeV	62	1
C48P14	6.20	0.1053fm	48 ³ ×96	5.4fm	3.56	135MeV	706MeV	203	1
F32P30	6.41	0.0775fm	32 ³ ×96	2.6fm	3.81	303MeV	681MeV	206	1
F48P30	6.41	0.0775fm	48 ³ ×96	3.8fm	5.72	303MeV	679MeV	99	1
F32P21	6.41	0.0775fm	32 ³ ×64	2.6fm	2.67	210MeV	665MeV	194	1-
F48P21	6.41	0.0775fm	48 ³ ×96	3.8fm	3.91	207MeV	667MeV	98]
H48P32	6.72	0.0519fm	48 ³ ×144	2.6fm	4.06	321MeV	709MeV	98	

We now have 11 ensembles: 3 lattice spacings $a \in [0.05, 0.11]$ fm, 7 pion masses $m_{\pi} \in [135, 350]$ MeV, 3 spatial sizes $L \in [2.5, 5.1]$ fm

IMP

Article used these ensembles: [Chin.Phys.C 46 (2022) 1, 011002, arXiv: 2207.00183,arXiv: 2207.14132, Phys.Lett.B 841 (2023) 137941]

Lattice action (tadpole improved fermion action with stout smearing)

In the generation of our **2+1 flavor full QCD** ensembles, we employ the **tadpole improved** Symanzik gauge action, and Clover fermion action

$$S_g = \frac{1}{N_c} \sum_{x} \operatorname{Re} \sum_{x,\mu < \nu} \operatorname{Tr} \left[1 - \hat{\beta} \left(\mathcal{P}^U_{\mu,\nu}(x) - \frac{c_1 \mathcal{R}^U_{\mu,\nu}(x)}{1 + 8c_1^0} \right) \right]$$

$$S_{q} = \bar{\psi}(x)\psi(x) - \frac{\kappa}{\nu_{0}}\sum_{\mu} \left[\bar{\psi}(x)\left(1+\gamma_{\mu}\right)V_{\mu}\psi(x) + \bar{\psi}(x)\left(1-\gamma_{\mu}\right)V_{\mu}^{\dagger}\psi(x)\right] - \frac{1}{2}\frac{\kappa}{\nu_{0}}c_{SW}\bar{\psi}(x)\sigma_{\mu\nu}F_{\mu\nu}\psi(x)$$

where
$$\hat{\beta} = 10/(g_0^2 u_0^4)$$
 with $c_1^0 = -\frac{1}{12}$, $c_1 = \frac{c_1^0}{u_0^2}$
 $2\kappa = 1/(m+4)$ tree level $c_{SW} = \frac{1}{v_0^3}$

- Similar to the JLAB setup but using different beta
- Computationally cheap and simpler to implement
- Explicitly breaks chiral symmetry at non-zero *a*, which leads to additive renormalization of the quark masses.

- $\mathcal{R}^{U}_{\mu,\nu}$ reduces the discretization error from $O(a^2)$ to $O(a^4)$
- tree level Clover term is expected to reduces the discretization error from O(a) to O(a²), but may still have residual O(a) effect
- Stout smeared link V with smearing parameter $\rho = 0.125$
- u_0 is the tadpole improvement factor
- v_0 is similar to u_0 , but with the smeard link variable
- Both are determined self-consistently

Quark mass

The bare quark mass may be negative due to explicit chiral symmetry breaking. one solution is to use the **PCAC** mass $2\widetilde{m}_q^{\text{PC}} = \frac{\langle 0|\nabla_4 A_4|\text{PS}\rangle}{\langle 0|P|\text{PS}\rangle}$,

 $\widetilde{m}_q^{\rm PC}$ is positive and appears to be linear in \widetilde{m}_q^b

Joint fit of 2-Point functions

Based on the **PCAC** relation, the definition of decay constant

 $\langle 0|A_4|PS \rangle = f_{PS}m_{PS}$ and the form of 2pt, we do joint fit of the data obtained by evaluating 2pt in simulations and obtain dimensionless \tilde{m}_q^{PC} , \tilde{f}_{PS} and \tilde{m}_{PS}

physical point n_{src} =48 of 96 times slices on n_{cfg} =203 configurations

Scale setting by gradient flow

The Wilson flow scale w_0 is a quantity with the dimension of length :

$$\left. t \frac{d}{dt} \left(t^2 \langle E(t) \rangle \right) \right|_{t=w_0^2} = 0.3$$

We use

 $w_0 = 0.1736(9) \text{ fm}$

E is the discretized Yang-Mills action density $E = \frac{1}{2} \operatorname{tr}(F_{\mu\nu}F_{\mu\nu})$

[JHEP08(2010)071, JHEP09(2012)010,]

RI/MOM and RI/SMOM scheme renormalization

$$Z_{V} = \lim_{m_{R} \to 0} \frac{\langle \pi | \pi \rangle}{\langle \pi | V_{4} | \pi \rangle} \quad \text{current conservation}$$

$$Z_{\mathcal{O}}^{\omega} = \lim_{m_{R} \to 0} \frac{Z_{V} \text{Tr} [\Lambda_{V}^{\mu}(p_{1}, p_{2})\gamma_{\mu}]}{\text{Tr} [\Lambda_{\mathcal{O}}(p_{1}, p_{2})\Lambda_{\mathcal{O}}^{tree}(p_{1}, p_{2})]} \stackrel{\text{RI/MOM } : \omega = 0}{\underset{RI/SMOM : \omega = 1}{\text{RI/SMOM } : \omega = 1}}$$

 $\Lambda_{\mathcal{O}}(p_1, p_2)$ is the amputated Green function can be calculated by

$$\Lambda_{\mathcal{O}}(p_1, p_2) = S(p_1)^{-1} \sum_{x, y} e^{-i(p_1 \cdot x - p_2 \cdot y)} \langle \bar{\psi}(x) \mathcal{O}(0) \psi(y) \rangle S(p_2)^{-1}$$

- 1. Chrial extrapolation
- 2. Convert to $\overline{\text{MS}}$ and run to 2 GeV
- 3. $a^2 \mu^2$ extrapolation to suppress discretization error

8

RI/MOM vs. RI/SMOM

- In SMOM the chiral symmetry breaking effects are smaller
- At smaller lattice spacings breakings are suppressed
- $O(\alpha s)$ term is necessary to restore chiral symmetry

- Differ by ~1% after a linear a^2 continuum extrapolation
- MOM discretization 25% smaller

We choose the RI/MOM scheme in our work, for more reliable after continuum extrapolation.

0.012

RI/SMOM

0.010

Global fit

After the procedures of joint fit, scale setting and renormalization, we obtain m_q , m_{π} and f_{π} across 11 ensembles, we can conduct a joint fit using χ PT:

$$m_{\pi,vv}^{2} = \Lambda_{\chi}^{2} 2y_{v} \left\{ 1 + \frac{2}{N_{f}} \left[(2y_{v} - y_{s}) \ln(2y_{v}) + (y_{v} - y_{s}) \right] + 2y_{v} (2\alpha_{8} - \alpha_{5}) + 2y_{s} N_{f} (2\alpha_{6} - \alpha_{4}) \right\} \left(1 + c_{m,a} a^{2} + c_{m,l} e^{-m_{\pi}L} \right)$$

$$F_{\pi,vv} = F \left(1 - \frac{N_{f}}{2} (y_{v} + y_{s}) \ln(y_{v} + y_{s}) + y_{v} \alpha_{5} + y_{s} N_{f} \alpha_{4} \right) \left(1 + c_{f,a} a^{2} + c_{f,l} e^{-m_{\pi}L} \right)$$

- $y_{\rm v}$ and $y_{\rm s}$ are variables defined by m_q
- *F* is pion decay constant in the chiral limit
- α_i are NLO low energy constants

requiring
$$y_s = y_v$$
,
 $m_{\pi,vv} = m_{\pi,phys} = 134.98 \text{MeV}$,
 $a \rightarrow 0$, and $L \rightarrow \infty$

Global fit results

 σ away from FLAG average

Summery and outlook

- Results agree with the FLAG average within 2 σ , and the non-perturbative renormalization is the main source of the quark mass error.
- Further investigation of renormalization, plan to use the volume source to suppress the uncertainty.
- More ensembles at more lattice spacing and pion masses to improve the reliability of our chiral and continuum global fit.

Thank you for listening! hubolun@itp.ac.cn¹³