Quark Masses and Low Energy Constants in the Continuum from the Tadpole Improved Clover Ensembles

Bolun Hu
with
Zhicheng Hu, Jihao Wang, Ming Gong, Liuming Liu, Peng Sun, Wei Sun, Wei Wang and Yibo Yang

Institute of Theoretical Physics, Chinese Academy of Sciences
1. Simulation setup

2. Renormalization (RI/MOM and SMOM)

3. Global fit using chiral perturbation theory (χPT)

4. Summery
We now have 11 ensembles:
3 lattice spacings \(a \in [0.05, 0.11] \) fm,
7 pion masses \(m_\pi \in [135, 350] \) MeV,
3 spatial sizes \(L \in [2.5, 5.1] \) fm

<table>
<thead>
<tr>
<th>name</th>
<th>(\beta)</th>
<th>Lattice spacing (a)</th>
<th>Volume</th>
<th>(L)</th>
<th>(m_\pi L)</th>
<th>(\pi) mass</th>
<th>(\eta_s) mass</th>
<th>(\eta_{\text{conf}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>C24P34</td>
<td>6.20</td>
<td>0.1053fm</td>
<td>(24^3 \times 64)</td>
<td>2.6fm</td>
<td>4.38</td>
<td>340MeV</td>
<td>748MeV</td>
<td>200</td>
</tr>
<tr>
<td>C24P29</td>
<td>6.20</td>
<td>0.1053fm</td>
<td>(24^3 \times 72)</td>
<td>2.6fm</td>
<td>3.75</td>
<td>292MeV</td>
<td>658MeV</td>
<td>476</td>
</tr>
<tr>
<td>C32P29</td>
<td>6.20</td>
<td>0.1053fm</td>
<td>(32^3 \times 64)</td>
<td>3.5fm</td>
<td>5.01</td>
<td>292MeV</td>
<td>658MeV</td>
<td>198</td>
</tr>
<tr>
<td>C32P23</td>
<td>6.20</td>
<td>0.1053fm</td>
<td>(32^3 \times 64)</td>
<td>3.5fm</td>
<td>3.91</td>
<td>228MeV</td>
<td>643MeV</td>
<td>400</td>
</tr>
<tr>
<td>C48P23</td>
<td>6.20</td>
<td>0.1053fm</td>
<td>(48^3 \times 64)</td>
<td>5.4fm</td>
<td>5.79</td>
<td>225MeV</td>
<td>643MeV</td>
<td>62</td>
</tr>
<tr>
<td>C48P14</td>
<td>6.20</td>
<td>0.1053fm</td>
<td>(48^3 \times 96)</td>
<td>5.4fm</td>
<td>3.56</td>
<td>135MeV</td>
<td>706MeV</td>
<td>203</td>
</tr>
<tr>
<td>F32P30</td>
<td>6.41</td>
<td>0.0775fm</td>
<td>(32^3 \times 96)</td>
<td>2.6fm</td>
<td>3.81</td>
<td>303MeV</td>
<td>681MeV</td>
<td>206</td>
</tr>
<tr>
<td>F48P30</td>
<td>6.41</td>
<td>0.0775fm</td>
<td>(48^3 \times 96)</td>
<td>3.8fm</td>
<td>5.72</td>
<td>303MeV</td>
<td>679MeV</td>
<td>99</td>
</tr>
<tr>
<td>F32P21</td>
<td>6.41</td>
<td>0.0775fm</td>
<td>(32^3 \times 64)</td>
<td>2.6fm</td>
<td>2.67</td>
<td>210MeV</td>
<td>665MeV</td>
<td>194</td>
</tr>
<tr>
<td>F48P21</td>
<td>6.41</td>
<td>0.0775fm</td>
<td>(48^3 \times 96)</td>
<td>3.8fm</td>
<td>3.91</td>
<td>207MeV</td>
<td>667MeV</td>
<td>98</td>
</tr>
<tr>
<td>H48P32</td>
<td>6.72</td>
<td>0.0519fm</td>
<td>(48^3 \times 144)</td>
<td>2.6fm</td>
<td>4.06</td>
<td>321MeV</td>
<td>709MeV</td>
<td>98</td>
</tr>
</tbody>
</table>

We also used these ensembles:
Lattice action (tadpole improved fermion action with stout smearing)

In the generation of our 2+1 flavor full QCD ensembles, we employ the **tadpole improved** Symanzik gauge action, and **Clover** fermion action

\[
S_g = \frac{1}{N_c} \sum_x \text{Re} \sum_{x, \mu < \nu} \text{Tr} \left[1 - \hat{\beta} \left(P_{\mu, \nu}^U(x) - \frac{c_1 R_{\mu, \nu}^U(x)}{1 + 8c_1^0} \right) \right]
\]

\[
S_q = \bar{\psi}(x)\psi(x) - \frac{\kappa}{v_0} \sum_\mu [\bar{\psi}(x)(1 + \gamma_\mu) V_\mu \psi(x) + \bar{\psi}(x)(1 - \gamma_\mu) V_\mu^+ \psi(x)]
\]

\[\text{where } \hat{\beta} = 10/(g_0^2 u_0^4) \quad \text{with } c_1^0 = -\frac{1}{12}, c_1 = \frac{c_1^0}{u_0^2}\]

\[2\kappa = 1/(m + 4) \quad \text{tree level } c_{SW} = \frac{1}{v_0^3}\]

- Similar to the JLAB setup but using different beta
- Computationally cheap and simpler to implement
- Explicitly breaks chiral symmetry at non-zero \(a\), which leads to additive renormalization of the quark masses.

\(R_{\mu, \nu}^U\) reduces the discretization error from \(O(a^2)\) to \(O(a^4)\)

- tree level **Clover** term is expected to reduces the discretization error from \(O(a)\) to \(O(a^2)\), but may still have residual \(O(a)\) effect

- Stout smeared link \(V\) with smearing parameter \(\rho = 0.125\)
- \(u_0\) is the tadpole improvement factor
- \(v_0\) is similar to \(u_0\), but with the smeared link variable
- Both are determined self-consistently
Quark mass

The bare quark mass may be negative due to explicit chiral symmetry breaking. One solution is to use the PCAC mass:

\[2 \tilde{m}_q^{\text{PC}} = \frac{\langle 0|\nabla V_4 A_4|\text{PS} \rangle}{\langle 0|P|\text{PS} \rangle}, \]

where \(\tilde{m}_q \) is positive and appears to be linear in \(\tilde{m}_q^b \):

\[\tilde{m}_q^{\text{PC}} = k_m \left(\tilde{m}_q^b - \tilde{m}_{crti} \right) \]
Joint fit of 2-Point functions

Based on the **PCAC** relation, the definition of decay constant
\[\langle 0|A_4|PS \rangle = f_{PS} m_{PS} \]
and the form of 2pt, we do joint fit of the data obtained by evaluating 2pt in simulations and obtain dimensionless \(\tilde{m}_q^{PC}, \tilde{f}_{PS} \) and \(\tilde{m}_{PS} \)

\[n_{\text{src}}=48 \text{ of } 96 \text{ times slices on } n_{\text{cfg}}=203 \text{ configurations} \]
Scale setting by gradient flow

The Wilson flow scale w_0 is a quantity with the dimension of length:

$$ t \frac{d}{dt} \left(t^2 \langle E(t) \rangle \right) \bigg|_{t=w_0^2} = 0.3 $$

We use $w_0 = 0.1736(9)$ fm

E is the discretized Yang-Mills action density

$$ E = \frac{1}{2} \text{tr}(F_{\mu\nu}F_{\mu\nu}) $$

$F_{\mu\nu}$ is the field strength tensor.

[\text{JHEP08(2010)071}, \text{JHEP09(2012)010},]
RI/MOM and RI/SMOM scheme renormalization

\[Z_V = \lim_{m_R \to 0} \frac{\langle \pi | \pi \rangle}{\langle \pi | V_4 | \pi \rangle} \]
\[Z_\omega^\omega = \lim_{m_R \to 0} \frac{Z_V \text{Tr}[\Lambda^\mu_V(p_1, p_2) \gamma_\mu]}{\text{Tr}[\Lambda_0(p_1, p_2) \Lambda^{\text{tree}}_0(p_1, p_2)]} \]
\[p_1^2 = p_2^2 = \mu^2 \]
\[(p_1 - p_2)^2 = \omega \mu^2 \]

\(\Lambda_0(p_1, p_2) \) is the amputated Green function can be calculated by

\[\Lambda_0(p_1, p_2) = S(p_1)^{-1} \sum_{x, y} e^{-i(p_1 \cdot x - p_2 \cdot y)} \langle \bar{\psi}(x) O(0) \psi(y) \rangle S(p_2)^{-1} \]

1. Chiral extrapolation
2. Convert to \(\overline{\text{MS}} \) and run to 2 GeV
3. \(a^2 \mu^2 \) extrapolation to suppress discretization error
RI/MOM vs. RI/SMOM

- In SMOM the chiral symmetry breaking effects are smaller
- At smaller lattice spacings breakings are suppressed
- $O(\alpha s)$ term is necessary to restore chiral symmetry

- Differ by ~1% after a linear a^2 continuum extrapolation
- MOM discretization 25% smaller

We choose the RI/MOM scheme in our work, for more reliable after continuum extrapolation.
RI/MOM vs. RI/SMOM

\[g_{S,\pi}^{FH} = \frac{1}{2} \frac{\partial m_\pi}{\partial m_q^R} \approx 4.06(4) \]

Breaking of the Feynman-Hellman theorem \(g_{S,\pi}^{FH} = g_{S,\pi}^R \) is about 7(3)%
Global fit

After the procedures of joint fit, scale setting and renormalization, we obtain m_q, m_π, and f_π across 11 ensembles, we can conduct a joint fit using χPT:

$$m_{\pi, vv}^2 = \Lambda^2 \chi \frac{1}{2} 2y_v \left[1 + \frac{2}{N_f} \left[(2y_v - y_s)\ln(2y_v) + (y_v - y_s) \right] + 2y_v(2\alpha_8 - \alpha_5) + 2y_sN_f(2\alpha_6 - \alpha_4) \right] (1 + c_m a^2 + c_m L e^{-m\pi L})$$

$$F_{\pi, vv} = F \left(1 - \frac{N_f}{2} \left[(y_v + y_s)\ln(y_v + y_s) + y_v\alpha_5 + y_sN_f\alpha_4 \right] \right) (1 + c_f a^2 + c_f L e^{-m\pi L})$$

- y_v and y_s are variables defined by m_q
- F is pion decay constant in the chiral limit
- α_i are NLO low energy constants

requiring $y_s = y_v$, $m_{\pi, vv} = m_{\pi, phys} = 134.98\text{MeV}$, $a \to 0$, and $L \to \infty$
Global fit results

2 σ away from FLAG average
Summery and outlook

- Results agree with the FLAG average within 2σ, and the non-perturbative renormalization is the main source of the quark mass error.
- Further investigation of renormalization, plan to use the volume source to suppress the uncertainty.
- More ensembles at more lattice spacing and pion masses to improve the reliability of our chiral and continuum global fit.

Thank you for listening!

hubolun@itp.ac.cn