

Flavour-breaking effects in the Hyperon charges

James Zanotti The University of Adelaide

QCDSF Collaboration

Lattice 2023, July 31 - August 4, 2023, Fermilab, USA

CSSM/QCDSF/UKQCD Collaborations

- M. Batelaan (Adelaide, PhD 2023 -> W&M)
- K. U. Can (Adelaide)
- A.Chambers (Adelaide, PhD 2018)
- A. Hannaford-Gunn (Adelaide, PhD 2023)
- R. Horsley (Edinburgh)
- T. Howson (Adelaide, PhD 2023)
- Y. Nakamura (RIKEN)
- H. Perlt (Leipzig)

- D. Pleiter (KTH)
- P. Rakow (Liverpool)
- G. Schierholz (DESY)
- R. Smail (Adelaide, PhD)
- K. Somfleth (Adelaide, PhD 2020)
- H. Stüben (Hamburg)
- R. Young (Adelaide)

Motivation

- ► Nucleon isovector charges $(g_A^{u-d}, g_T^{u-d}, g_S^{u-d})$ can have an impact on searches for New Physics
 - ► Neutron lifetime puzzle
 - > Neutron β -decay
 - CP-violation and neutron EDM

- Importance of lattice input to these reflected in appearing in FLAG 21
- Not much work on Hyperons

electron — anti-neutrino momenta correlation

electron momentum — neutron polarisation correlation

[arXiv:2304.02866]

Feynman-Hellmann Theorem

Suppose we want: $\langle H | \mathcal{O} | H \rangle$

Modify action with external field:

Measure hadron energy while changing λ

$$G(\lambda; \vec{p}; t) = \int dx \, e^{-i\vec{p}\cdot\vec{x}} \langle x \rangle$$

Calculation of matrix elements \equiv hadron spectroscopy $\partial E_H(\lambda, \vec{p})$ $\Big|_{\lambda=0} = \frac{1}{2E_H(\vec{p})} \langle H(\vec{p}) | \mathcal{O}(0) | H(\vec{p}) \rangle$ $\partial \lambda$

 $\chi'(x)\chi(0)\rangle \stackrel{\text{large t}}{\propto} e^{-E_H(\lambda,\vec{p})t}$

Feynman-Hellmann Theorem

► Can modify fermion action in 2 places:

• quark propagators

Connected

 $g_{A}, \Delta \Sigma$ [PRD90 (2014)] NPR [PLB740 (2015)] G_{E}, G_{M} [PRD96 (2017)] $F_{1,2}(\omega, Q^{2})$ [PRL118 (2017), PRD102 (2020), PRD107 (2023)] GPDs [PRD104 (2022)] $\Sigma \rightarrow n$ [2305.05491] g_{A}, g_{T}, g_{S} [2304.02866]

• fermion determinant

Disconnected (Requires new gauge configurations) (3)] $\langle x \rangle_g$ [PLB714 (2012)] NPR [PLB740 (2015)] Δs [PRD92 (2015)]

5

Demonstration: Axial charges

Want

Employ

$$\tilde{w}_f = \frac{p_f}{\sigma_f^2}$$

Comparison to 3-point functions

Excellent agreement between Feynman-Hellmann and standard 3-point function methods

$m_{\pi} \approx 265 \,\mathrm{MeV}$

a=0.068fm, $V=48^3x96$, #measurements = 534x2sources

Lambda dependence

 $m_{\pi} \approx 265 \,\text{MeV}, a = 0.068 \,\text{fm}, V = 48^3 \times 96$

Quark mass trajectory

Bietenholz et al. [QCDSF-UKQCD], PRD(2011)

"Typical" trajectory: fix strange quark mass to physical point and lower light quark mass

QCDSF trajectory: Tune to physical average quark mass. Approach physical point by breaking SU(3) symmetry.

 m_ℓ

Hold "*m*-bar" constant:

exactsul

symmetry

$$\overline{m} = \frac{1}{3} \left(2m_{\ell} + m_s \right) = \frac{1}{3} \left(2m_{\ell}^{\text{phys}} + m_s^{\text{phys}} \right)$$

light quarks

Flavour-breaking expansion

Consider general flavour matrix elements of octet baryons:

 $\langle B' | J^F | B \rangle = A_{B'FB}$

In exact SU(3) limit, just 2 independent constants:

► *F*- and *D*-type couplings

At linear order in SU(3) breaking: 5 slope parameters (3 D's & 2 F's)

$$F_{1} \equiv \frac{1}{\sqrt{3}} (A_{\bar{N}\eta N} - A_{\bar{\Xi}\eta \Xi}) = 2f - \frac{2}{\sqrt{3}} s_{2} \delta m_{l},$$

$$F_{2} \equiv (A_{\bar{N}\pi N} + A_{\bar{\Xi}\pi \Xi}) = 2f + 4s_{1} \delta m_{l},$$

$$F_{3} \equiv A_{\bar{\Sigma}\pi \Sigma} = 2f + (-2s_{1} + \sqrt{3}s_{2}) \delta m_{l},$$

$$F_{4} \equiv \frac{1}{\sqrt{2}} (A_{\bar{\Sigma}K\Xi} - A_{\bar{N}K\Sigma}) = 2f - 2s_{1} \delta m_{l},$$

$$F_{5} \equiv \frac{1}{\sqrt{3}} (A_{\bar{\Lambda}K\Xi} - A_{\bar{N}K\Lambda}) = 2f + \frac{2}{\sqrt{3}} (\sqrt{3}s_{1} - s_{2}) \delta m_{l}.$$

> # of parameters (polynomials/operators) reduced by restricting to $\bar{m} = \text{constant}$ line

All matrix elements identical in the SU(3) symmetric limit

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Index	Baryon (B)	Meson (F)	Current (J)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	n		$ar{d}\gamma s$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	p	K^+	$ar{u}\gamma s$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Σ^{-}	π^-	$ar{d}\gamma u$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Σ^0	π^0	$\frac{1}{\sqrt{2}}\left(\bar{u}\gamma u - \bar{d}^{2} \right)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	Λ^0	η	$\frac{1}{\sqrt{6}}\left(\bar{u}\gamma u+\bar{d}\gamma d-$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	Σ^+	π^+	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	[I]	K^{-}	$ar{s}\gamma u$
$0 \qquad \eta' \qquad \frac{1}{\sqrt{6}} \left(\bar{u}\gamma u + \bar{d}\gamma d + \bar$	8	Ξ^0	$ar{K}^0$	
	0		η'	$\frac{1}{\sqrt{6}}\left(\bar{u}\gamma u + \bar{d}\gamma d\right)$

Fan plots

a=0.068fm

Can form a "singlet" combination

$$X_F = \frac{1}{6}(3F_1 + F_2 + 2F_3) = 2f + \mathcal{O}(\delta m_\ell^2)$$

$$\begin{split} F_{1} &\equiv \frac{1}{\sqrt{3}} (A_{\bar{N}\eta N} - A_{\bar{\Xi}\eta \Xi}) = 2f - \frac{2}{\sqrt{3}} s_{2} \delta m_{l}, \\ F_{2} &\equiv (A_{\bar{N}\pi N} + A_{\bar{\Xi}\pi \Xi}) = 2f + 4s_{1} \delta m_{l}, \\ F_{3} &\equiv A_{\bar{\Sigma}\pi \Sigma} = 2f + (-2s_{1} + \sqrt{3}s_{2}) \delta m_{l}, \\ F_{4} &\equiv \frac{1}{\sqrt{2}} (A_{\bar{\Sigma}K\Xi} - A_{\bar{N}K\Sigma}) = 2f - 2s_{1} \delta m_{l}, \\ F_{5} &\equiv \frac{1}{\sqrt{3}} (A_{\bar{\Lambda}K\Xi} - A_{\bar{N}K\Lambda}) = 2f + \frac{2}{\sqrt{3}} (\sqrt{3}s_{1} - s_{2}) \delta m_{l}. \end{split}$$

Simulation details

2+1 flavour, NP-improved Wilson fermions

Global fits

Want result

- ► in continuum and infinite volume limits
- ► at physical quark masses

Global fit

- ► Include O(a) or $O(a^2)$ terms in X (singlet) and slope parameters $X_{D,F} = X_{D,F}^* (1 + c_1 \frac{1}{3} [f_L(m_\pi) + 2f_L(m_\pi)]) + c_2 a + c_3 a$
- ► Free parameter to encode leading finite-volume correction on singlet:

$$f_L(m) = \left(\frac{m}{X_{\pi}}\right)^2 \frac{e^{-mL}}{\sqrt{mL}}$$

► Work to $O(\delta m_l^2)$ in flavour expansion

$$\delta m_l \to \delta m_l = \frac{m_\pi^2 - X_\pi^2}{X^2}$$

$$\delta m_l^2$$
 e.g. $\tilde{D}_1 = 1 - 2(\tilde{r}_1 + \tilde{b}_1 a)\delta m_l + \tilde{d}_1 \delta m_l^2$

[functional form from chiral EFT, see Beane & Savage PRD(2004)]

Global fits

Singlet X_{F}

F slope parameters

Results - g_A (isovector)

Different model parameterisations

1.
$$\delta m_l^2$$

2. $a, \ \delta m_l^2$
3. $a^2, \ \delta m_l^2$
4. $a, \ \delta m_l^2, \ m_{\pi} L$
5. $a^2, \ \delta m_l^2, \ m_{\pi} L$
6. $\delta m_l^2, \ m_{\pi} L$

Results - isovector charges $N_f = 2 + 1$

 $\overline{\text{MS}}, \mu = 2 \,\text{GeV}$

FLAG 2+1: ~6% FLAG 2+1+1: ~3% Our result: ~2%

FLAG 2+1: ~12% **Our result: ~19%**

Results - Hyperon charges

Not in FLAG, but recent results by RQCD [2305.04717]

(see also previous talk)

RQCD $g_T^{\Sigma} = 0.798(26)$ $g_T^{\Xi} = -0.1872(72)$ $g_A^{\Sigma} = 0.875(49)$ $g_A^{\Xi} = -0.267(18)$ $g_{S}^{\Sigma} = 3.98(33)$ $g_S^{\Xi} = 2.57(16)$

some tension

$\mathfrak{Re}_{\gamma W}^{b,\mathrm{odd}}(E_{e}) = -\frac{\alpha}{2\pi E_{e}} \frac{1}{Mf_{+}(0)} \int_{\mathbb{C}}^{\infty} dQ^{2} \frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \int_{\nu_{t}}^{\infty} Summary_{\times} \left\{ \ln \left| 1 - \frac{E_{e}}{E_{\min}^{2}} \right| + \frac{1}{2E_{e}} \ln \left| \frac{E_{e} + E_{\min}}{E_{e} - E_{\min}} \right| \right\}$ \checkmark Feynman (Hellman theorem) has that the even piece is associated to $F_{3,-}$ and the odd piece to $F_{3,+}$. Finally, a small- E_e expansion gives: provides a viable alternative to 3-pt function methods for computing hadronic matrix elements $\Re e \Box_{\gamma W}^{b,e}(E_e) = \frac{\alpha}{\pi} \int_{\infty}^{\infty} dQ^2 \frac{M_W^2}{M_e^2} \int_{\infty}^{\infty} \frac{d\nu'}{\nu'} \frac{\nu' + 2\sqrt{\nu'^2 + Q^2}}{\nu' + 2\sqrt{\nu'^2 + Q^2}} \frac{F_{3,-}(\nu',Q^2)}{F_{3,-}(\nu',Q^2)} + \mathcal{O}(E_e^2)$ Flavour-breaking expansion along ν' the $m \neq \nu'$ constant M for M. $\mathfrak{R} = \mathfrak{T}_{at} [E_{w}] \mathfrak{T}_{3a} = \mathfrak{T}_{3a} \mathfrak{T}_{3$

Future improvements

which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that ⁴⁰⁰ ensembles with near-physical quark masses and $4 \lesssim m_{\pi}L$ we removed the factor $M_W^2/(M_W^2 + Q_n^2)_{\pm}$ in $\prod_{aW\xi^n}^{b,odd}$ because the integral does not probe the 2x the 300 matrix $M_W^2/(M_W^2 + Q_n^2)_{\pm}$ in $M_W^{b,odd}$ because the integral does not probe the 2x the 300 matrix $M_W^2/(M_W^2 + Q_n^2)_{\pm}$ in $M_W^{b,odd}$ because the integral does not probe 2x the 300 matrix $M_W^2/(M_W^2 + Q_n^2)_{\pm}$ in $M_W^{b,odd}$ because the integral does not probe 2x the 300 matrix $M_W^2/(M_W^2 + Q_n^2)_{\pm}$ in $M_W^{b,odd}$ because the integral does not probe 2x the 300 matrix $M_W^2/(M_W^2 + Q_n^2)_{\pm}$ in $M_W^{b,odd}$ because $M_W^2/(20F2)_{\pm}/(1+4M^2x^{27}Q^2)$

Next we study \Box_{a}^{a} with Eq.(26) as the starting point. Rather than giving the dispersive 100 Hiding the mining the moments of T_{a}^{a} (hepersive 100 Hiding the mining the starting point. Rather than giving the dispersive 100 Hiding the mining the starting point. representation of $T_{1,\pm}$ and $T_{2,\pm}$ with the full E_e -dependence, we retain only the $\mathcal{O}(E_e)$ terms $\mathcal{O}_{1,000}^{\perp}$ $\Box_{\gamma W}^{b}(E_{e}) = \frac{3\alpha}{2\pi} \int_{0}^{\infty} \frac{d\bar{Q}^{2}}{Q^{2}} \frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \left[\frac{M_{3,-}(1,Q^{2}) + \frac{8E_{e}M}{9Q^{2}} M_{3,+}(2,Q^{2})}{9Q^{2}} \right] + \mathcal{O}(E_{e}^{2})$

For progress on moments of $F_3^{\gamma Z}$ via the Compton Amplitude, see K.U. Can, Fri, 9:40 (WH1W)

$$\frac{f^{\infty}}{\nu_{\text{thr}}} \frac{d\nu'}{\nu'} F_{3,+}(\nu', Q^2)$$

$$\frac{n}{n} \left| -\frac{\nu'}{E_{\min}} \right\}, \qquad (41)$$

