
Flavour-breaking effects in the Hyperon charges

James Zanotti  
The University of Adelaide 

QCDSF Collaboration 

Lattice 2023, July 31 - August 4, 2023,  
Fermilab, USA



CSSM/QCDSF/UKQCD Collaborations

2

• M. Batelaan (Adelaide, PhD 2023 -> W&M)


• K. U. Can (Adelaide)


• A.Chambers (Adelaide, PhD 2018)


• A. Hannaford-Gunn (Adelaide, PhD 2023)


• R. Horsley (Edinburgh)


• T. Howson (Adelaide, PhD 2023)


• Y. Nakamura (RIKEN)


• H. Perlt (Leipzig)

• D. Pleiter (KTH) 


• P. Rakow (Liverpool)


• G. Schierholz (DESY)


• R. Smail (Adelaide, PhD) 

• K. Somfleth (Adelaide, PhD 2020)


• H. Stüben (Hamburg)


• R. Young (Adelaide)



➤ Nucleon isovector charges ( ) can have an impact on searches for New Physics 

➤ Neutron lifetime puzzle 

➤ Neutron -decay 

➤ CP-violation and neutron EDM
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D2. Project Description
PROJECT TITLE

Neutron lifetime — what’s the fuss over 10 seconds?

PROJECT AIMS AND BACKGROUND

Neutron lifetime puzzle:
Neutrons disappear from a storage

bottle faster than they are observed to
convert to protons in a beam.
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Figure 1: A nice caption.

The neutron lifetime puzzle is a longstanding issue in
the field of nuclear and particle physics, characterized by a
discrepancy in the measurement of the average lifetime of
a neutron. The neutron lifetime refers to the time it takes
for a neutron to decay into a proton, an electron, and an
electron antineutrino. Despite numerous experimental ef-
forts to determine the neutron lifetime, different methods
have produced conflicting results, with some yielding val-
ues that are significantly shorter or longer than others. The
resolution of this puzzle remains an important and ongoing
area of research.

Recently, advances in computational methods, partic-
ularly in lattice QCD (Quantum Chromodynamics), have
opened up the possibility of providing important theoreti-
cal guidance on the neutron lifetime puzzle. Lattice QCD
is a powerful tool for calculating the properties of strongly-
interacting particles, such as neutrons, from first principles.
By performing large-scale numerical simulations on high-
performance computing systems, it is now possible to compute the matrix elements that govern neutron
decay directly from QCD. These calculations have the potential to shed light on the neutron lifetime puzzle
and provide critical information for resolving the discrepancy in experimental measurements. They rep-
resent an exciting development in the effort to understand the behavior of neutrons and the fundamental
forces that govern their interactions.

However, achieving precision in these theoretical calculations requires good control of radiative correc-
tions, which arise from the emission and absorption of photons and other particles. These corrections can
have a significant impact on the neutron lifetime and must be carefully taken into account. This presents
a particular challenge for lattice QCD calculations, as radiative corrections are often difficult to model
in a controlled and systematic way. Nevertheless, recent progress in techniques for computing radiative
corrections in lattice QCD has opened up new avenues for attacking the neutron lifetime puzzle. By com-
bining accurate lattice QCD calculations with careful consideration of radiative corrections, it may now be
possible to provide a comprehensive and reliable theoretical prediction for the neutron lifetime, which can
help resolve the long-standing discrepancy in experimental measurements.

Aim 1: Perform a state-of-the-art calculation of the nucleon axial charge in lattice QCD.
Aim 2: Compute the low moments of the F3 structure function — to provide constraint on the

γW -box electroweak radiative corrections.
Aim 3: Perform a direct lattice calcution of the neutrino absorption rate, νn → pe−, including

QED — enabling a direct test of conventional techniques used in computing radiative
corrections.

Aim 4: Compute the lattice renormalisation of 4-point quark-quark-lepton-lepton operators.
Aim 5: Compute other forward nucleon matrix elements relevant for exotic (i.e. new physics)

decay channels of the neutron.
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➤ Importance of lattice input to these reflected in 
appearing in FLAG 21 

➤ Not much work on Hyperons

electron momentum — neutron 
polarisation correlation

electron — anti-neutrino 
momenta correlation 

FLAG ‘21

Motivation



Feynman-Hellmann Theorem

Suppose we want:       

Modify action with external field: 

Measure hadron energy while changing  

Calculation of matrix elements  hadron spectroscopy

⟨H |𝒪 |H⟩

λ

≡

4

real parameter

local operator, e.g. q̄(x)γ3q(x)

@EH(�, ~p)

@�

����
�=0

=
1

2EH(~p)
hH(~p)|O(0)|H(~p)i

S → S + λ∫ d4x 𝒪(x)

G(λ; ⃗p; t) = ∫ dx e−i ⃗p⋅ ⃗x⟨χ′ (x)χ(0)⟩
large t

∝ e−EH(λ, ⃗p)t



➤ Can modify fermion action in 2 places: 

๏ quark propagators 
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๏ fermion determinant

Connected

Disconnected

 [PLB714 (2012)]⟨x⟩g

(Requires new gauge configurations)

Δs [PRD92 (2015)]

gA, ΔΣ [PRD90 (2014)] 
NPR [PLB740 (2015)] 
GE,GM [PRD96 (2017)] 

 [PRL118 (2017), PRD102 (2020), PRD107 (2023)] 
GPDs [PRD104 (2022)] 

 [2305.05491] 
gA, gT, gS [2304.02866]

F1,2(ω, Q2)

Σ → n
NPR [PLB740 (2015)]

Feynman-Hellmann Theorem



Quark Axial Charges in the Nucleon (Connected)

L ! L+ �O @EH/@�|�=0
/

⌦
H(p)

��O(0)
��H(p)

↵

Want
⌦
Ns(p)

�� q̄(0)�µ�5q(0)
��Ns(p)

↵
= 2isµ�q q 2 (u, d)

Do L ! L+ �q̄(�i�3�5)q =)
@EN(�)

@�

����
�±

�=0

= ±�qconn.

m⇡ ⇡ 470 MeV 350 configurations 32
3
⇥ 64
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➤ Want 

➤ Employ
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hNs(~p)|q̄(0)�µ�5q(0)|Ns(~p)i = 2isµ�q q 2 (u, d)

L ! L+ �q̄(�i�3�5)q =) @EN (�)

@�

����
�±

�=0

= ±�qconn.

Energy shifts v λEnergy shifts v t

(Connected only, [PRD90 (2014)])Demonstration: Axial charges
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Energy shifts: weighted average

Minimum time used in fit~0.5-0.55fm

Weights Combined result

gA

w̃f =
pf

σ2
f

(Non-normalised) weights:

fit p-value

result uncertainty

see also: Beane et al. NPLQCD/QCDSF, PRD(2021), 
Rinaldi et al., PRD(2019)

mπ ≈ 265 MeV, a = 0.068 fm, V = 483 × 96, λ = 5 × 10−4

gT

t = 8, 9, 10, 11, 12 for a = 0.052, 0.058, 0.068, 0.074, 0.082 fm

[arXiv:2304.02866]



mπ ≈ 265 MeV
Comparison to 3-point functions

2-state fit Feynman-Hellmann

Excellent agreement between Feynman-Hellmann and standard 3-point function methods
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gSgT

E(λ) = E(0) ± λgq
T + 𝒪(λ2) E(λ) = E(0) + λgq

S + 𝒪(λ2)

∂E↑(λ)
∂λ λ=0

= + gq
T

∂E↓(λ)
∂λ λ=0

= − gq
T

∂E(λ)
∂λ λ=0

= + gq
S

Spin-dependent: Spin-independent:

Lambda dependence mπ ≈ 265 MeV, a = 0.068 fm, V = 483 × 96



Quark mass trajectory
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Bietenholz et al. [QCDSF-UKQCD], PRD(2011)
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“Typical” trajectory: 
fix strange quark mass to physical 
point and lower light quark mass

physical point

QCDSF trajectory: 
Tune to physical average quark mass. 
Approach physical point by breaking  
SU(3) symmetry. 

Hold “m-bar” constant: 
m = 1

3 (2mℓ + ms) = 1
3 (2mphys

ℓ + mphys
s )



Flavour-breaking expansion
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Consider general flavour matrix elements of octet baryons: 

                              

In exact SU(3) limit, just 2 independent constants: 

➤ F- and D-type couplings 

At linear order in SU(3) breaking: 5 slope parameters (3 D’s & 2 F’s) 

➤ # of parameters (polynomials/operators) reduced by restricting to  line

⟨B′ |JF |B⟩ = AB′ FB

m̄ = constant

+

0−

0

Y

+1−1

Ξ

Σ Σ

p(uud)n(udd)

Ξ (uss)(dss)

(uds) (uus)

I
3

Λ
0(uds)

Σ
−
(dds)
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Index Baryon (B) Meson (F ) Current (JF )
1 n K0 d̄�s
2 p K+ ū�s
3 ⌃� ⇡� d̄�u
4 ⌃0 ⇡0 1p

2

�
ū�u� d̄�d

�

5 ⇤0 ⌘ 1p
6

�
ū�u+ d̄�d� 2s̄�s

�

6 ⌃+ ⇡+ ū�d
7 ⌅� K� s̄�u
8 ⌅0 K̄0 s̄�d
0 ⌘0 1p

6

�
ū�u+ d̄�d+ s̄�s

�

TABLE IV. The conventions for the generalised currents. We
use the convention that current (i.e. operator) numbered by
i has the same e↵ect as absorbing a meson with the index i.
Here � represents an arbitrary Dirac matrix [37].

where J
F is the appropriate operator, or current, from

Table IV and F represents the flavour structure of the
operator. From Table III we can now read o↵ the expan-
sions of the various matrix elements, where the f and d

terms are independent of �ml and the coe�cients r1, r2,
r3 and s1, s2 are the leading order �ml terms. For exam-
ple if we look at the ⌃̄⇡⌃ term, we have to first order in
�ml:

h⌃+
| J

⇡
0

|⌃+
i = A⌃̄⇡⌃ = 2f + (�2s1 +

p
3s2)�ml.

(22)

B. Mass Dependence: ‘Fan Plots’

Since we hold the average quark mass, m̄, fixed, while
moving away from the symmetric point, we only need to
consider the non-singlet polynomials in the quark mass.
In this sub-section quantities (Di, Fi) are constructed
which are equal at the symmetric point and di↵er in
the case where the quark masses are di↵erent. We can
then evaluate the the violation of SU(3) symmetry that
emerges from the di↵erence in ms �ml.

1. The d-fan

Following Ref. [37], we construct the following combi-
nations of matrix elements which have the same value,
2d, at the SU(3)d symmetric point:

D1 ⌘ �(AN̄⌘N +A⌅̄⌘⌅) = 2d� r1�ml,

D2 ⌘ A⌃̄⌘⌃ = 2d+ (r1 + 2
p
3r3)�ml,

D3 ⌘ �A⇤̄⌘⇤ = 2d� (r1 + 2r2)�ml,

D4 ⌘
1
p
3
(AN̄⇡N �A⌅̄⇡⌅) = 2d�

4
p
3
r3�ml,

D5 ⌘ A⌃̄⇡⇤ = 2d+ (r2 �
p
3r3)�ml,

D6 ⌘
1
p
6
(AN̄K⌃ +A⌃̄K⌅) = 2d+

2
p
3
r3�ml,

D7 ⌘ �(AN̄K⇤ +A⇤̄K⌅) = 2d� 2r2�ml.

(23)

By constructing these quantities the result is a ‘fan’ plot
with seven lines and three slope parameters (r1, r2 and
r3) constraining them. The slope parameters can be con-
strained by calculating octet baryon matrix elements on
a set of ensembles with varying quark masses at fixed lat-
tice spacing, such as those given in Table I, and construct-
ing the Dis. For the forward matrix elements considered
here, these Dis can also be written as linear combina-
tions of the di↵erent quark contributions to the baryon
charges. For example, using Table IV we see:

D1 = � (AN̄⌘N +A⌅̄⌘⌅)

= �

✓
1
p
6
(gu

p
+ g

d

p
) +

1
p
6
(gu⌅ � 2gs⌅)

◆
,

(24)

where we introduce the notation g
q

B
to denote the quark,

q, contribution to the overall charge in the baryon, B. In
this work we only consider the flavour diagonal matrix
terms, i.e. there are no transition terms. Therefore, only
the diagonal D terms, D1, D2 and D4, are used. An
‘average D’ can also be constructed from the diagonal
amplitudes:

XD =
1

6
(D1 + 2D2 + 3D4) = 2d+O(�m2

l
), (25)

which is constant in �ml up to terms O(�m2
l
). When con-

structing these fan plots it is useful to plot D̃i = Di/XD

to find the average fit to reduce statistical fluctuations.

2. The f-fan

Similarly another five quantities, Fi, can be con-
structed which all have the same value, 2f , at the SU(3)f
symmetric point:

F1 ⌘
1
p
3
(AN̄⌘N �A⌅̄⌘⌅) = 2f �

2
p
3
s2�ml,

F2 ⌘ (AN̄⇡N +A⌅̄⇡⌅) = 2f + 4s1�ml,

F3 ⌘ A⌃̄⇡⌃ = 2f + (�2s1 +
p
3s2)�ml,

F4 ⌘
1
p
2
(A⌃̄K⌅ �AN̄K⌃) = 2f � 2s1�ml,

F5 ⌘
1
p
3
(A⇤̄K⌅ �AN̄K⇤) = 2f +

2
p
3
(
p
3s1 � s2)�ml.

(26)
Again, an ‘average F’ can be calculated through:

XF =
1

6
(3F1 + F2 + 2F3) = 2f +O(�m2

l
). (27)

In this work, only the connected quark-line terms are
computed. Quark-line disconnected terms only show
up in the r1 coe�cient and r

discon
1 cancels in the case

g
u�d

T,A,S
= g

u

T,A,S
� g

d

T,A,S
. Unlike the d-fan, the f -fan to

linear order, has no error from dropping the quark-line
disconnected contributions, as none of the ri parameters
appear in the f -fan.
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Index Baryon (B) Meson (F ) Current (JF )
1 n K0 d̄�s
2 p K+ ū�s
3 ⌃� ⇡� d̄�u
4 ⌃0 ⇡0 1p

2

�
ū�u� d̄�d

�

5 ⇤0 ⌘ 1p
6

�
ū�u+ d̄�d� 2s̄�s

�

6 ⌃+ ⇡+ ū�d
7 ⌅� K� s̄�u
8 ⌅0 K̄0 s̄�d
0 ⌘0 1p

6

�
ū�u+ d̄�d+ s̄�s

�

TABLE IV. The conventions for the generalised currents. We
use the convention that current (i.e. operator) numbered by
i has the same e↵ect as absorbing a meson with the index i.
Here � represents an arbitrary Dirac matrix [37].

where J
F is the appropriate operator, or current, from

Table IV and F represents the flavour structure of the
operator. From Table III we can now read o↵ the expan-
sions of the various matrix elements, where the f and d

terms are independent of �ml and the coe�cients r1, r2,
r3 and s1, s2 are the leading order �ml terms. For exam-
ple if we look at the ⌃̄⇡⌃ term, we have to first order in
�ml:

h⌃+
| J

⇡
0

|⌃+
i = A⌃̄⇡⌃ = 2f + (�2s1 +

p
3s2)�ml.

(22)

B. Mass Dependence: ‘Fan Plots’

Since we hold the average quark mass, m̄, fixed, while
moving away from the symmetric point, we only need to
consider the non-singlet polynomials in the quark mass.
In this sub-section quantities (Di, Fi) are constructed
which are equal at the symmetric point and di↵er in
the case where the quark masses are di↵erent. We can
then evaluate the the violation of SU(3) symmetry that
emerges from the di↵erence in ms �ml.

1. The d-fan

Following Ref. [37], we construct the following combi-
nations of matrix elements which have the same value,
2d, at the SU(3)d symmetric point:

D1 ⌘ �(AN̄⌘N +A⌅̄⌘⌅) = 2d� r1�ml,

D2 ⌘ A⌃̄⌘⌃ = 2d+ (r1 + 2
p
3r3)�ml,

D3 ⌘ �A⇤̄⌘⇤ = 2d� (r1 + 2r2)�ml,

D4 ⌘
1
p
3
(AN̄⇡N �A⌅̄⇡⌅) = 2d�

4
p
3
r3�ml,

D5 ⌘ A⌃̄⇡⇤ = 2d+ (r2 �
p
3r3)�ml,

D6 ⌘
1
p
6
(AN̄K⌃ +A⌃̄K⌅) = 2d+

2
p
3
r3�ml,

D7 ⌘ �(AN̄K⇤ +A⇤̄K⌅) = 2d� 2r2�ml.

(23)

By constructing these quantities the result is a ‘fan’ plot
with seven lines and three slope parameters (r1, r2 and
r3) constraining them. The slope parameters can be con-
strained by calculating octet baryon matrix elements on
a set of ensembles with varying quark masses at fixed lat-
tice spacing, such as those given in Table I, and construct-
ing the Dis. For the forward matrix elements considered
here, these Dis can also be written as linear combina-
tions of the di↵erent quark contributions to the baryon
charges. For example, using Table IV we see:

D1 = � (AN̄⌘N +A⌅̄⌘⌅)

= �

✓
1
p
6
(gu

p
+ g

d

p
) +

1
p
6
(gu⌅ � 2gs⌅)

◆
,

(24)

where we introduce the notation g
q

B
to denote the quark,

q, contribution to the overall charge in the baryon, B. In
this work we only consider the flavour diagonal matrix
terms, i.e. there are no transition terms. Therefore, only
the diagonal D terms, D1, D2 and D4, are used. An
‘average D’ can also be constructed from the diagonal
amplitudes:

XD =
1

6
(D1 + 2D2 + 3D4) = 2d+O(�m2

l
), (25)

which is constant in �ml up to terms O(�m2
l
). When con-

structing these fan plots it is useful to plot D̃i = Di/XD

to find the average fit to reduce statistical fluctuations.

2. The f-fan

Similarly another five quantities, Fi, can be con-
structed which all have the same value, 2f , at the SU(3)f
symmetric point:

F1 ⌘
1
p
3
(AN̄⌘N �A⌅̄⌘⌅) = 2f �

2
p
3
s2�ml,

F2 ⌘ (AN̄⇡N +A⌅̄⇡⌅) = 2f + 4s1�ml,

F3 ⌘ A⌃̄⇡⌃ = 2f + (�2s1 +
p
3s2)�ml,

F4 ⌘
1
p
2
(A⌃̄K⌅ �AN̄K⌃) = 2f � 2s1�ml,

F5 ⌘
1
p
3
(A⇤̄K⌅ �AN̄K⇤) = 2f +

2
p
3
(
p
3s1 � s2)�ml.

(26)
Again, an ‘average F’ can be calculated through:

XF =
1

6
(3F1 + F2 + 2F3) = 2f +O(�m2

l
). (27)

In this work, only the connected quark-line terms are
computed. Quark-line disconnected terms only show
up in the r1 coe�cient and r

discon
1 cancels in the case

g
u�d

T,A,S
= g

u

T,A,S
� g

d

T,A,S
. Unlike the d-fan, the f -fan to

linear order, has no error from dropping the quark-line
disconnected contributions, as none of the ri parameters
appear in the f -fan.

All matrix elements identical 
in the SU(3) symmetric limit

Bickerton, Horsley et al. [CSSM/QCDSF/UKQCD], PRD(2019)



Fan plots
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F fanCan form a “singlet” combination

XF = 1
6 (3F1 + F2 + 2F3) = 2f + 𝒪(δm2

ℓ)

General result: Singlet quantities only 
vary at 2nd-order in SU(3) breaking.

±4 %
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Index Baryon (B) Meson (F ) Current (JF )
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�

TABLE IV. The conventions for the generalised currents. We
use the convention that current (i.e. operator) numbered by
i has the same e↵ect as absorbing a meson with the index i.
Here � represents an arbitrary Dirac matrix [37].

where J
F is the appropriate operator, or current, from

Table IV and F represents the flavour structure of the
operator. From Table III we can now read o↵ the expan-
sions of the various matrix elements, where the f and d

terms are independent of �ml and the coe�cients r1, r2,
r3 and s1, s2 are the leading order �ml terms. For exam-
ple if we look at the ⌃̄⇡⌃ term, we have to first order in
�ml:

h⌃+
| J

⇡
0

|⌃+
i = A⌃̄⇡⌃ = 2f + (�2s1 +

p
3s2)�ml.

(22)

B. Mass Dependence: ‘Fan Plots’

Since we hold the average quark mass, m̄, fixed, while
moving away from the symmetric point, we only need to
consider the non-singlet polynomials in the quark mass.
In this sub-section quantities (Di, Fi) are constructed
which are equal at the symmetric point and di↵er in
the case where the quark masses are di↵erent. We can
then evaluate the the violation of SU(3) symmetry that
emerges from the di↵erence in ms �ml.

1. The d-fan

Following Ref. [37], we construct the following combi-
nations of matrix elements which have the same value,
2d, at the SU(3)d symmetric point:

D1 ⌘ �(AN̄⌘N +A⌅̄⌘⌅) = 2d� r1�ml,

D2 ⌘ A⌃̄⌘⌃ = 2d+ (r1 + 2
p
3r3)�ml,

D3 ⌘ �A⇤̄⌘⇤ = 2d� (r1 + 2r2)�ml,

D4 ⌘
1
p
3
(AN̄⇡N �A⌅̄⇡⌅) = 2d�

4
p
3
r3�ml,

D5 ⌘ A⌃̄⇡⇤ = 2d+ (r2 �
p
3r3)�ml,

D6 ⌘
1
p
6
(AN̄K⌃ +A⌃̄K⌅) = 2d+

2
p
3
r3�ml,

D7 ⌘ �(AN̄K⇤ +A⇤̄K⌅) = 2d� 2r2�ml.

(23)

By constructing these quantities the result is a ‘fan’ plot
with seven lines and three slope parameters (r1, r2 and
r3) constraining them. The slope parameters can be con-
strained by calculating octet baryon matrix elements on
a set of ensembles with varying quark masses at fixed lat-
tice spacing, such as those given in Table I, and construct-
ing the Dis. For the forward matrix elements considered
here, these Dis can also be written as linear combina-
tions of the di↵erent quark contributions to the baryon
charges. For example, using Table IV we see:

D1 = � (AN̄⌘N +A⌅̄⌘⌅)

= �

✓
1
p
6
(gu

p
+ g

d

p
) +

1
p
6
(gu⌅ � 2gs⌅)

◆
,

(24)

where we introduce the notation g
q

B
to denote the quark,

q, contribution to the overall charge in the baryon, B. In
this work we only consider the flavour diagonal matrix
terms, i.e. there are no transition terms. Therefore, only
the diagonal D terms, D1, D2 and D4, are used. An
‘average D’ can also be constructed from the diagonal
amplitudes:

XD =
1

6
(D1 + 2D2 + 3D4) = 2d+O(�m2

l
), (25)

which is constant in �ml up to terms O(�m2
l
). When con-

structing these fan plots it is useful to plot D̃i = Di/XD

to find the average fit to reduce statistical fluctuations.

2. The f-fan

Similarly another five quantities, Fi, can be con-
structed which all have the same value, 2f , at the SU(3)f
symmetric point:

F1 ⌘
1
p
3
(AN̄⌘N �A⌅̄⌘⌅) = 2f �

2
p
3
s2�ml,

F2 ⌘ (AN̄⇡N +A⌅̄⇡⌅) = 2f + 4s1�ml,

F3 ⌘ A⌃̄⇡⌃ = 2f + (�2s1 +
p
3s2)�ml,

F4 ⌘
1
p
2
(A⌃̄K⌅ �AN̄K⌃) = 2f � 2s1�ml,

F5 ⌘
1
p
3
(A⇤̄K⌅ �AN̄K⇤) = 2f +

2
p
3
(
p
3s1 � s2)�ml.

(26)
Again, an ‘average F’ can be calculated through:

XF =
1

6
(3F1 + F2 + 2F3) = 2f +O(�m2

l
). (27)

In this work, only the connected quark-line terms are
computed. Quark-line disconnected terms only show
up in the r1 coe�cient and r

discon
1 cancels in the case

g
u�d

T,A,S
= g

u

T,A,S
� g

d

T,A,S
. Unlike the d-fan, the f -fan to

linear order, has no error from dropping the quark-line
disconnected contributions, as none of the ri parameters
appear in the f -fan.

a=0.068fm
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where ✏T and ✏S are the new-physics e↵ective couplings
and gT and gS are the tensor and scalar nucleon isovector
charges. Here b

BSM
v

is a correction term to the neutrino
asymmetry correlation coe�cient, B, and b

BSM is an
addition to the Fierz interference term b in Eq. 1. Data
taken at the Large Hadron Collider (LHC) is currently
looking at probing scalar and tensor interactions at the
. 10�3 level [7]. However to fully assess the discovery
potential of experiments at the 10�3 level it is crucial
to identify existing constraints on new scalar and tensor
operators.

Another quantity of interest is the neutron electric
dipole moment (EDM), which is a measure for CP viola-
tion. In extensions of the Standard Model quarks acquire
an EDM through the interaction of the photon with the
tensor current [8]. The contribution of the quark EDMs,
dq, to the EDM of the neutron, dn, is related to the quark
tensor charges, gq

T
, by [9–11]:

dn = dug
d

T
+ ddg

u

T
+ dsg

s

T
. (4)

Here du, dd, ds, are the new e↵ective couplings which
contain new CP violating interactions at the TeV scale.
The current experimental data gives an upper limit on
the neutron EDM of |dn| < 1.8 ⇥ 10�13

e.cm [12]. In
calculating the tensor charges and knowing a bound on
dn, we are able to constrain the couplings, dq, and hence
BSM theories.

In recent years there has been an increase in interest
from lattice QCD collaborations in calculating the axial,
scalar and tensor isovector charges due to their impor-
tance in interpreting the results of many experiments and
phenomena mediated by weak interactions [13–19]. The
QCDSF/UKQCD/CSSM collaborations have an ongoing
program investigating various hadronic properties using
the Feynman-Hellmann theorem [20–27]. Here we extend
this work to a dedicated study of the nucleon tensor,
scalar and axial charges. We discuss a flavour symmetry
breaking method to systematically approach the phys-
ical quark mass. We then extend this existing flavour
breaking expansion to also account for lattice spacing and
finite volume e↵ects to quantify systemic uncertainties.
Finally, we look at the potential impact of our results
on measurements of the Fierz interference term and the
neutron EDM.

II. SIMULATION DETAILS

For this work we use gauge field configurations that
have been generated with Nf = 2 + 1 flavours of dy-
namical fermions, using the tree-level Symanzik improved
gluon action and non-perturbatively O(a) improved Wil-
son fermions [28]. In our simulations, we have kept the
bare quark mass, m̄ = (mu + md + ms)/3, held fixed
approximately at its physical value, while systematically

varying the quark masses around the SU(3) flavour sym-
metric point, mu = md = ms, to extrapolate results to
the physical point [29]. We also have degenerate u and
d quark masses, mu = md ⌘ ml. The coverage of lattice
spacings and pion masses is represented graphically in
Fig. 1.

FIG. 1. Lattice ensembles that are used in this work charac-
terised by pion mass, m⇡, and lattice spacing, a. The hori-
zontal lines represent the physical pion and kaon masses and
the continuum limit occurs as a ! 0.

� a(fm) Volume (light,strange) m⇡ mK(MeV)
5.40 0.082 323 ⇥ 64 ( 0.119930 , 0.119930 ) 408 408

( 0.119989 , 0.119812 ) 366 424
( 0.120048 , 0.119695 ) 320 440
( 0.120084 , 0.119623 ) 290 450

5.50 0.074 323 ⇥ 64 ( 0.120900 , 0.120900 ) 468 468 *
( 0.121040 , 0.120620 ) 357 505 *
( 0.121095 , 0.120512 ) 315 526 *

5.50 0.074 323 ⇥ 64 ( 0.120950 , 0.120950 ) 403 403
( 0.121040 , 0.120770 ) 331 435
( 0.121099 , 0.120653 ) 270 454

5.65 0.068 483 ⇥ 96 ( 0.122005 , 0.122005 ) 412 412
( 0.122078 , 0.121859 ) 355 441
( 0.122130 , 0.121756 ) 302 457
( 0.122167 , 0.121682 ) 265 474

643 ⇥ 96 ( 0.122197 , 0.121623 ) 220 485
5.80 0.059 483 ⇥ 96 ( 0.122810 , 0.122810 ) 427 427

( 0.122880 , 0.122670 ) 357 456
( 0.122940 , 0.122551 ) 280 477

5.95 0.052 483 ⇥ 96 ( 0.123460 , 0.123460 ) 468 395
( 0.123411 , 0.123558 ) 418 418
( 0.123523 , 0.123334 ) 347 451

TABLE I. Details of lattice ensembles used in this work. *
indicates ensembles with a di↵erent value of m̄, further from
the physical m̄. The uncertainty on the pseudoscalar masses
is between 1-3MeV.

Further information about these ensembles is pre-
sented in Table I. We have five lattice spacings,
a = 0.082, 0.074, 0.068, 0.059, 0.052 fm [30], enabling
an extrapolation to the continuum limit as well as three
lattice volumes, 323⇥64, 483⇥96 and 643⇥96, allowing
an extension to the flavour-breaking expansion, which
describes the quark mass-dependence of the matrix

5 lattice spacings

pion masses

220 ↔ 500 MeV

0.052 ↔ 0.082 fm

3 volumes
2+1 flavour, NP-improved Wilson fermions
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Want result  

➤ in continuum  and infinite volume limits 

➤ at physical quark masses 

Global fit 

➤ Include  or  terms in X (singlet) and slope parameters 

➤ Free parameter to encode leading finite-volume correction on singlet: 

➤ Work to  in flavour expansion

O(a) O(a2)

O(δm2
l )

fL(m) = ( m
Xπ )

2
e−mL

mL

[functional form from chiral EFT, 
see Beane & Savage PRD(2004)]

XD,F = X*D,F(1 + c1
1
3

[ fL(mπ) + 2fL(mπ)]) + c2a + c3δm2
l D̃1 = 1 − 2(r̃1 + b̃1a)δml + d̃1δm2

l

δml → δml =
m2

π − X2
π

X2
π

e.g.
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Fit XD �2/dof XF �2/dof gT �2/dof D-Fan �2/dof F-Fan
1. �m2

l 0.5126(44) 1.81 0.5971(59) 1.68 1.022(12) 1.28 1.89
2. a, �m2

l 0.5307(79) 1.54 0.62(1) 1.43 1.004(27) 0.67 1.10
3. a2, �m2

l 0.5228(58) 1.55 0.6077(74) 1.36 1.012(18) 0.71 1.13
4. a, �m2

l , m⇡L 0.5339(85) 1.63 0.6198(99) 1.42 1.009(67) 0.67 1.10
5. a2, �m2

l , m⇡L 0.5232(58) 1.64 0.608(74) 1.44 1.013(18) 0.71 1.13
6. �m2

l , m⇡L 0.5126(44) 1.91 0.5992(58) 1.78 1.027(13) 1.28 1.89
Fit XD �2/dof XF �2/dof gA �2/dof D-Fan �2/dof F-Fan
1. �m2

l 0.583(21) 1.38 0.652(22) 0.74 1.249(64) 0.81 1.54
2. a, �m2

l 0.57(4) 1.45 0.655(44) 0.78 1.24(16) 0.79 1.56
3. a2, �m2

l 0.575(27) 1.44 0.653(29) 0.78 1.239(95) 0.79 1.56
4. a, �m2

l , m⇡L 0.566(39) 1.53 0.650(39) 0.83 1.24(18) 0.79 1.56
5. a2, �m2

l , m⇡L 0.570(30) 1.53 0.648(30) 0.83 1.238(92) 0.79 1.56
6. �m2

l , m⇡L 0.588(24) 1.46 0.659(23) 0.78 1.248(69) 0.81 1.54
Fit XD �2/dof XF �2/dof gS �2/dof D-Fan �2/dof F-Fan
1. �m2

l �0.599(51) 1.58 2.47(12) 2.0 1.07(19) 1.41 4.00
2. a, �m2

l �0.62(98) 1.66 2.63(18) 2.03 0.88(49) 1.46 4.21
3. a2, �m2

l �0.609(68) 1.67 2.56(13) 2.00 0.97(3) 1.46 4.21
4. a, �m2

l , m⇡L �0.67(10) 1.63 2.53(19) 2.06 0.79(51) 1.46 4.21
5. a2, �m2

l , m⇡L �0.623(69) 1.63 2.54(13) 2.05 0.95(31) 1.46 4.21
6. �m2

l , m⇡L �0.585(54) 1.61 2.51(12) 1.94 1.10(19) 1.41 4.00

TABLE V. Table of results for each fit and the corresponding �2/dof . The notation in the first column shows which corrections
are included in Eq. 32, 34 and 35. For example Fit 4 includes all corrections a, �m2

l and m⇡L, while Fit 1 only includes an
added �m2

l term, i.e. c1 = c2 = bi = ei = 0.

(a) (b)

(c) (d)

FIG. 8. As an example of some fits we have for the tensor: (a) XF results for each ensemble using Eq. 32 where c1 = c2 = 0

(Fit 1), plotted against
m2

⇡�X2
⇡

X2
⇡

. (b) The three fits F1, F2 and F3 using Eq. 35 with ei = 0 (Fit 1). (c) XF results using all

corrections in Eq. 32 (Fit 4), plotted against
m2

⇡�X2
⇡

X2
⇡

. The black line is a fit to Eq. 32 in the limit a ! 0 and m⇡L ! 1. (d)

The three fits F1, F2 and F3 using Eq. 35, where once again the data points are shifted in the limit a ! 0. The black stars
represent the physical point.

Different model parameterisations

weighted average among 
models (as above)

FLAG result, ~2.2%

Our result, (stat+sys)~5.5%

gu−d
A = 1.253(63)stat(41)a(03)FV
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MS, μ = 2 GeV

FLAG 2+1: ~6% 
FLAG 2+1+1: ~3% 
Our result: ~2%

FLAG 2+1: ~12% 
Our result: ~19%

869 Page 202 of 296 Eur. Phys. J. C (2022) 82 :869

Fig. 45 Lattice results and FLAG averages for the isovector tensor charge gu−dT for N f = 2, 2+1, and 2+1+1 flavour calculations. Also shown
are phenomenological results using measures of transversity [986–990] (circles)

uncertainty due to the various extrapolations is small. Also shown for comparison in Fig. 45 are phenomenological results
using measures of transversity [986–990].

As in FLAG 19, for 2+1+1 flavours, only PNDME 18 [98], which supersedes PNDME 16 [881], PNDME 15 [879] and
PNDME 13 [878], meets all the criteria for inclusion in the average. The details for this calculation are the same as those for
gu−dS described in the previous section (Sect. 10.3.2), except that three-state fits were used to remove excited-state effects.
The details of the 2+1+1 flavour calculation by ETM 19, which does not meet the criteria for averaging, are also the same as
those described in the previous section for gu−dS .

For 2+1-flavour calculations, only Mainz 19 [102] meets all criteria for inclusion in the averages. Details of this calculation
are the same as for gu−dS , described in the previous section.

Details for the 2+1-flavour NME 21, RBC/UKQCD 19, LHPC 19, Mainz 18, JLQCD 18, and LHPC 12A, calculations
are identical to those presented previously in Sect. 10.3.2. The earlier RBC/UKQCD 10 calculation was performed using
domain-wall fermions on the Iwasaki gauge action, with two volumes and several pion masses. The lowest pion mass used
was Mπ ∼ 330 MeV and does not meet the criteria for chiral extrapolation. In addition, the single lattice spacing and single
source-sink separation do not meet the criteria for continuum extrapolation and excited states.

Two-flavour calculations include RQCD 14, with details identical to those described in Sect. 10.3.2. There are two calcu-
lations, ETM 15D [873] and ETM 17 [877], which employed twisted-mass fermions on the Iwasaki gauge action. The earlier
work utilized three ensembles, with three volumes and two pion masses down to the physical point. The more recent work
used only the physical pion mass ensemble. Both works used only a single lattice spacing a ∼ 0.09 fm, and therefore do not
meet the criteria for continuum extrapolation. The early work by RBC 08 with domain-wall fermions used three heavy values
for the pion mass, and a single value for the lattice spacing, volume, and source-sink separation, and therefore do not meet
many of the criteria.

The final FLAG value for gu−dT is

N f = 2 + 1 + 1 : gu−dT = 0.989(34) Ref. [98], (437)

N f = 2 + 1 : gu−dT = 0.965(61) Ref. [102]. (438)

10.4 Flavour diagonal charges

Three examples of interactions for which matrix elements of flavour-diagonal operators (q"q where " defines the Lorentz
structure of the bilinear quark operator) are needed are the neutral current interactions of neutrinos, elastic scattering of
electrons off nuclei, and the scattering of dark matter off nuclei. In addition, these matrix elements also probe intrinsic properties
of nucleons (the spin, the nucleon sigma term and strangeness content, and the contribution of the electric dipole moment

123
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Table 70 Overview of results for gu−dS
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gu−dS

ETM 19 [971] 2+1+1 A ! ◦ ! ! ◦ 1.35(17)

PNDME 18 [98] 2+1+1 A !‡ ! ! ! ◦ 1.022(80)(60)

PNDME 16 [881] 2+1+1 A ◦‡ ! ! ! ◦ 0.97(12)(6)

PNDME 13 [878] 2+1+1 A !‡ ! ! ! ◦ 0.72(32)

NME 21 [972] 2+1 P ◦‡ ! ! ! ◦ 1.06(10)(6)

χQCD 21A [978] 2+1 P ! ! ! ! ◦ 0.94(10)(6)

RBC/UKQCD 19 [977] 2+1 A ! ◦ ! ! ! 0.9(3)

Mainz 19 [102] 2+1 A ! ◦ ! ! ◦ 1.13(11)(7
6)

LHPC 19 [851] 2+1 A !‡ ! ! ! ◦ 0.927(303)

JLQCD 18 [890] 2+1 A ! ◦ ◦ ! ◦ 0.88(8)(3)(7)

LHPC 12 [979] 2+1 A !‡ ! ! ! ◦ 1.08(28)(16)

ETM 17 [877] 2 A ! ◦ ◦ ! ◦ 0.930(252)(48)(204)

RQCD 14 [869] 2 A ◦ ! ! ! ! 1.02(18)(30)

‡The rating takes into account that the action is not fully O(a) improved by requiring an additional lattice spacing

Fig. 44 Lattice results and FLAG averages for the isovector scalar charge gu−dS for N f = 2, 2+ 1, and 2+ 1+ 1 flavour calculations. Also shown
is a phenomenological result obtained using the conserved vector current (CVC) relation [966] (circle)

10.3.2 Results for gu−dS

Calculations of the isovector scalar charge have, in general, larger errors than the isovector axial charge as can be seen from
the compilation given in Table 70 and plotted in Fig. 44. The isovector scalar charge can also be determined indirectly via the
conserved vector current (CVC) relation from results for the neutron-proton mass difference [147,172,221,980–985] and the
down and up quark mass difference (see Sect. 3.1.6). For comparison, Fig. 44 also shows an indirect determination obtained
using lattice and phenomenological input [966].

123

gu−d
T = 1.010(21)stat(12)a(01)FV

gu−d
S = 1.08(21)stat(03)a(01)FV
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This work

gΣ
T = 0.805(15)

gΞ
T = − 0.1952(75)

gΣ
A = 0.876(28)

gΞ
A = − 0.206(21)

gΣ
S = 2.80(25)

gΞ
S = 1.59(12)

gΣ
T = 0.798(26)

gΞ
T = − 0.1872(72)

gΣ
A = 0.875(49)

gΞ
A = − 0.267(18)

gΣ
S = 3.98(33)

gΞ
S = 2.57(16)

Not in FLAG, but recent results by RQCD [2305.04717] 

(see also previous talk) 
RQCD

some tension



➤ Feynman Hellman theorem 

➤ provides a viable alternative to 3-pt function methods for computing hadronic matrix elements 

➤ Flavour-breaking expansion along the  line 

➤ allows for a controlled extrapolation from the SU(3)-symmetric point  

➤ Future improvements 

➤ ensembles with near-physical quark masses and  

➤ strong isospin breaking effects [c.f. QCDSF PLB(2012)] 

➤ gamma-W box (dispersion integral over moments of )

m̄ = constant

4 ≲ mπL

FγW
3

Summary and outlook
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21/46

Analysis

Clover action comprises the tree-level Symanzik improved gluon
action together with a stout smeared fermion action, modified for
the use of the FH technique.

Rose Smail
Constraining Beyond The Standard Model Nucleon Isovector Charges
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Universal RC from dispersion relations
ImTμν

γW = … +
iεμναβpαqβ

2(pq) FγW
3 (x, Q2)Interference  structure functionsγW

Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain
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, (41)

where Emin ⌘ (⌫ 0 +
p
⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:
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(42)

which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms
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After some algebra (isospin decomposition, loop integration)

Advantage to previous approach (Marciano & Sirlin):  
- Explicit 2-fold integral, isospin decomposition and energy dependence

M3(n, Q2) = n + 1
n + 2 ∫

1

0

dxξn

x2
2x(n + 1) − nξ

n + 1 F3(x, Q2), ξ = 2x
1 + 1 + 4M2x2 /Q2

Nachtmann moments 
play a role in DIS

moment,

M 0
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2) ⌘
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, (48)

which reduces to the respective Mellin moment at large Q2, M 0
1,+(2, Q

2) ! M̃1,+(2, Q2). In

terms of these Nachtmann moments, Eqs.(42), (45) become
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Assuming these two pieces together give a precise enough description of the nuclear �W -box

diagram (which needs to be checked by studying its convergence speed), we write,
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. (50)

Above, the factor M2
W/(M2

W + Q2) was removed because the physics at Q2
⇠ M2

W is not

probed. As is well-known, the asymptotic contribution to ⇤�W is process-independent and

cancels between Mnucl
3,� and Mn

3,�. Plugging this into Eq.(30) gives us a closed expression for

�NS. Below we discuss some aspects important for evaluating it.

Relevant region of the Q2-integral:

While the integral in Eq.(50) is insensitive to asymptotically high Q2, we need to find out,

starting from which value of Q2 = Q2
nucl the cancellation between the nuclear and nucleon

boxes is at such a level that a precise enough determination of �NS can already be obtained

with Q2
nucl as an upper limit. The first Nachtmann moment for a free nucleon, Mn

3,�(1, Q
2),

has been studied recently as a function of Q2 using phenomenological [15, 16, 19, 20] and

indirect lattice inputs [18]. It was found that by Q2
⇡ 2GeV2 the perturbative description

sets in, and we can expect that Q2
nucl < 2GeV2. A trial calculation of Mnucl

3,+ (1, Q2) at

Q ⇠ 100 � 300 MeV may already provide a useful hint. As evidenced by the entries in

Table I, even a ⇠ 10% determination of Mnucl
3,+ (1, Q2) will significantly improve the precision

of �NS for most nuclei.
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Hiding the nu-integration in the Nachtmann moments:

For progress on moments of  via the Compton Amplitude, see K.U. Can, Fri, 9:40 (WH1W) FγZ
3


