Exploring the QCD phase diagram with three flavors of Möbius domain wall fermions

Yu Zhang
(RIKEN R-CCS)

In collaboration with
Y. Aoki, S. Hashimoto, I. Kanamori, T. Kaneko, Y. Nakamura
Outline

- Background & Motivation
- Previous lattice studies
- Lattice setup
- Results
- Summary & Outlook
The nature of QCD phase transition at $\mu_B = 0$

Order of phase transition depends on m_l, m_s & N_f

- ϵ expansion: 1^{st} order phase transition in the chiral limit for $N_f = 3$
 [Pisarski, Wilczek PRD 84]

- RG flows of all couplings up to ϕ^6 in 3d Ginzburg-Landau potential for $N_f = 3$ in the chiral limit: a possible 2^{nd} order phase transition
 [G. Fejos, PRD 22]

This work:
→ Explore $N_f = 3$ chiral region using first-principle lattice QCD
Previous Nf=3 lattice QCD studies

<table>
<thead>
<tr>
<th>Action</th>
<th>N_t</th>
<th>$m_\pi Z_2$ [MeV]</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staggered, standard</td>
<td>4</td>
<td>290</td>
<td>Karsch et al. (2001)</td>
</tr>
<tr>
<td>Staggered, standard</td>
<td>6</td>
<td>150</td>
<td>de Forcrand et al. (2007)</td>
</tr>
<tr>
<td>Staggered, HISQ</td>
<td>6</td>
<td>$\lesssim 50$</td>
<td>Bazavov et al. (2017)</td>
</tr>
<tr>
<td>Staggered, stout</td>
<td>4-6</td>
<td>0?</td>
<td>Varnhost (2014)</td>
</tr>
<tr>
<td>Staggered, HISQ</td>
<td>8</td>
<td>$\lesssim 80$</td>
<td>Dini et al. (2022)</td>
</tr>
<tr>
<td>Wilson, standard</td>
<td>4</td>
<td>$\lesssim 670$</td>
<td>Iwasaki et al. (1996)</td>
</tr>
<tr>
<td>Wilson-Clover</td>
<td>6-10</td>
<td>$\lesssim 170$</td>
<td>Jin et al. (2017)</td>
</tr>
<tr>
<td>Wilson-Clover</td>
<td>6-12</td>
<td>$\lesssim 110$</td>
<td>Kuramashi et al. (2020)</td>
</tr>
</tbody>
</table>

Evidence for continuum chiral limit to feature 2nd order PT with staggered fermion [Cuteri et al.(2021)]

1^{st} order region shrinks as $a \to 0$ or even disappear with both staggered and Wilson fermions

Our aim is to investigate Nf = 3 QCD phase structure with Mobius Domain Wall Fermion

Why MDWF

- Exact chiral symmetry at finite a for infinite Ls
- Reduced χ_{SB} parameterized by residual mass when Ls is finite
Lattice Setup

$N_f=3$ Mobius Domain Wall Fermion

Tree-level Symanzik improved gauge action and stout smearing at $\beta = 4.0$ ($a=0.1361(20)$ fm)

Using Wilson flow t_0 to set the scale and matching with $N_f=2+1$ physical point

$\sqrt{\frac{t_0}{\text{phys}}} = 0.1465(21)(13)$ fm

[S.Borsanyi et al., JHEP 2012]

\star $T = 0$:

$N_s=24$, $N_t=48$, $L_s=16$: $0.02 \leq am_q \leq 0.045$, am_{res} (estimated) ≈ 0.006

\star $T > 0$:

$N_t=12$ ($T=120.8(1.8)$ MeV), $L_s=16$: $N_s=36$, $-0.005 \leq am_q \leq 0.001$

$N_s=24$, $-0.006 \leq am_q \leq 0.1$

$L_s=32$: $N_s=24$, $-0.001 \leq am_q \leq 0.003$

Measured: residual mass, chiral condensate, chiral susceptibility & Binder cumulant

Codes: Grid & Hardons

Resources: Supercomputer Fugaku & Wisteria/BDEC-01 Oddysey at Univ. Tokyo
Residual chiral symmetry breaking

- For finite \(L_s \) chiral symmetry is broken, its leading contribution is equivalent to an additive renormalization to the input quark mass \(m_q \), which knows as \(m_{\text{res}} \), so the total quark mass becomes \(m_q + m_{\text{res}} \).

- Measure the ratio of midpoint correlator to the pion correlator evaluated at large distance

\[
m_{\text{res}} = R(t) = \frac{\left\langle \sum_{x} J_{5q}^d(\overrightarrow{x}, t) \pi^d(0, 0) \right\rangle}{\left\langle \sum_{x} J_{5}^d(\overrightarrow{x}, t) \pi(0, 0) \right\rangle}
\]

Intercept zero within error at \(m_q = -m_{\text{res}} \).

- \(\langle \bar{\psi} \psi \rangle |_{\text{DWF}} \sim C \frac{m_q + x m_{\text{res}}}{a^2} + \langle \bar{\psi} \psi \rangle |_{\text{cont.}} + \ldots \), \(x \) is not known, expected \(x = \mathcal{O}(1) \)

Additive divergence remains if one extrapolates to \(m = m_q + m_{\text{res}} = 0 \):

\[
\lim_{m \to 0} \lim_{V \to 0} \langle \bar{\psi} \psi \rangle |_{\text{DWF}} \sim \langle \bar{\psi} \psi \rangle |_{\text{cont.}} + C(x - 1) \frac{m_{\text{res}}}{a^2} + \ldots
\]

[S. Sharpe, arXiv:0706.0218]
Chiral condensate at $T \sim 121$ MeV

Order parameter for χ_{SB}: $$\langle \bar{\psi} \psi \rangle = \frac{N_f}{N_s^3 N_t} \text{Tr} \langle M^{-1} \rangle$$

Quark mass renormalization in $\overline{\text{MS}}$ scheme: $$m^{\overline{\text{MS}}}(2 \text{ GeV}) = Z_m^{\overline{\text{MS}}}(2 \text{ GeV}) \cdot a^{-1} \cdot am$$

Multiplicative renormalization: $$\langle \bar{\psi} \psi \rangle^{\overline{\text{MS}}}(2 \text{ GeV}) = \frac{a^{-3} \cdot a^3 \langle \bar{\psi} \psi \rangle}{Z_m^{\overline{\text{MS}}}(2 \text{ GeV})}$$

Remove additive divergence $C \frac{m_q + x m_{\text{res}}}{a^2}$ by $\langle \bar{\psi} \psi \rangle^{T>0} - \langle \bar{\psi} \psi \rangle^{T=0}$
Chiral condensate at $T \sim 121$ MeV

Additively and multiplicatively renormalized order parameter

$$\left[\langle \bar{\psi} \psi \rangle^{T \geq 0} - \langle \bar{\psi} \psi \rangle^{T=0} \right]_{\text{MS}}^{\text{MS}} (\mu = 2 \text{ GeV}) [\text{GeV}^3]$$

Finite size dependence is visible around $(m_q + m_{\text{res}})_{\text{MS}} \sim 4 - 9$ MeV
Chiral susceptibility at $T \sim 121$ MeV

$$\chi_\sigma = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial m^2} = \chi_\text{disc} + \chi_\text{con}, \quad \chi_\text{disc} = \frac{N_f^2}{N_s^3 N_t} \left[\langle (\text{Tr} M^{-1})^2 \rangle - \langle \text{Tr} M^{-1} \rangle^2 \right], \quad \chi_\text{con} = -\frac{N_f}{N_s^3 N_t} \langle \text{Tr} M^{-2} \rangle$$

Renormalize susceptibility to $\overline{\text{MS}}(\mu = 2 \text{ GeV})$ with $(Z_m^{\overline{\text{MS}}})^{-2}$ to remove the multiplicative divergence

The change in peak height & position for χ_disc and χ_σ is not as large as anticipated from the first order transition (see next slide)

\rightarrow Consistent with the crossover rather than true phase transition

For crossover transition, the peak height of susceptibility would be volume independent for large volumes, currently $48^3 \times 12$ simulation is underway

The transition mass point determined from χ_disc and χ_σ is around 3.6 MeV & 2.5 MeV in the $\overline{\text{MS}}$ scheme at a scale of $\mu = 2$ GeV, they coincide in the chiral phase transition temperature
Finite size scaling: susceptibility χ_σ at $T \sim 121$ MeV

Finite size scaling function for the susceptibility at critical point:

$$\chi_\sigma^{\text{max}}(N_s) \sim \begin{cases} N_s^3, & \text{first order phase transition} \\ N_s^{1.966}, & \text{Z(2) second order phase transition} \end{cases}$$

finite-size scaled susceptibility

The peak height of chiral susceptibility does not scale like a first order and Z(2) second order phase transition
The histogram of chiral condensate at $T\sim 121$ MeV

The normalized histogram at transition mass point determined from χ_{disc} and χ_{σ} behaves like a Gaussian distribution. No evidence that a double peak structure would appear as volume increases.
Binder cumulant of chiral condensate at $T \sim 121$ MeV

$$B_4(\bar{\psi}\psi) = \frac{\langle (\delta\bar{\psi}\psi)^4 \rangle}{\langle (\delta\bar{\psi}\psi)^2 \rangle^2}, \quad \delta\bar{\psi}\psi = \bar{\psi}\psi - \langle \bar{\psi}\psi \rangle$$
Residual mass and Chiral condensate at varying L_s

- am_{res} computed at fixed $\beta = 4.0$ for both zero & finite T are consistent
- Adjust input quark mass for $L_s=32$ so that $a(m_q + m_{\text{res}})$ is similar with $L_s=16$
- am_{res} reduced almost half for $L_s=32$, $1/L_s$ dependence dominates the contribution

\[am_{\text{res}}(0) \text{ from linear fit with zero T data} \]

\[\lim_{(m_q + m_{\text{res}}) \to 0} \lim_{V \to 0} \langle \bar{\psi} \psi \rangle |_{DWF} \sim \langle \bar{\psi} \psi \rangle |_{\text{cont.}} + C \frac{(x-1)m_{\text{res}}}{a^2} \]

The result has contamination due to the lack of exact chiral symmetry after taking chiral limit

- Residual chiral symmetry breaking effect is smaller for $L_s=32$

[S. Sharpe, arXiv: 0706.0218]
For two lattices with the approximate same total quark mass, we observe the consistent results in the susceptibility, the transition mass point is similar

⇒ The choice of our negative input quark mass for $L_s=16$ is safe

- Susceptibility seems to be function of total light quark mass $m_q + m_{\text{res}}$
Summary and outlook

- $(m_q + m_{\text{res}})^{\text{MS}}_{pc} \sim 42 \text{ MeV}, T \sim 181 \text{ MeV} (N_t = 8, \text{MDWF})$
 $\Leftrightarrow m_{\pi}^{\text{pc}} \sim 480 \text{ MeV}, \text{no phase transition}$

 [Y. Zhang lattice 2022]

- $(m_q + m_{\text{res}})^{\text{MS}}_{pc} \sim 3.6 \text{ MeV}, T \sim 121 \text{ MeV} (N_t = 12, \text{MDWF})$
 $\Leftrightarrow m_{\pi}^{\text{pc}} \sim 141 \text{ MeV}, \text{no phase transition}$

- $T \sim 104 \text{ MeV} (N_t = 14, \text{MDWF}), \text{lighter quark mass simulation is underway}$
Acknowledgements

• Codes
 • HMC
 • Grid (implementation for A64FX: thanks to the Regensburg group)
 • Measurements
 • Bridge++
 • Hadrons / Grid

• Computers
 • Supercomputer Fugaku provided by the RIKEN Center for Computational Science through HPCI project #hp210032 and Usability Research ra000001.
 • Wisteria/BDEC-01 Oddysey at Univ. Tokyo/JCAHPC through HPCI project #hp220108
 • Ito supercomputer at Kyushu University through HPCI project #hp190124 and hp200050
 • Hokusai BigWaterfall at RIKEN

• Grants
 • JSPS Kakenhi (20H01907)
Backup slide
\[B_4(\langle \bar{\psi} \psi \rangle) = \frac{\langle (\delta \bar{\psi} \psi)^4 \rangle}{(\langle (\delta \bar{\psi} \psi)^2 \rangle)^2} \]

\[N_s^3 \times N_t \times L_s = 24^3 \times 12 \times 32 \]

\[N_s^3 \times N_t \times L_s = 24^3 \times 12 \times 16 \]

Crossover

\[Z(2) \] 2nd order

1st order

\[(m_q + m_{res})_{\text{MS}}(\mu = 2 \text{ GeV}) \text{ [MeV]} \]