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Handout version*

This handout is a slightly modified version of the talk given at Lattice 2023.
Some additional comments have been added in order to give context to the slides
shown.
Slides marked by an asterisk (*) were not part of the original talk.
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Gross‑Neveu (GN) model

L = iψ̄
(
/∂ + µγ0 + ie /A

)
ψ +

g2
2Nf

(ψ̄ψ)2

• Nf flavors
• no mass term
• chemical potential µ
• external field Aµ
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Gross‑Neveu (GN) model

L = iψ̄
(
/∂ + µγ0 + ie /A

)
ψ +

g2
2Nf

(ψ̄ψ)2

or, equivalently,

L = iψ̄
(
/∂ + σ + µγ0 + ie /A

)
ψ +

Nf
2g2σ

2

Ward identity discrete chiral symmetry

⟨ψ̄ψ⟩ = iNf
g2 ⟨σ⟩ ψ → i γ5ψ, ψ̄ → i ψ̄γ5, σ → −σ
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Gross‑Neveu (GN) model*

One commonly gets rid of the (ψ̄ψ)2 term by introducing the auxiliary scalar field
σ into the Lagrangian. These two Lagrangians are equivalent, as can be seen via
Gaussian integration over σ.
The vector field Aµ is included so as to study the influence of a background
magnetic field on the model.
Notice that the GN model has a discrete Z2 symmetry.
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Motivation & Goals

Why GN model?

• Toy model for QCD
• Solid State Physics
• . . .

Why magnetic field?

• Heavy-ion collisions
• Neutron stars
• Early universe

In this talk
• Study influence of magnetic field on GN phase structure using a
mean-field approach and Lattice Field Theory.

• 2+1 dimensions.
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Motivation & Goals*

Variants of the Gross-Neveu model have been used successfully as toy models
for QCD due to some intersting features they share with QCD, such as chiral
symmetry and its spontaneous breakdown and in low dimensions
renormalizability and asymptotic freedom.
In solid state physics they are used to describe planar and one-dimensional
materials such as graphene, high-Tc superconductors or polymers.
Very strong magnetic fields are present in heavy-ion collisions, nucleon stars and
likely also were at the early stages of the universe. Thus, it is important to
understand their potential influence on the structure of matter.
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Large‑Nf results*

Going to the limit of infinite flavor number, Nf → ∞, often gives a qualitatively
correct picture of the phase structure of Four-Fermi theories even at finite Nf. In
this case, computing the path integral reduces to a simple minimization problem
(see the Appendix). For Nf → ∞ the mean-field limit becomes exact.
On the next slide we show the large-Nf phase diagram in the (B, µ) plane of the
(2 + 1)-dimensional GN model at zero temperature. The magnetic field is
assumed to be constant, homogenous and orthogonal to the spatial plane. We
assume σ to be homogeneous in space and time.
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Large‑Nf results
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Large‑Nf results*

We observe that there a two major regions in the (B, µ) phase diagram:
1. The magnetic catalysis region for low µ, where the magnetic field enhances

chiral symmetry breaking and
2. the inverse magnetic catalysis region for higher µ and low eB, where the

magnetic field acts against symmetry breaking.
The most striking feature of the plot is the pattern of multiple (first-order) phase
transitions in µ occurring at small eB. It is caused by the presence of discrete
Landau levels, which are crossed successively when increasing µ.
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Large‑Nf results

Comments:
• No first-order transition at B = 0, T ̸= 0.
• In contrast to simulations at Nf = 4 [Kogut, Strouthos; Phys. Rev. D 63 (2001)]

backed by OPT study [Kneur et al.; Phys. Rev. D 76 (2007)].
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Large‑Nf results*
While not shown one also observes that at B = 0 and non-zero temperature the
model does not show any first-order transition in the mean-field limit. This is in
contrast to previous simulations of the B = 0 model using staggered fermions,
where a first-order transition has been conjectured and later supported by
analytical calculations using the Optimized Perturbation Theory (OPT) method.

However, even in mean-field one finds a first-order transition at T ̸= 0 provided
that one studies the system on a finite volume. On the next slide we first show
the phase diagram of the model for B = 0 = T in the (L, µ) plane, L denoting
the spatial extent (assumed equal in both directions). Notice the resemblance to
the (B, µ) diagram shown before. The slide that follows shows the effective
potential of the model at finite T for three different volumes. It is apparent that
one finds a first-order transition for both finite volumes due to the triple-minimum
structure of Veff.
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Finite‑volume large‑Nf results
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Finite‑volume large‑Nf results
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Lattice study*

In order to test the validity of these mean-field results at finite Nf, we have
performed extensive lattice studies of the model. The most important simulation
details are shown on the next slide. More information on the complex-action
problem can be found in the appendix.
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Lattice study

Simulation details:
• Nf = 1 overlap fermions.
• 83, 123 and 163 lattices with different lattice spacings.
• Complex-action problem for µ ̸= 0 ̸= B mild.
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Lattice results at B = 0*

The next slide shows results obtained at vanishing magnetic field. We have
studied the probability distribution of σ̄ := 1

V
∑

x∈Λ σ(x), i.e. the space-time
average of σ. The resulting (constraint) effective potential is shown for three
values of µ on an 83 lattice on the next slide.
In the upper panel one sees two minima of Veff, corresponding to spontaneous
symmetry breaking. In the middle panel a third minimum arises, which is striking
evidence for the presence of a first-order transition in the system. Lastly, the
lower plot shows only a single minimum, i.e., chiral symmetry is restored.
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Lattice results at B = 0

0

1 1e 3 T/ 0 0.118
/ 0 0.282

0

1

3 0V
ef

f / 0 0.301

1.5 1.0 0.5 0.0 0.5 1.0 1.5
/ 0

0.0

2.5 / 0 0.376

Magnetized GN model at finiteµ
M. Mandl

Lattice 2023, August 1
6



Lattice results at B ̸= 0*

Next we show results for the chiral condensate (we measure the absolute value
of σ̄ (defined before) in order to avoid cancellations) as a function of µ for
different values of B. The vertical line gives a rough estimate of the critical
chemical potential of the transition (without errors). We show results for a 123
lattice but we have studied different volumes and lattice spacings as well.
Apart from the weakest non-vanishing magnetic field, all of our results are
consistent with magnetic catalysis below the critical µ, i.e. the magnetic field
enhances the chiral condensate for every value of µ < µc. There appears to be
no sign of inverse magnetic catalysis as well as of the multiple phase transitions
found in the mean-field limit. The reason that the weakest non-zero magnetic
field appears to be different is a finite-size effect.
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Lattice results at B ̸= 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
/ 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
|

|/
0

c

eB/ 2
0 = 0.000

Magnetized GN model at finiteµ
M. Mandl

Lattice 2023, August 1
7



Lattice results at B ̸= 0
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Lattice results at B ̸= 0
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Lattice results at B ̸= 0
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Lattice results at B ̸= 0
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Lattice results at B ̸= 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
/ 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
|

|/
0

c

eB/ 2
0 = 0.000

eB/ 2
0 0.091

eB/ 2
0 0.274

eB/ 2
0 0.366

eB/ 2
0 0.457

eB/ 2
0 0.548

Magnetized GN model at finiteµ
M. Mandl

Lattice 2023, August 1
7



Lattice results at B ̸= 0
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Summary & Outlook
Summary

• First-order phase transition for B = 0 and T ̸= 0 on a finite volume.
• (Inverse) magnetic catalysis and multiple transitions in large-Nf.
• Only magnetic catalysis for Nf = 1.
• Contradicts OPT calculations [Kneur, Pinto, Ramos; Phys. Rev D 88 (2013)].

Outlook

• Spectral analysis to study fate of Landau levels.
• More realistic models.
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Contact*

For questions/discussion please do not hesitate to contact the author of this talk
via
michael.mandl@gmx.at
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Backup
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The Large‑Nf limit
The GN Lagrangian reads

L = iψ̄1Nf

(
/∂ + σ + µγ0 + ie /A

)
ψ +

Nf
2g2σ

2 .

In the limit Nf → ∞, after integrating out the fermions in the path integral, the
chiral condensate ⟨σ⟩ ∝ ⟨ψ̄ψ⟩ is given by the minimum of

Seff[σ] = − ln det(D[σ]) +
1

2g2
∫

d3xσ2(x) ,

with

D[σ] = /∂ + σ + µγ0 + ie /A .
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Mean‑field phase diagrams
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Mean‑field phase diagrams
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Reducible representation of γµ
To allow for a notion of chirality in (2 + 1) dimensions, we combine the two
irreducible representations of the Dirac algebra into a reducible one:

γ0 =

(
τ2 0
0 −τ2

)
, γ1 =

(
τ3 0
0 −τ3

)
, γ2 =

(
τ1 0
0 −τ1

)
,

where τµ are the usual Pauli matrices.

There are now two γ matrices which anti-commute with all the others:

γ4 =

(
0 12

12 0

)
, γ5 =

(
0 i12

−i12 0

)
.
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Chiral symmetry in the continuum
The 1-flavor massless (2 + 1)-dimensional GN model in a reducible
representation of the Dirac algebra has the following symmetries:

U1(1) : ψ → eiαψ ,

Uγ45(1) : ψ → eiαγ45ψ , γ45 = i γ4γ5 ,
Z2 : ψ → i γ5ψ.

The Z2 symmetry generated by γ4 is not independent.

A mass term induces the breaking pattern

U1(1)× Uγ45(1)× Z2 → U1(1)× Uγ45(1) .
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Chiral symmetry on the lattice

On the lattice the symmetries look as follows:

U1(1) : ψ → eiαψ ,

Uγ45
(1) : ψ → eiαγ45ψ ,

Z2 : ψ → i γ5(1− Dov)ψ , ψ̄ → iψ̄γ5 ,

where Dov is the massless overlap operator, in our case.

There is another Z2 generated by γ4, which is, again, independent.

A mass term ψ̄
(
1− Dov

2

)
ψ again breaks the Z2 symmetry, but leaves both

U(1)’s intact.
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Overlap operator in the GN model
We use Neuberger’s overlap operator [Neuberger; Phys. Lett B 417 (1998)]

Dov = 1+ A/
√

A†A , A = DW − 1 ,

where DW is the standard Wilson operator. The full operator, including σ and µ,
reads [Gavai, Sharma; Phys. Lett B 716 (2012)]

Dfull =

(
1− σ + µγ0

2

)
Dov + σ + µγ0 .

With the Ginsparg-Wilson chiral condensate ΣGW =
⟨
ψ̄
(
1− Dov

2

)
ψ
⟩
we have a

Ward identity in analogy to the continuum theory:

⟨σ⟩ = ΣGW .
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The observable

In order to avoid cancellation of contributions from the two minima of the
effective action (±σ) in the broken phase we measure the absolute value

⟨|σ|⟩ = ⟨|
∑
x∈Λ

σ(x)|⟩ ,

where the sum runs over the whole lattice.

As a caveat, this definition makes it harder to determine a phase transition, as we
cannot measure ⟨|σ|⟩ = 0.
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The complex‑action problem
With the standard reweighting approach

⟨O⟩ =
⟨
e−iSIO

⟩
R

⟨e−iSI⟩R
= ⟨O⟩R +

covR
(
e−iSI ,O

)
⟨e−iSI⟩

,

where the action is written as S = SR + iSI,

⟨O⟩R =

∫
Dσe−SRO[σ]∫
Dσe−SR

,

and covR is the covariance w.r.t SR.
If covR

(
e−iSI ,O

)
is small and

⟨
e−iSI

⟩
is close to unity (as in our case for

O = |σ|) one may ignore the complex-action problem and only compute ⟨O⟩R.
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The complex‑action problem
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Index theorem
An exact index theorem in our case would read

I := Index[Dov] =
1

2
tr [γ5Dov] = b ,

where b is proportional to the magnetic flux:

B =
2π

V b .

Due to the vanishing theorem |I| is equal to the total number of zero modes of
Dov. As the next slide shows the index theorem can be violated for large b and/or
Wilson mass parameter m far from 1. λW is the smallest eigenvalue of the
Wilson kernel used for the overlap and ∥GW∥ measures a possible violation of
the Ginsparg-Wilson equation.
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Index theorem
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Hofstadterʹs butterfly
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