The magnetized Gross-Neveu model at finite chemical potential

[based on arXiv:2304.14812]

¹ Friedrich-Schiller-Universität Jena, ² Swansea University

Lattice 2023, August 1

Lattice 2023, August 1

 $\begin{array}{l} \text{Magnetized GN model at finite } \mu \\ \text{M. Mandl} \end{array}$

$$\mathcal{L} = i\bar{\psi}\partial\!\!\!/\psi + rac{g^2}{2N_f}(\bar{\psi}\psi)^2$$

- N_f flavors
- no mass term

$$\mathcal{L} = i\bar{\psi}\left(\partial \!\!\!/ + \frac{\mu\gamma_0}{2N_f}\right)\psi + \frac{g^2}{2N_f}(\bar{\psi}\psi)^2$$

- N_f flavors
- no mass term
- chemical potential μ

$$\mathcal{L} = i\bar{\psi} \left(\partial \!\!\!/ + \mu \gamma_0 + i \mathbf{e} \mathbf{A} \!\!\!/ \right) \psi + \frac{\mathbf{g}^2}{2N_f} (\bar{\psi} \psi)^2$$

- N_f flavors
- no mass term
- chemical potential μ
- external field A_{μ}

$$\mathcal{L} = i\bar{\psi} \left(\partial \!\!\!/ + \mu \gamma_0 + i e \!\!\!/ A \!\!\!/ \right) \psi + \frac{g^2}{2N_f} (\bar{\psi} \psi)^2$$

or, equivalently,

$$\mathcal{L} = i\bar{\psi} \left(\partial \!\!\!/ + \sigma + \mu \gamma_0 + i e \!\!\!/ A \right) \psi + \frac{N_f}{2g^2} \sigma^2$$

$$\mathcal{L} = i\bar{\psi} \left(\partial \!\!\!/ + \mu \gamma_0 + i e \!\!\!/ A \!\!\!/ \right) \psi + \frac{g^2}{2N_f} (\bar{\psi} \psi)^2$$

or, equivalently,

$$\mathcal{L} = i\bar{\psi} \left(\partial \!\!\!/ + \sigma + \mu \gamma_0 + i e \!\!\!/ A \right) \psi + \frac{N_f}{2g^2} \sigma^2$$

Ward identity $\langle \bar{\psi}\psi
angle = rac{iN_f}{g^2} \langle \sigma
angle$

Magnetized GN model at finite μ M. Mandl

$$\mathcal{L} = i\bar{\psi} \left(\partial \!\!\!/ + \mu \gamma_0 + i e \!\!\!/ A \!\!\!/ \right) \psi + \frac{g^2}{2N_f} (\bar{\psi} \psi)^2$$

or, equivalently,

$$\mathcal{L} = i\bar{\psi} \left(\partial \!\!\!/ + \sigma + \mu \gamma_0 + i e \!\!\!/ A \right) \psi + \frac{N_f}{2g^2} \sigma^2$$

Ward identity $\langle \bar{\psi}\psi \rangle = \frac{iN_f}{g^2} \langle \sigma \rangle$

discrete chiral symmetry $\psi \rightarrow i\gamma_5 \psi$, $\bar{\psi} \rightarrow i\bar{\psi}\gamma_5$, $\sigma \rightarrow -\sigma$

 $\begin{array}{c} \text{Magnetized GN model at finite } \mu \\ \text{M. Mandl} \end{array}$

Why GN model?

Why GN model?

Toy model for QCD

e.g., chiral symmetry, . . .

 $\begin{array}{l} \text{Magnetized GN model at finite } \mu \\ \text{M. Mandl} \end{array}$

Why GN model?

- Toy model for QCD
- Solid State Physics

e.g., graphene, polymers, . . .

Why GN model?

- Toy model for QCD
- Solid State Physics
- . . .

Why GN model? Why magnetic field? • Toy model for QCD • Solid State Physics • •

Why GN model?

- Toy model for QCD
- Solid State Physics
- . . .

Why magnetic field?

Heavy-ion collisions

Why GN model?

- Toy model for QCD
- Solid State Physics
- . . .

Why magnetic field?

- Heavy-ion collisions
- Neutron stars

Why GN model?

- Toy model for QCD
- Solid State Physics
- . . .

Why magnetic field?

- Heavy-ion collisions
- Neutron stars
- Early universe

Why GN model?

- Toy model for QCD
- Solid State Physics
- . . .

Why magnetic field?

- Heavy-ion collisions
- Neutron stars
- Early universe

In this talk

Why GN model?

- Toy model for QCD
- Solid State Physics
- . . .

Why magnetic field?

- Heavy-ion collisions
- Neutron stars
- Early universe

In this talk

• Study influence of magnetic field on GN phase structure using a mean-field approach and Lattice Field Theory.

Why GN model?

- Toy model for QCD
- Solid State Physics
- . . .

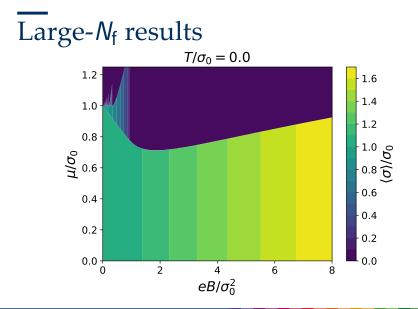
Why magnetic field?

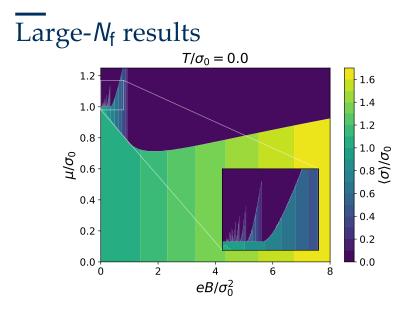
- Heavy-ion collisions
- Neutron stars
- Early universe

In this talk

- Study influence of magnetic field on GN phase structure using a mean-field approach and Lattice Field Theory.
- 2+1 dimensions.

Large-*N*_f results





Magnetized GN model at finite μ M. Mandl

Large- $N_{\rm f}$ results

Comments:

$\overline{\text{Large-}N_{\text{f}}}$ results

Comments:

• No first-order transition at B = 0, $T \neq 0$.

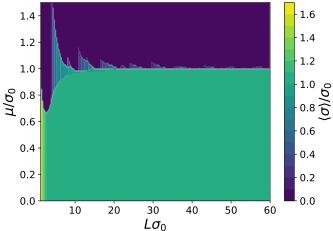
Large-*N*_f results

Comments:

- No first-order transition at B = 0, $T \neq 0$.
- In contrast to simulations at N_f = 4 [Kogut, Strouthos; Phys. Rev. D 63 (2001)] backed by OPT study [Kneur et al.; Phys. Rev. D 76 (2007)].

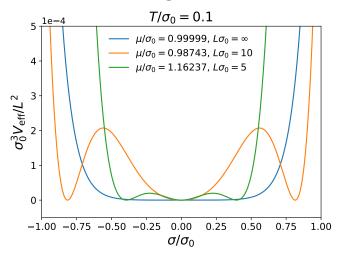
Finite-volume large-*N*^f results

Finite-volume large- $N_{\rm f}$ results



Magnetized GN model at finite μ M. Mandl

Finite-volume large-*N*_f results



Magnetized GN model at finite μ M. Mandl

Simulation details:

Simulation details:

• $N_{\rm f} = 1$ overlap fermions.

Simulation details:

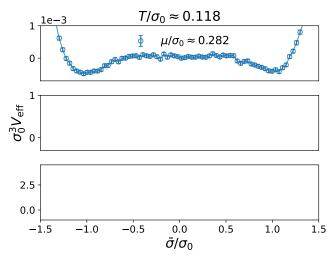
- $N_{\rm f} = 1$ overlap fermions.
- 8³, 12³ and 16³ lattices with different lattice spacings.

Simulation details:

- $N_{\rm f} = 1$ overlap fermions.
- 8^3 , 12^3 and 16^3 lattices with different lattice spacings.
- Complex-action problem for $\mu \neq 0 \neq B$ mild.

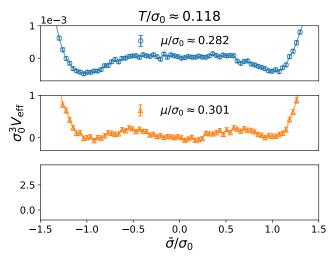
Lattice results at B = 0

Lattice results at B = 0

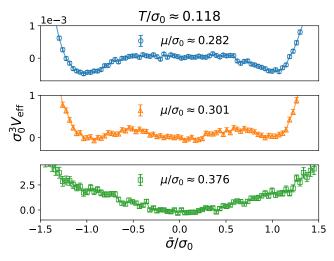


Magnetized GN model at finite μ M. Mandl

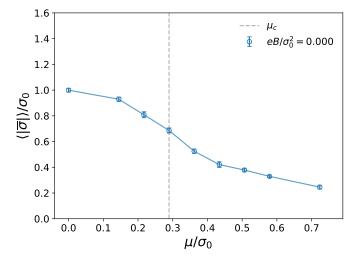
Lattice results at B = 0

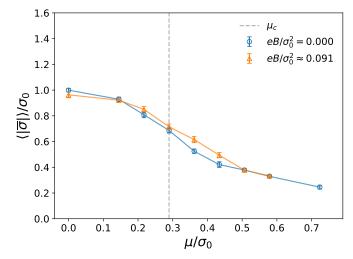


Lattice results at B = 0

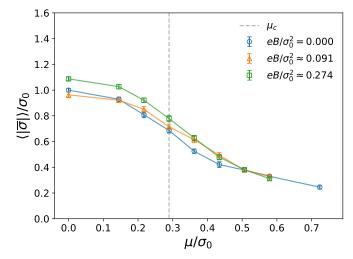


 $\begin{array}{c} \text{Magnetized GN model at finite } \mu \\ \text{M. Mandl} \end{array}$

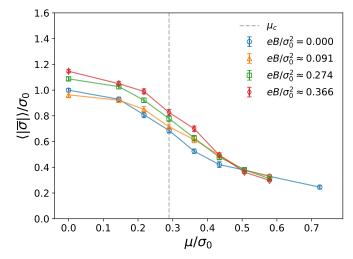


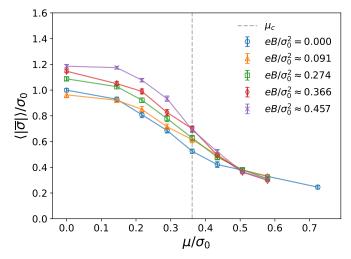


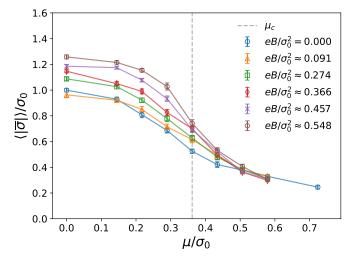
Magnetized GN model at finite μ M. Mandl Lattice 2023, August 1 7

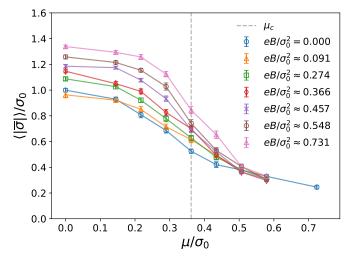


Magnetized GN model at finite μ M. Mandl Lattice 2023, August 1 7



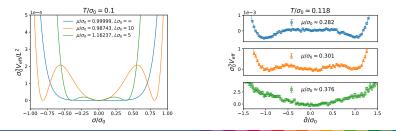






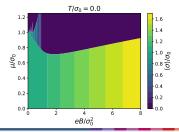
Summary

• First-order phase transition for B = 0 and $T \neq 0$ on a finite volume.



Summary

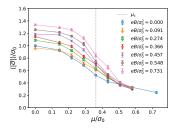
- First-order phase transition for B = 0 and $T \neq 0$ on a finite volume.
- (Inverse) magnetic catalysis and multiple transitions in large-Nf.



 $\begin{array}{c} \text{Magnetized GN model at finite } \mu \\ \text{M. Mandl} \end{array}$

Summary

- First-order phase transition for B = 0 and $T \neq 0$ on a finite volume.
- (Inverse) magnetic catalysis and multiple transitions in large-Nf.
- Only magnetic catalysis for $N_{\rm f} = 1$.



Summary

- First-order phase transition for B = 0 and $T \neq 0$ on a finite volume.
- (Inverse) magnetic catalysis and multiple transitions in large-Nf.
- Only magnetic catalysis for $N_{\rm f} = 1$.
- Contradicts OPT calculations [Kneur, Pinto, Ramos; Phys. Rev D 88 (2013)].

Summary

- First-order phase transition for B = 0 and $T \neq 0$ on a finite volume.
- (Inverse) magnetic catalysis and multiple transitions in large-Nf.
- Only magnetic catalysis for $N_{\rm f} = 1$.
- Contradicts OPT calculations [Kneur, Pinto, Ramos; Phys. Rev D 88 (2013)].

Outlook

• Spectral analysis to study fate of Landau levels.

Summary

- First-order phase transition for B = 0 and $T \neq 0$ on a finite volume.
- (Inverse) magnetic catalysis and multiple transitions in large-Nf.
- Only magnetic catalysis for $N_{\rm f} = 1$.
- Contradicts OPT calculations [Kneur, Pinto, Ramos; Phys. Rev D 88 (2013)].

Outlook

- Spectral analysis to study fate of Landau levels.
- · More realistic models.

The Large-*N*f limit

The GN Lagrangian reads

$$\mathcal{L} = i\bar{\psi}\mathbb{1}_{N_{\rm f}}\left(\partial \!\!\!/ + \sigma + \mu\gamma_0 + ieA\!\!\!/\right)\psi + \frac{N_{\rm f}}{2g^2}\sigma^2 \; .$$

In the limit $N_{\rm f} \to \infty$, after integrating out the fermions in the path integral, the chiral condensate $\langle \sigma \rangle \propto \langle \bar{\psi} \psi \rangle$ is given by the minimum of

$$S_{\rm eff}[\sigma] = -\ln \det(D[\sigma]) + \frac{1}{2g^2} \int d^3 x \, \sigma^2(x) \; , \label{eq:eff}$$

with

$$D[\sigma] = \partial \!\!\!/ + \sigma + \mu \gamma_0 + i e \!\!\!/ A$$
 .

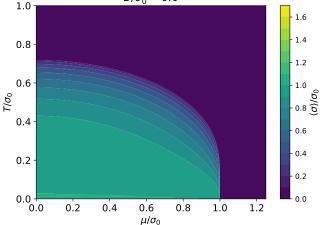
 $\begin{array}{c} \mbox{Magnetized GN model at finite } \mu \\ \mbox{M. Mandl} \end{array}$

Mean-field phase diagrams

 $\mu / \sigma_0 = 0.0$ 1.0 1.6 1.4 0.8 - 1.2 0.6 - 1.0 α)/α⁰ (α)/α T/σ_0 0.4 - 0.6 0.4 0.2 - 0.2 0.0 0.0 ż ż 5 0 1 4 6 7 8 B/σ_0^2

Mean-field phase diagrams

 $B/\sigma_0^2 = 0.0$



Reducible representation of γ_{μ}

To allow for a notion of chirality in (2 + 1) dimensions, we combine the two irreducible representations of the Dirac algebra into a reducible one:

$$\gamma_0 = \begin{pmatrix} \tau_2 & 0 \\ 0 & -\tau_2 \end{pmatrix}$$
, $\gamma_1 = \begin{pmatrix} \tau_3 & 0 \\ 0 & -\tau_3 \end{pmatrix}$, $\gamma_2 = \begin{pmatrix} \tau_1 & 0 \\ 0 & -\tau_1 \end{pmatrix}$,

where τ_{μ} are the usual Pauli matrices.

There are now two γ matrices which anti-commute with all the others:

$$\gamma_4 = \begin{pmatrix} 0 & \mathbb{1}_2 \\ \mathbb{1}_2 & 0 \end{pmatrix} , \quad \gamma_5 = \begin{pmatrix} 0 & i \, \mathbb{1}_2 \\ -i \, \mathbb{1}_2 & 0 \end{pmatrix} .$$

Chiral symmetry in the continuum

The 1-flavor massless (2+1)-dimensional GN model in a reducible representation of the Dirac algebra has the following symmetries:

$$\begin{array}{l} U_1(1):\psi\to e^{i\alpha}\psi\;,\\ U_{\gamma_{45}}(1):\psi\to e^{i\alpha\gamma_{45}}\psi\;,\quad \gamma_{45}=i\gamma_4\gamma_5\;,\\ \mathbb{Z}_2:\psi\to i\gamma_5\psi. \end{array}$$

The \mathbb{Z}_2 symmetry generated by γ_4 is not independent.

A mass term induces the breaking pattern

$$U_1(1) \times U_{\gamma_{45}}(1) \times \mathbb{Z}_2 \to U_1(1) \times U_{\gamma_{45}}(1)$$
.

Chiral symmetry on the lattice

On the lattice the symmetries look as follows:

$$\begin{split} & U_{1}(1):\psi\to e^{i\alpha}\psi\ ,\\ & U_{\gamma_{45}}(1):\psi\to e^{i\alpha\gamma_{45}}\psi\ ,\\ & \mathbb{Z}_{2}:\psi\to i\gamma_{5}(1-D_{\mathrm{ov}})\psi\ ,\quad \bar\psi\to i\bar\psi\gamma_{5}\ , \end{split}$$

where D_{ov} is the massless overlap operator, in our case.

There is another \mathbb{Z}_2 generated by γ_4 , which is, again, independent.

A mass term $\bar\psi\left(1-\frac{D_{\rm ov}}{2}\right)\psi$ again breaks the \mathbb{Z}_2 symmetry, but leaves both U(1) 's intact.

Overlap operator in the GN model

We use Neuberger's overlap operator [Neuberger; Phys. Lett B 417 (1998)]

$$D_{\mathrm{ov}} = \mathbbm{1} + A/\sqrt{A^{\dagger}A} \;, \quad A = D_{\mathrm{W}} - \mathbbm{1} \;,$$

where D_W is the standard Wilson operator. The full operator, including σ and μ , reads [Gavai, Sharma; Phys. Lett B 716 (2012)]

$$\label{eq:Dfull} D_{\rm full} = \left(1 - \frac{\sigma + \mu \gamma_0}{2}\right) D_{\rm ov} + \sigma + \mu \gamma_0 \; .$$

With the Ginsparg-Wilson chiral condensate $\Sigma_{\text{GW}} = \langle \bar{\psi} \left(\mathbb{1} - \frac{D_{\text{ov}}}{2} \right) \psi \rangle$ we have a Ward identity in analogy to the continuum theory:

$$\langle \sigma \rangle = \Sigma_{\rm GW} \; .$$

The observable

In order to avoid cancellation of contributions from the two minima of the effective action $(\pm \sigma)$ in the broken phase we measure the absolute value

$$\langle |\sigma| \rangle = \langle |\sum_{x \in \Lambda} \sigma(x)| \rangle ,$$

where the sum runs over the whole lattice.

As a caveat, this definition makes it harder to determine a phase transition, as we cannot measure $\langle|\sigma|\rangle=0.$

The complex-action problem

With the standard reweighting approach

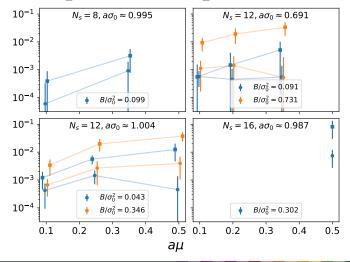
$$\left\langle \mathcal{O} \right\rangle = \frac{\left\langle e^{-iS_{I}} \mathcal{O} \right\rangle_{R}}{\left\langle e^{-iS_{I}} \right\rangle_{R}} = \left\langle \mathcal{O} \right\rangle_{R} + \frac{\text{cov}_{R} \left(e^{-iS_{I}}, \mathcal{O} \right)}{\left\langle e^{-iS_{I}} \right\rangle} \; ,$$

where the action is written as $S = S_R + iS_I$,

$$\langle \mathcal{O} \rangle_R = \frac{\int \mathcal{D}\sigma e^{-S_R} \mathcal{O}[\sigma]}{\int \mathcal{D}\sigma e^{-S_R}} ,$$

and cov_R is the covariance w.r.t S_R . If $\operatorname{cov}_R(e^{-iS_l}, \mathcal{O})$ is small and $\langle e^{-iS_l} \rangle$ is close to unity (as in our case for $\mathcal{O} = |\sigma|$) one may ignore the complex-action problem and only compute $\langle \mathcal{O} \rangle_R$.

The complex-action problem



Magnetized GN model at finite μ M. Mandl Lattice 2023, August 1 A10

Index theorem

An exact index theorem in our case would read

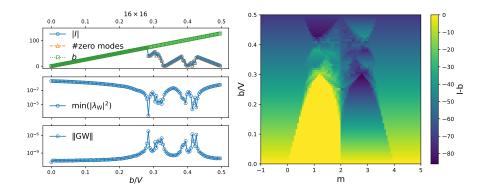
$$I := \operatorname{Index}[D_{\operatorname{ov}}] = \frac{1}{2} \operatorname{tr} \left[\gamma_5 D_{\operatorname{ov}} \right] = b \; ,$$

where b is proportional to the magnetic flux:

$$B = \frac{2\pi}{V}b$$

Due to the vanishing theorem |I| is equal to the total number of zero modes of D_{ov} . As the next slide shows the index theorem can be violated for large *b* and/or Wilson mass parameter *m* far from 1. λ_W is the smallest eigenvalue of the Wilson kernel used for the overlap and ||GW|| measures a possible violation of the Ginsparg-Wilson equation.

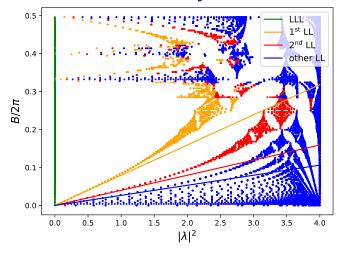
Index theorem



Magnetized GN model at finite μ M. Mandl

Lattice 2023, August 1 A12

Hofstadter's butterfly



Magnetized GN model at finite μ M. Mandl Lattice 2023, August 1 A13