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Status of Standard Model (SM)

• The Standard Model (SM) well describes physics below TeV scale, as strongly supported 
by collider experiments. However, we still believe that SM is incomplete and should be 
extended. R
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Standard Model (SM) and new physics

• The standard model (SM) well describes physics below TeV scale, as strongly supported 
by collider experiments. However, we know that SM is incomplete and should be 
extended.

Astronomical observations 
and experimental results

- Dark matter 

- matter/antimatter asymmetry 

- Neutrino mass

Theoretical problems
- Naturalness/hierarchy problem 

- Strong CP problem 

- Fermion mass hierarchy

Obvious

Less obvious

We want to find a more fundamental description which underlies these 
theoretical and experimental issues!



Why strongly coupled gauge theories matters for BSM?

• Why not?

• For the past few decades supersymmetric (SUSY) BSM models have received much 
attention: not only do they solve the hierarchy problem, but also provide an excellent 
candidate for the cold dark matter, in particular, WIMP dark matter. However, so far 
no evidence of SUSY particles has been found.
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18 26. Dark Matter

sections, and Figure 26.1 shows the best constraints for SI couplings in the cross section versus DM
mass parameter space, above masses of 0.3 GeV.

Figure 26.1: Upper limits on the SI DM-nucleon cross section as a function of DM mass.

26.7 Astrophysical detection of dark matter
DM as a microscopic constituent can have measurable, macroscopic e�ects on astrophysical

systems. Indirect DM detection refers to the search for the annihilation or decay debris from DM
particles, resulting in detectable species, including especially gamma rays, neutrinos, and antimatter
particles. The production rate of such particles depends on (i) the annihilation (or decay) rate (ii)
the density of pairs (respectively, of individual particles) in the region of interest, and (iii) the
number of final-state particles produced in one annihilation (decay) event. In formulae, the rate
for production of a final state particle f per unit volume from DM annihilation can be cast as

≈
A

f = c
fl

2

DM

m
2

DM

È‡vÍN
A

f , (26.18)

where È‡vÍ indicates the thermally-averaged cross section for DM annihilation times relative velocity
[27], calculated at the appropriate temperature, flDM is the physical density of DM, and N

A

f
is the

number of final state particles f produced in one individual annihilation event. The constant c

depends on whether the DM is its on antiparticle, in which case c = 1/2, or if there is a mixture of
DM particles and antiparticles (in case there is no asymmetry, c = 1/4). The analog for decay is

≈
D

f = flDM

mDM

1
·DM

N
D

f , (26.19)

with the same conventions for the symbols, and where ·DM is the DM’s lifetime.
Gamma Rays: DM annihilation to virtually any final state produces gamma rays: emis-

sion processes include the dominant two-photon decay mode of neutral pions resulting from the
hadronization of strongly-interacting final states; final state radiation; and internal bremsshtralung,

6th December, 2019 11:47am

ATLAS wiki Particle Data Group (2022)

SUSY search at LHC WIMP search in direct detection



Why strongly coupled gauge theories matters for BSM?

• Among many other alternatives, BSM models based on strongly coupled gauge theories 
as their UV descriptions are appealing.

✓ We have pretty good understandings of 
QCD from theoretical and experimental 
studies for the last half a century. 

✓ We could find novel features of strongly 
coupled gauge theories other than QCD, 
not yet explored, but may have potential 
impact on the BSM physics.

Many interesting and important 
questions can only be answered by 
first-principle lattice calculations!

• Why not?

• For the past few decades supersymmetric (SUSY) BSM models have received much 
attention: not only do they solve the hierarchy problem, but also provide an excellent 
candidate for the cold dark matter, in particular, WIMP dark matter. However, so far 
no evidence of SUSY particles has been found.



BSM models on the lattice for the last three years (2021~23)
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Some distinct features of lattice BSM compared to lattice QCD

• The local gauge group doesn’t have to be ! , but could be a generic non-abelian 
group, hypercolor. Many pheno. models still enjoy some key features of QCD: 
asymptotic freedom, confinement, spontaneous breaking of global symmetry.

SU(3)

• pNGBs (pions, kaons in QCD) do not have to be (very) light. 

• In addition to pNGBs, other parametrically light states, especially flavor-singlet 
mesons, can show up, which can be used for many phenomenological models for BSM.

• Novel hypercolor-singlet composite states, which may play a crucial role in 
phenomenological model buildings, can also appear in the low-energy spectrum.

• Finite temperature thermal transition could be first-order rather than smooth 
crossover in real-world QCD.

• Fermions do not have to be in the fundamental representation or even in a single 
representation.

SU(Nf ) × SU(Nf ) → SU(Nf ) SU(2Nf ) → Sp(2Nf ) SU(2Nf ) → SO(2Nf )
complex pseudoreal real
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Figure 1. Conjectured phase structure of large N QCD in the Veneziano limit at zero temperature
and chemical potential. The continuous variable xf is defined as xf = Nf/N with both Nf and N

taken to be infinite.

[4, 5]. Just above N
AF
f the perturbative beta function yields that the theory possess a

Landau pole, and thus it is not well defined in the ultraviolet (UV) while it is trivial in the

IR. If Nf further increases and becomes larger than N
safe
f , however, the theory develops

an ultraviolet fixed point with a non-zero value of the coupling, which has been discussed

in the context of asymptotic safety [4].

The conjectured phase diagram of non-abelian gauge theories with fermionic matter

fields at zero temperature and chemical potential can then be drawn as in Fig. 1. For

illustration purposes we consider that fermions are in the fundamental representation and

take the large N limit while keeping the ratio xf = Nf/N is fixed, i.e. the Veneziano limit.

However, we note that without losing generosity the discussion below can be applied to

all the theories with a gauge group G and Nf fermions in the representation R considered

in this work. There are two di↵erent phases in which the theory is asymptotically free,

chirally broken and IR conformal. In the asymptotically unfree regime, two other phases

are expected to exist, QED-like and UV safe. Analytical understanding of the chirally

broken phase at small xf is highly limited because the standard perturbation technique is

not applicable due to the absence of a small expansion parameter. One should instead rely

on fully nonperturbative methods such as the lattice Monte-Carlo calculations.

In the vicinity of xAF
f = 11/2, onset of the loss of asymptotic freedom, the coupling

expansion of the beta function finds an IR fixed point in the weak coupling regime for

xf < x
AF
f , i.e. IR conformal, but it does not for xf > x

AF
f except the Gaussian fixed point

at the origin, i.e. non-abelian QED in the IR. In this perturbative regime one may also

consider an alternative series expansion by taking the di↵erence, �xf ⌘ x
AF
f �xf , as a small

parameter. Such an expansion, so-called the Banks-Zaks conformal expansion, has been

shown to be a useful tool for the investigation of the IR conformal phase [2]. In particular,

the scheme-independent conformal expansions of physical quantities, such as the anomalous

dimension of a fermion bilinear operator � ̄ , IR and the derivative of the beta function �
0

IR,

have been extensively studied in a series of papers [6–12]. 1 For xf � x
AF
f the coupling

or conformal expansion is no longer useful, but one can still analytically explore the phase

diagram by means of the large Nf expansion [19, 20] which in turns has proven its worth

1More work on the conformal expansions of the anomalous dimensions of baryon operators and higher-

spin operators, and of � ̄ , IR and �0
IR in the theories with multiple fermion representations can be found

in Refs. [13–15]. See also Refs. [16–18] for some earlier work on the conformal expansion of �0
IR in QCD.
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Figure 1. Conjectured phase structure of large N QCD in the Veneziano limit at zero temperature
and chemical potential. The continuous variable xf is defined as xf = Nf/N with both Nf and N

taken to be infinite.

[4, 5]. Just above N
AF
f the perturbative beta function yields that the theory possess a

Landau pole, and thus it is not well defined in the ultraviolet (UV) while it is trivial in the

IR. If Nf further increases and becomes larger than N
safe
f , however, the theory develops

an ultraviolet fixed point with a non-zero value of the coupling, which has been discussed

in the context of asymptotic safety [4].

The conjectured phase diagram of non-abelian gauge theories with fermionic matter

fields at zero temperature and chemical potential can then be drawn as in Fig. 1. For

illustration purposes we consider that fermions are in the fundamental representation and

take the large N limit while keeping the ratio xf = Nf/N is fixed, i.e. the Veneziano limit.

However, we note that without losing generosity the discussion below can be applied to

all the theories with a gauge group G and Nf fermions in the representation R considered

in this work. There are two di↵erent phases in which the theory is asymptotically free,

chirally broken and IR conformal. In the asymptotically unfree regime, two other phases

are expected to exist, QED-like and UV safe. Analytical understanding of the chirally

broken phase at small xf is highly limited because the standard perturbation technique is

not applicable due to the absence of a small expansion parameter. One should instead rely

on fully nonperturbative methods such as the lattice Monte-Carlo calculations.

In the vicinity of xAF
f = 11/2, onset of the loss of asymptotic freedom, the coupling

expansion of the beta function finds an IR fixed point in the weak coupling regime for

xf < x
AF
f , i.e. IR conformal, but it does not for xf > x

AF
f except the Gaussian fixed point

at the origin, i.e. non-abelian QED in the IR. In this perturbative regime one may also

consider an alternative series expansion by taking the di↵erence, �xf ⌘ x
AF
f �xf , as a small

parameter. Such an expansion, so-called the Banks-Zaks conformal expansion, has been

shown to be a useful tool for the investigation of the IR conformal phase [2]. In particular,

the scheme-independent conformal expansions of physical quantities, such as the anomalous
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IR,

have been extensively studied in a series of papers [6–12]. 1 For xf � x
AF
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or conformal expansion is no longer useful, but one can still analytically explore the phase

diagram by means of the large Nf expansion [19, 20] which in turns has proven its worth

1More work on the conformal expansions of the anomalous dimensions of baryon operators and higher-

spin operators, and of � ̄ , IR and �0
IR in the theories with multiple fermion representations can be found
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1
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Figure 1. Conjectured phase structure of large N QCD in the Veneziano limit at zero temperature
and chemical potential. The continuous variable xf is defined as xf = Nf/N with both Nf and N

taken to be infinite.

[4, 5]. Just above N
AF
f the perturbative beta function yields that the theory possess a

Landau pole, and thus it is not well defined in the ultraviolet (UV) while it is trivial in the

IR. If Nf further increases and becomes larger than N
safe
f , however, the theory develops

an ultraviolet fixed point with a non-zero value of the coupling, which has been discussed

in the context of asymptotic safety [4].

The conjectured phase diagram of non-abelian gauge theories with fermionic matter

fields at zero temperature and chemical potential can then be drawn as in Fig. 1. For

illustration purposes we consider that fermions are in the fundamental representation and

take the large N limit while keeping the ratio xf = Nf/N is fixed, i.e. the Veneziano limit.

However, we note that without losing generosity the discussion below can be applied to

all the theories with a gauge group G and Nf fermions in the representation R considered

in this work. There are two di↵erent phases in which the theory is asymptotically free,

chirally broken and IR conformal. In the asymptotically unfree regime, two other phases

are expected to exist, QED-like and UV safe. Analytical understanding of the chirally

broken phase at small xf is highly limited because the standard perturbation technique is

not applicable due to the absence of a small expansion parameter. One should instead rely

on fully nonperturbative methods such as the lattice Monte-Carlo calculations.

In the vicinity of xAF
f = 11/2, onset of the loss of asymptotic freedom, the coupling

expansion of the beta function finds an IR fixed point in the weak coupling regime for

xf < x
AF
f , i.e. IR conformal, but it does not for xf > x

AF
f except the Gaussian fixed point

at the origin, i.e. non-abelian QED in the IR. In this perturbative regime one may also

consider an alternative series expansion by taking the di↵erence, �xf ⌘ x
AF
f �xf , as a small

parameter. Such an expansion, so-called the Banks-Zaks conformal expansion, has been

shown to be a useful tool for the investigation of the IR conformal phase [2]. In particular,

the scheme-independent conformal expansions of physical quantities, such as the anomalous

dimension of a fermion bilinear operator � ̄ , IR and the derivative of the beta function �
0

IR,

have been extensively studied in a series of papers [6–12]. 1 For xf � x
AF
f the coupling

or conformal expansion is no longer useful, but one can still analytically explore the phase

diagram by means of the large Nf expansion [19, 20] which in turns has proven its worth

1More work on the conformal expansions of the anomalous dimensions of baryon operators and higher-

spin operators, and of � ̄ , IR and �0
IR in the theories with multiple fermion representations can be found

in Refs. [13–15]. See also Refs. [16–18] for some earlier work on the conformal expansion of �0
IR in QCD.
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The essential features of the perturbative theory are encoded in the lowest two terms

which are independent of the renormalization scheme. Note that in general the series

expansions at finite order in ↵ for ` � 3 are scheme-dependent. With Nf Dirac fermions

in the representation R of the gauge group G the explicit expressions of b1 [31, 32] and b2

[1] are

b1 =
11

3
C2(G)�

4

3
NfT (R), (2.3)

b2 =
34

3
C2(G)2 �

4

3
(5C2(G) + 3C2(R))NfT (R), (2.4)

where T (R) is the trace normalization factor and C2(R) is the quadratic Casimir invariant

with C2(G) = C2(Adj) 6. The beta function in Eq. 2.2 has a trivial fixed point at ↵ = 0,

a Gaussian fixed point, for which the theory is free. In the vicinity of this fixed point the

coupling constant can be arbitrarily small and the behavior of the RG flow is governed by

the slope of the beta function, i.e. the sign of b1. Consider that we fix the gauge group,

the fermion representation, and the number of colors, but continuously vary the number

of flavors Nf for which only non-negative integer values are physically meaningful. For

su�ciently small numbers of flavors the coe�cient b1 has a positive value and the coupling

constant approaches zero as the momentum scale flows from the IR to the UV, indicating

that the theory is asymptotically free at high energy. If the number of flavors is larger

than N
AF
f = 11C2(G)/4T (R) or equivalently b1 < 0, on the other hand, the theory loses

the asymptotic freedom and the IR theory is trivial. The focus of our interest is in the

asymptotically free theory and thus we restrict our attention to Nf < N
AF
f .

The 2-loop results further divide the asymptotically free region into two nontrivial

phases whose IR behaviors are distinct from each other. If the number of flavors is su�-

ciently small such that b2 > 0, including the extreme case of the pure Yang-Mills (Nf = 0),

from the UV to the IR the coupling runs to infinity and the theory is expected to confine by

developing a dynamical scale. In the presence of fermionic matter the global (flavor) sym-

metry is also expected to be broken due to the non-zero fermion condensate. From the fact

that a negative value of b2 and an arbitrarily small positive value of b1 are realized if Nf is

just below N
AF
f , on the other hand, one finds a coupling constant satisfying �(↵BZ) = 0 at

↵BZ = �4⇡b1/b2 ⌧ 1 in a reliable manner within the perturbation theory [1, 2]. The corre-

sponding BZ fixed point, named after Banks-Zaks, suggests the existence of interacting IR

conformal theories (even beyond the weak coupling regime) with certain numbers of flavors

ranged over N
cr
f < Nf < N

AF
f . Such an interval in Nf is commonly called the conformal

window (CW). The conformal phase near the upper bound can systematically be studied

by the perturbative analysis as discussed above. However, it is di�cult to investigate the

phase near the lower bound, because in general ↵BZ grows to a large value as Nf decreases

and thus the perturbative analysis would fail. In this region, nonperturbative e↵ects are

6The group theoretical invariants are defined as Tr[T a
RT

b
R] = T (R)�ab and T a

RT
a
R = C2(R)I, where the

summation runs over a = 1, · · · , dG with dG the dimension of the gauge group G. Here, T a
R are the

generators in the representation R of G and the group invariants are related by C2(R)dR = T (R)dG with

dR the dimension of the representation R.
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Conformal window (CW)

the number of flavors Nf (or xf = Nf/Nc in the Veneziano limit). Note that this RG

prescription is expected to be only valid near the lower end of the conformal window at

which ↵ ⇠ ↵
cr is strong enough to cause substantially large dimensional transmutation of

Og such that the operator becomes relevant to the RG evolution in the IR, i.e. �Og =

dOg ��Og = 4 with �Og the scaling dimension, dOg the mass dimension in the UV and �Og

the anomalous dimension of Og. The operator Og is weakly relevant, g ⇠ g
cr

⌧ 1, such

that the perturbative analysis is a valid description for the RG flow connecting the UV

and IR fixed points. Approaching the lower end of conformal window the mass dimension

�Og , as well as the coupling g, has a square-root singularity in the vicinity of ↵cr, i.e.

|g � g
cr
| ⇠ |�Og � 4| '

p
↵cr � ↵. In terms of the number of flavors Nf (or xf ), which

basically controls how ↵ approaches ↵cr, one may find the analogous square-root singularity

of �Og , provided that the ↵ is an analytic function of Nf at N cr
f , as

|�Og � 4| ⇠
q
Nf �N cr

f . (2.5)

Such a square-root behavior has been advocated and emphasized in Ref. [37].

gO (2.6)

�(g;↵) ⌘ (↵� ↵c)� (g � g
⇤)2 (2.7)

Solve �(g) = 0.

g± = g
⇤
±
p
↵� ↵c (2.8)

�± = d± �
0(g±) ' d±

p
↵� ↵c (2.9)

|g � g
⇤
| ⇠ |�O � d| '

p
↵� ↵c (2.10)

x
cr
f < xf < 11/2 (2.11)

The most natural candidate for Og in the large N limit would be the chirally symmetric

four-fermion operators of double-trace form whose mass dimension is 6, e.g. ( ̄�µ )2 [38].

The large N factorizaiton yields that the dimension of the fermion bilinear is exactly half

of the double-trace four-fermion operator at infinite N , and the above discussion would

lead to the critical condition � ̄ , IR = 1 [23]. At finite but large N , however, it will receive

finite N corrections, i.e. � ̄ , IR = (dOg � 4)/2 +O(1/N) = 1 +O(1/N) (for instance, see
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Figure 1. Conjectured phase structure of large N QCD in the Veneziano limit at zero temperature
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taken to be infinite.

[4, 5]. Just above N
AF
f the perturbative beta function yields that the theory possess a

Landau pole, and thus it is not well defined in the ultraviolet (UV) while it is trivial in the

IR. If Nf further increases and becomes larger than N
safe
f , however, the theory develops

an ultraviolet fixed point with a non-zero value of the coupling, which has been discussed

in the context of asymptotic safety [4].

The conjectured phase diagram of non-abelian gauge theories with fermionic matter

fields at zero temperature and chemical potential can then be drawn as in Fig. 1. For

illustration purposes we consider that fermions are in the fundamental representation and

take the large N limit while keeping the ratio xf = Nf/N is fixed, i.e. the Veneziano limit.

However, we note that without losing generosity the discussion below can be applied to

all the theories with a gauge group G and Nf fermions in the representation R considered

in this work. There are two di↵erent phases in which the theory is asymptotically free,

chirally broken and IR conformal. In the asymptotically unfree regime, two other phases

are expected to exist, QED-like and UV safe. Analytical understanding of the chirally

broken phase at small xf is highly limited because the standard perturbation technique is

not applicable due to the absence of a small expansion parameter. One should instead rely

on fully nonperturbative methods such as the lattice Monte-Carlo calculations.

In the vicinity of xAF
f = 11/2, onset of the loss of asymptotic freedom, the coupling

expansion of the beta function finds an IR fixed point in the weak coupling regime for

xf < x
AF
f , i.e. IR conformal, but it does not for xf > x

AF
f except the Gaussian fixed point

at the origin, i.e. non-abelian QED in the IR. In this perturbative regime one may also

consider an alternative series expansion by taking the di↵erence, �xf ⌘ x
AF
f �xf , as a small

parameter. Such an expansion, so-called the Banks-Zaks conformal expansion, has been

shown to be a useful tool for the investigation of the IR conformal phase [2]. In particular,

the scheme-independent conformal expansions of physical quantities, such as the anomalous

dimension of a fermion bilinear operator � ̄ , IR and the derivative of the beta function �
0

IR,

have been extensively studied in a series of papers [6–12]. 1 For xf � x
AF
f the coupling

or conformal expansion is no longer useful, but one can still analytically explore the phase

diagram by means of the large Nf expansion [19, 20] which in turns has proven its worth

1More work on the conformal expansions of the anomalous dimensions of baryon operators and higher-

spin operators, and of � ̄ , IR and �0
IR in the theories with multiple fermion representations can be found

in Refs. [13–15]. See also Refs. [16–18] for some earlier work on the conformal expansion of �0
IR in QCD.
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1 Sp(4) gauge theory with two-flavor Dirac fundamental fermions

1.1 Sp(4) Yang-Mills Theory

⌘ = Nf/Nc (1)

V (h) = �µ
2
h|H|2 + �h|H|4 (2)

f ⇠ v (3)

gT ⇠ 1.3 (4)

mT = gT f (5)

hHi = vp
2

(6)

g0 (7)

We first consider the pure Sp(4) gauge theory.

1

Lattice method

The essential features of the perturbative theory are encoded in the lowest two terms

which are independent of the renormalization scheme. Note that in general the series

expansions at finite order in ↵ for ` � 3 are scheme-dependent. With Nf Dirac fermions

in the representation R of the gauge group G the explicit expressions of b1 [31, 32] and b2

[1] are

b1 =
11

3
C2(G)�

4

3
NfT (R), (2.3)

b2 =
34

3
C2(G)2 �

4

3
(5C2(G) + 3C2(R))NfT (R), (2.4)

where T (R) is the trace normalization factor and C2(R) is the quadratic Casimir invariant

with C2(G) = C2(Adj) 6. The beta function in Eq. 2.2 has a trivial fixed point at ↵ = 0,

a Gaussian fixed point, for which the theory is free. In the vicinity of this fixed point the

coupling constant can be arbitrarily small and the behavior of the RG flow is governed by

the slope of the beta function, i.e. the sign of b1. Consider that we fix the gauge group,

the fermion representation, and the number of colors, but continuously vary the number

of flavors Nf for which only non-negative integer values are physically meaningful. For

su�ciently small numbers of flavors the coe�cient b1 has a positive value and the coupling

constant approaches zero as the momentum scale flows from the IR to the UV, indicating

that the theory is asymptotically free at high energy. If the number of flavors is larger

than N
AF
f = 11C2(G)/4T (R) or equivalently b1 < 0, on the other hand, the theory loses

the asymptotic freedom and the IR theory is trivial. The focus of our interest is in the

asymptotically free theory and thus we restrict our attention to Nf < N
AF
f .

The 2-loop results further divide the asymptotically free region into two nontrivial

phases whose IR behaviors are distinct from each other. If the number of flavors is su�-

ciently small such that b2 > 0, including the extreme case of the pure Yang-Mills (Nf = 0),

from the UV to the IR the coupling runs to infinity and the theory is expected to confine by

developing a dynamical scale. In the presence of fermionic matter the global (flavor) sym-

metry is also expected to be broken due to the non-zero fermion condensate. From the fact

that a negative value of b2 and an arbitrarily small positive value of b1 are realized if Nf is

just below N
AF
f , on the other hand, one finds a coupling constant satisfying �(↵BZ) = 0 at

↵BZ = �4⇡b1/b2 ⌧ 1 in a reliable manner within the perturbation theory [1, 2]. The corre-

sponding BZ fixed point, named after Banks-Zaks, suggests the existence of interacting IR

conformal theories (even beyond the weak coupling regime) with certain numbers of flavors

ranged over N
cr
f < Nf < N

AF
f . Such an interval in Nf is commonly called the conformal

window (CW). The conformal phase near the upper bound can systematically be studied

by the perturbative analysis as discussed above. However, it is di�cult to investigate the

phase near the lower bound, because in general ↵BZ grows to a large value as Nf decreases

and thus the perturbative analysis would fail. In this region, nonperturbative e↵ects are

6The group theoretical invariants are defined as Tr[T a
RT

b
R] = T (R)�ab and T a

RT
a
R = C2(R)I, where the

summation runs over a = 1, · · · , dG with dG the dimension of the gauge group G. Here, T a
R are the

generators in the representation R of G and the group invariants are related by C2(R)dR = T (R)dG with

dR the dimension of the representation R.
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Conformal window (CW)

the number of flavors Nf (or xf = Nf/Nc in the Veneziano limit). Note that this RG

prescription is expected to be only valid near the lower end of the conformal window at

which ↵ ⇠ ↵
cr is strong enough to cause substantially large dimensional transmutation of

Og such that the operator becomes relevant to the RG evolution in the IR, i.e. �Og =

dOg ��Og = 4 with �Og the scaling dimension, dOg the mass dimension in the UV and �Og

the anomalous dimension of Og. The operator Og is weakly relevant, g ⇠ g
cr

⌧ 1, such

that the perturbative analysis is a valid description for the RG flow connecting the UV

and IR fixed points. Approaching the lower end of conformal window the mass dimension

�Og , as well as the coupling g, has a square-root singularity in the vicinity of ↵cr, i.e.

|g � g
cr
| ⇠ |�Og � 4| '

p
↵cr � ↵. In terms of the number of flavors Nf (or xf ), which

basically controls how ↵ approaches ↵cr, one may find the analogous square-root singularity

of �Og , provided that the ↵ is an analytic function of Nf at N cr
f , as

|�Og � 4| ⇠
q
Nf �N cr

f . (2.5)

Such a square-root behavior has been advocated and emphasized in Ref. [37].

gO (2.6)

�(g;↵) ⌘ (↵� ↵c)� (g � g
⇤)2 (2.7)

Solve �(g) = 0.

g± = g
⇤
±
p
↵� ↵c (2.8)

�± = d± �
0(g±) ' d±

p
↵� ↵c (2.9)

|g � g
⇤
| ⇠ |�O � d| '

p
↵� ↵c (2.10)

x
cr
f < xf < 11/2 (2.11)

The most natural candidate for Og in the large N limit would be the chirally symmetric

four-fermion operators of double-trace form whose mass dimension is 6, e.g. ( ̄�µ )2 [38].

The large N factorizaiton yields that the dimension of the fermion bilinear is exactly half

of the double-trace four-fermion operator at infinite N , and the above discussion would

lead to the critical condition � ̄ , IR = 1 [23]. At finite but large N , however, it will receive

finite N corrections, i.e. � ̄ , IR = (dOg � 4)/2 +O(1/N) = 1 +O(1/N) (for instance, see
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Figure 1. Conjectured phase structure of large N QCD in the Veneziano limit at zero temperature
and chemical potential. The continuous variable xf is defined as xf = Nf/N with both Nf and N

taken to be infinite.

[4, 5]. Just above N
AF
f the perturbative beta function yields that the theory possess a

Landau pole, and thus it is not well defined in the ultraviolet (UV) while it is trivial in the

IR. If Nf further increases and becomes larger than N
safe
f , however, the theory develops

an ultraviolet fixed point with a non-zero value of the coupling, which has been discussed

in the context of asymptotic safety [4].

The conjectured phase diagram of non-abelian gauge theories with fermionic matter

fields at zero temperature and chemical potential can then be drawn as in Fig. 1. For

illustration purposes we consider that fermions are in the fundamental representation and

take the large N limit while keeping the ratio xf = Nf/N is fixed, i.e. the Veneziano limit.

However, we note that without losing generosity the discussion below can be applied to

all the theories with a gauge group G and Nf fermions in the representation R considered

in this work. There are two di↵erent phases in which the theory is asymptotically free,

chirally broken and IR conformal. In the asymptotically unfree regime, two other phases

are expected to exist, QED-like and UV safe. Analytical understanding of the chirally

broken phase at small xf is highly limited because the standard perturbation technique is

not applicable due to the absence of a small expansion parameter. One should instead rely

on fully nonperturbative methods such as the lattice Monte-Carlo calculations.

In the vicinity of xAF
f = 11/2, onset of the loss of asymptotic freedom, the coupling

expansion of the beta function finds an IR fixed point in the weak coupling regime for

xf < x
AF
f , i.e. IR conformal, but it does not for xf > x

AF
f except the Gaussian fixed point

at the origin, i.e. non-abelian QED in the IR. In this perturbative regime one may also

consider an alternative series expansion by taking the di↵erence, �xf ⌘ x
AF
f �xf , as a small

parameter. Such an expansion, so-called the Banks-Zaks conformal expansion, has been

shown to be a useful tool for the investigation of the IR conformal phase [2]. In particular,

the scheme-independent conformal expansions of physical quantities, such as the anomalous

dimension of a fermion bilinear operator � ̄ , IR and the derivative of the beta function �
0

IR,

have been extensively studied in a series of papers [6–12]. 1 For xf � x
AF
f the coupling

or conformal expansion is no longer useful, but one can still analytically explore the phase

diagram by means of the large Nf expansion [19, 20] which in turns has proven its worth

1More work on the conformal expansions of the anomalous dimensions of baryon operators and higher-

spin operators, and of � ̄ , IR and �0
IR in the theories with multiple fermion representations can be found

in Refs. [13–15]. See also Refs. [16–18] for some earlier work on the conformal expansion of �0
IR in QCD.
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[4, 5]. Just above N
AF
f the perturbative beta function yields that the theory possess a

Landau pole, and thus it is not well defined in the ultraviolet (UV) while it is trivial in the

IR. If Nf further increases and becomes larger than N
safe
f , however, the theory develops

an ultraviolet fixed point with a non-zero value of the coupling, which has been discussed

in the context of asymptotic safety [4].

The conjectured phase diagram of non-abelian gauge theories with fermionic matter

fields at zero temperature and chemical potential can then be drawn as in Fig. 1. For

illustration purposes we consider that fermions are in the fundamental representation and

take the large N limit while keeping the ratio xf = Nf/N is fixed, i.e. the Veneziano limit.

However, we note that without losing generosity the discussion below can be applied to

all the theories with a gauge group G and Nf fermions in the representation R considered

in this work. There are two di↵erent phases in which the theory is asymptotically free,

chirally broken and IR conformal. In the asymptotically unfree regime, two other phases

are expected to exist, QED-like and UV safe. Analytical understanding of the chirally

broken phase at small xf is highly limited because the standard perturbation technique is

not applicable due to the absence of a small expansion parameter. One should instead rely

on fully nonperturbative methods such as the lattice Monte-Carlo calculations.

In the vicinity of xAF
f = 11/2, onset of the loss of asymptotic freedom, the coupling

expansion of the beta function finds an IR fixed point in the weak coupling regime for

xf < x
AF
f , i.e. IR conformal, but it does not for xf > x

AF
f except the Gaussian fixed point

at the origin, i.e. non-abelian QED in the IR. In this perturbative regime one may also

consider an alternative series expansion by taking the di↵erence, �xf ⌘ x
AF
f �xf , as a small

parameter. Such an expansion, so-called the Banks-Zaks conformal expansion, has been

shown to be a useful tool for the investigation of the IR conformal phase [2]. In particular,

the scheme-independent conformal expansions of physical quantities, such as the anomalous

dimension of a fermion bilinear operator � ̄ , IR and the derivative of the beta function �
0

IR,

have been extensively studied in a series of papers [6–12]. 1 For xf � x
AF
f the coupling

or conformal expansion is no longer useful, but one can still analytically explore the phase

diagram by means of the large Nf expansion [19, 20] which in turns has proven its worth

1More work on the conformal expansions of the anomalous dimensions of baryon operators and higher-

spin operators, and of � ̄ , IR and �0
IR in the theories with multiple fermion representations can be found

in Refs. [13–15]. See also Refs. [16–18] for some earlier work on the conformal expansion of �0
IR in QCD.
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• At the lower edge of of the conformal window the theory is expected to be strongly 
coupled and the nature of the chiral phase transition is largely unknown.

• Notoriously difficult problem in both perturbative and nonperturbative approaches, 
but worth to tackle this problem as the theory may exhibit novel features and thus may 
have huge impact on phenomenological BSM model buildings and beyond.
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Figure 1. Conjectured phase structure of large N QCD in the Veneziano limit at zero temperature
and chemical potential. The continuous variable xf is defined as xf = Nf/N with both Nf and N

taken to be infinite.

[4, 5]. Just above N
AF
f the perturbative beta function yields that the theory possess a

Landau pole, and thus it is not well defined in the ultraviolet (UV) while it is trivial in the

IR. If Nf further increases and becomes larger than N
safe
f , however, the theory develops

an ultraviolet fixed point with a non-zero value of the coupling, which has been discussed

in the context of asymptotic safety [4].

The conjectured phase diagram of non-abelian gauge theories with fermionic matter

fields at zero temperature and chemical potential can then be drawn as in Fig. 1. For

illustration purposes we consider that fermions are in the fundamental representation and

take the large N limit while keeping the ratio xf = Nf/N is fixed, i.e. the Veneziano limit.

However, we note that without losing generosity the discussion below can be applied to

all the theories with a gauge group G and Nf fermions in the representation R considered

in this work. There are two di↵erent phases in which the theory is asymptotically free,

chirally broken and IR conformal. In the asymptotically unfree regime, two other phases

are expected to exist, QED-like and UV safe. Analytical understanding of the chirally

broken phase at small xf is highly limited because the standard perturbation technique is

not applicable due to the absence of a small expansion parameter. One should instead rely

on fully nonperturbative methods such as the lattice Monte-Carlo calculations.

In the vicinity of xAF
f = 11/2, onset of the loss of asymptotic freedom, the coupling

expansion of the beta function finds an IR fixed point in the weak coupling regime for

xf < x
AF
f , i.e. IR conformal, but it does not for xf > x

AF
f except the Gaussian fixed point

at the origin, i.e. non-abelian QED in the IR. In this perturbative regime one may also

consider an alternative series expansion by taking the di↵erence, �xf ⌘ x
AF
f �xf , as a small

parameter. Such an expansion, so-called the Banks-Zaks conformal expansion, has been

shown to be a useful tool for the investigation of the IR conformal phase [2]. In particular,

the scheme-independent conformal expansions of physical quantities, such as the anomalous

dimension of a fermion bilinear operator � ̄ , IR and the derivative of the beta function �
0

IR,

have been extensively studied in a series of papers [6–12]. 1 For xf � x
AF
f the coupling

or conformal expansion is no longer useful, but one can still analytically explore the phase

diagram by means of the large Nf expansion [19, 20] which in turns has proven its worth

1More work on the conformal expansions of the anomalous dimensions of baryon operators and higher-

spin operators, and of � ̄ , IR and �0
IR in the theories with multiple fermion representations can be found

in Refs. [13–15]. See also Refs. [16–18] for some earlier work on the conformal expansion of �0
IR in QCD.
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Sill of the conformal window - perturbative approach

• Coupling expansion suffers from the scheme dependence for ! .ℓ ≥ 3

to date, by approximating the size of an ambiguity in the perturbative expansion which is

closely related to the singularity in the Borel plane.

The paper is organized as follows. In Sec. 2.1 we discuss the generic infra-red properties

of non-abelian gauge theory coupled to fermionic matter at zero temperature and chemical

potential by focusing on the asymptotically free regime. In particular, we recall that both

the truncated Schwinger-Dyson analysis and the mechanism of fixed-point annihilation

yield the same critical condition, � ̄ , IR = 1 or equivalently � ̄ , IR(2� � ̄ , IR) = 1, char-

acterizing the loss of conformality in the IR. In Sec. 2.2, we briefly review the conformal ex-

pansion of � ̄ , IR defined at an IR fixed point. We then describe our strategy to determine

the lower edge of the conformal window in a scheme independent way in Sec. 2.3: we apply

the critical condition, which is responsible for the chiral phase transition, to � ̄ , IR com-

puted from the conformal expansion at finite order. Sec. 2.4 is devoted to estimate the size

of systematic e↵ects associated with the finite-order perturbative calculations by assum-

ing the di↵erent large-order behaviors of the conformal expansion, convergent or divergent

asymptotic. We present our main results on the conformal window of SO(N), SU(N) and

Sp(2N) gauge theories with Nf Dirac (NWf Weyl) fermions in various representations, in

Sec. 3.1 for the large N limit and in Secs. 3.2, 3.3 and 3.4 for finite values of N , respec-

tively. We critically assess our results by comparing to other analytical methods and the

most recent nonperturbative lattice results available in the literature. Finally, we conclude

by summarizing our findings in Sec. 4.

2 Background and methods

2.1 Infra-red conformal phase in asymptotically free gauge theories

We consider a generic non-abelian gauge theory containing Nf flavors of massless fermionic

matter in distinct representations R of the gauge group G = SO(N), SU(N), and Sp(2N)
5. The evolution of the gauge coupling constant g is described by the renormalization group

beta function

�(g) =
dg

dt
, (2.1)

where t = lnµ with µ the renormalization scale. For a small value of g the RG evolution can

be studied by perturbation technique in a reliable way, which is equivalent to the Feynman

loop expansion. After rewriting the coupling constant as ↵ = g
2
/4⇡ to be positive definite,

one can write the perturbative beta function as

�(↵) = �2↵
1X

`=1

b`

⇣
↵

4⇡

⌘`
, (2.2)

where the `-loop coe�cient b` depends on the details of the theory, such as the number of

flavors Nf , the number of colors N , the representation R, and the gauge group G.

5Throughout this section Nf denotes the dummy variable for either the Dirac or Weyl flavors unless

explicitly specified.
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• For the past few years much progress has been made in an alternative scheme-
independent expansion, so called Bank-Zaks (BZ) or conformal expansion, of certain 
physical observables in terms of !  by R. Shrock & T. Ryttov.ΔNf

= NAF
f − NIR

f

Talk by R. Shrock @ 15:40, Mon.

• Combining with the conjectured critical conditions to the anomalous dimension of 
fermion bilinear, !  or equivalently ! , the conformal window 
has been estimated in a scheme independent way.

γψ̄ψ = 1 γψ̄ψ(2 − γψ̄ψ) = 1

At finite order in ! , !  turns out to show a better convergence.ΔNf
γψ̄ψ(2 − γψ̄ψ) = 1

renormalization-scheme dependence and the critical condition becomes ambiguous. We

therefore use the anomalous dimension � ̄ , IR, which is physical, to estimate the critical

number of flavors N cr
f by employing the aforementioned critical condition. This condition

satisfies the unitarity condition by construction, � ̄ , IR  2 [39]. We note that in the case

of SQCD the unitarity condition is the same with the onset of the conformality loss and

is often used to determine the conformal window even for nonsupersymmetric theories.

However, these two conditions could largely be di↵erent in general, because the underlying

mechanism of the loss of conformality is expected to depend on the details of the theory

as discussed above.

2.2 Conformal expansion for the anomalous dimension � ̄ , IR

One of the consequences of the perturbative BZ fixed point is that the IR coupling can

be expanded in terms of the distance from N
AF
f , �Nf ⌘ N

AF
f �N

IR
f , i.e. the Banks-Zaks

conformal expansion [2],

↵IR

4⇡
=

1X

j=1

aj(�Nf )
j
, (2.7)

where the coe�cients aj are independent ofNf . The leading order term is solely determined

from the two-loop results as

↵IR = 4⇡a1�Nf +O(�2
Nf

), (2.8)

with

a1 =
1

b2

@b1

@Nf

����
Nf=NAF

f

=
4T (R)

3C2(G)(7C2(G) + 11C2(R))
. (2.9)

Similarly, the jth order coe�cient aj can be determined from a power series solution to

�(↵) = 0 with �(↵) in Eq. 2.2 truncated at the (j + 1)th order.

The most notable feature of the conformal expansion is that the series coe�cients of

the expansion for a physical observable are universal, in the sense that they are independent

on the renormalization scheme order by order. Such a fact can be understood on general

grounds, because the expansion parameter �Nf , defined through the scheme-independent

2-loop beta function, is a well-defined physical quantity. The conformal expansion relevant

to us is the one for the anomalous dimension of a fermion bilinear operator

� ̄ , IR(�Nf ) =
1X

j=1

cj(�Nf )
j
. (2.10)

The coe�cients cj are determined by combining the results of the coupling expansion of

� ̄ , IR(↵) at the jth order and �(↵) at the (j + 1)th order, respectively. As mentioned

above, the conformal expansion is scheme-independent at finite order and does not require

any information from higher-order terms. This is a somewhat distinctive feature compared

to other expansions, alternative to the coupling expansion, such as the large-Nf expansion

for which all orders in ↵ are necessary to compute the coe�cient at each order in 1/Nf .

– 8 –
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Sill of the conformal window - perturbative approach

• Another scheme independent estimation of the conformal window has also been 
proposed  by computing  !  and  !  using (p)NRQCD at NNLO in CW and 
matching them to lattice results for !  QCD, which finds ! .

fπ /mV fV /mV
Nf = [2,10] Ncr

f ∼ 12 or 13
Talk by D. Nogradi @ 14:10, Thur.
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the phase boundary at which the loss of conformality occurs. As we have no good understanding of this interesting
observation at the moment, however, it shoud not be generalized to a generic feature of the chiral phase transition
in nonsupersymmetric theories without further investigation. Last but not the least, � ̄ , IR at each order in the
conformal expansion also monotonically increases with �Nf due to the positive coe�cients. Accordingly, with a few
lowest coe�cients the perturbative calculations of � ̄ , IR are well stretched to the very small Nf . However, we note
that the results at small Nf should be taken with some care, because the conformal expansion only makes sense when
an IR fixed point exists, where its existence is not known a priori.

C. Determination of the lower edge of the conformal window

Following the discussions we had in Sec. II A, we assume that the chiral phase transition in nonsupersymmetric
gauge theories occurs through mechanism (c) rather than (b), i.e. the coupling at an IR fixed point disappears by
annihilating the UV fixed point instead of running to infinity. Furthermore, we borrow the large N argument and
assume that the chiral phase transition is triggered by the four-fermion operators of double-trace form. To determine
the critical number of flavors N

cr
f , corresponding to the lower edge of conformal window, we therefore adopt the

following critical condition to the anomalous dimension of a fermion bilinear,

� ̄ , IR = 1 or equivalently � ̄ , IR(2� � ̄ , IR) = 1. (12)

As discussed in Sec. II A, we expect to have finite N corrections for the gauge theories apart from the infinite N limit.
We will discuss the implications of such finite N e↵ects on the resulting values of N cr

f in Sec. III.

In an earlier work along this direction [46], the coupling expansion including higher order terms in the MS scheme was
used to compute � ̄ , IR(↵IR) and ↵IR. Furthermore, the authors employed the critical condition � ̄ , IR(2�� ̄ , IR) =
1, not � ̄ , IR = 1, because the 1-loop result turned out to be identical to the critical condition on ↵ in the traditional
Schwinger-Dyson analysis. In this work we instead use the Banks-Zaks conformal expansion for the computation of
� ̄ , IR, since it shows better behavior as discussed in the previous section. More importantly both forms of the critical
condition can be expanded order by order in a scheme independent way, so be the conformal window. Comparisons
between the conformal and coupling expansions for the determination of N cr

f in SU(3) gauge theories coupled to Nf

fundamental Dirac fermions are found in Ref. [21].
Two equivalent critical conditions in Eq. 12 should be identical to each other if all orders of the conformal expansion

are considered. If the left-hand sides of those equations are truncated at the finite order n, however, it leads to two
di↵erent critical conditions. Accordingly, the resulting values of N cr

f are di↵erent in general. To be explicit, we first
define the finite-order critical condition of the former

�
(n)
IR (�Nf ) =

nX

j=1

kj

�
�Nf

�j
⌘ 1, (13)

where the coe�cients kj are known to the 4th order [10]. Similarly, the latter critical condition at each order n can
be written as

[�IR(2� �IR)]
(n) (�Nf ) =

nX

j=1

j

�
�Nf

�j
⌘ 1. (14)

The coe�cients j are related to kj as

1 = 2k1, 2 = 2k2 � k
2
1, 3 = 2k3 � k1k2, 4 = 2k4 � 2k1k3 � k

2
2, · · · . (15)

To illustrate the typical behavior of the left-hand sides of Eq. 13 and Eq. 14, we consider SU(N) gauge theories
coupled toNf fundamental Dirac fermions in the Veneziano limit, i.e. N ! 1 andNf ! 1 with the ratio xf = Nf/N

fixed. We define �xf = x
AF
f � xf with x

AF
f = 11/2. In Fig. 2, we show the results for xf  x

AF
f . As discussed in

the previous section, �IR(�n
xf
) monotonically increases as we go to the higher order in �xf over the whole range of

xf considered, so does �IR(2 � �IR)(�n
xf
). We also observe that the latter receives smaller corrections from higher

order terms along the black dotted line, corresponding to the critical condition, which can be understood as follows.
First of all, the monotonic increment of �IR with n implies the positiveness of the coe�cients ci, which in turn results
in 2/1 < k2/k1 as seen in Eq. 15, i.e. for a given value of �xf the ratio between the second and first terms of
�IR(2 � �IR) is smaller than that of �IR. We note that such an inequality cannot always be true for higher order
coe�cients. Secondly, the leading-order result of �IR(2� �IR) starts by twice larger than that of �IR. Combined with
the positive coe�cients, it leads us to find higher-order results at smaller �xf , which allows us to be in the better
controlled regime of the perturbative series expansion.
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critical condition

N F Adj AS S2
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⇥
6.22+1.32

�1.01
+0.31
�0.12, 11.0

⇤ ⇥
1.92+0.55

�0.36
+0.03
�0.07, 2.75

⇤
N/A

⇥
1.92+0.55

�0.36
+0.03
�0.07, 2.75

⇤

3
⇥
9.79+0.94

�0.82
+0.31
�0.36, 16.5
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1.91+0.07

�0.06
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�0.36, 16.5

⇤ ⇥
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⇤
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Table 1. Conformal window of SU(N) gauge theories coupled to fermion matter in the fundamental
(F), adjoint (Adj), anti-symmetric (AS), and symmetric (S2) representations. The lower and upper
bounds, denoted by [N cr

f , NAF
f ], correspond to which conformality and asymptotic freedom are lost.

The first and second errors to N
cr
f are computed according to Eqs. 2.36 and 2.39, respectively.

Using Eqs. 3.1, 3.2, and 3.3, we also find that

N
cr,2�loop

f =
17

16
, N

cr,SD
f =

83

40
, and N

cr,BF

f =
11

6
. (3.11)

For both two-index symmetric and antisymmetric representations of SU(N) the con-

formal windows are exactly twice larger than that for the adjoint representation

[N cr

f , N
AF

f ] =
⇥
3.79+0.07

�0.07
+0.01
�0.23, 5.5

⇤
. (3.12)

In the case of Sp(2N) with fermions in the antisymmetric representation, the conformal

window is equivalent to that for the adjoint representation. Similarly, for SO(N) the

conformal window for the symmetric representation is same with that for the adjoint rep-

resentation. Note that in these theories the other two-index representations are identical to

the adjoint representation by construction. Analogously, the other analytical calculations

for the two-index representations yield the same results of Eq. 3.11 up to a factor of two.

3.2 SU(N) gauge theory with Nf Dirac fermions in various representations

In Fig. 4 we present our results for the lower edge of the conformal window in SU(N)

gauge theories coupled to Nf Dirac fermions in the fundamental, adjoint, antisymmetric

and symmetric representations, where the resulting values of N cr

f are denoted by black solid

lines. Note that we take bothN andNf as continuous variables. In each figure, red and blue

bands denote the errors, �1 and �2, defined in Eqs. 2.36 and 2.39, respectively. We recall

that these errors should not be taken simultaneously since the underlying assumptions for

the error estimates are incompatible to each other as discussed in Sec. 2.4. For the integer

values of N ranged over 2  N  10 we present the explicit values of N cr

f with errors in

Table 1, where the values of NAF

f are also presented.

As shown in the figures, �2 persists to be sizable for all the values of N at ⇠ 6% level

at most. On the other hand, �1 is relatively large at small N , but comparable or smaller

– 19 –
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2
⇥
6.22+1.32

�1.01
+0.31
�0.12, 11.0

⇤ ⇥
1.92+0.55

�0.36
+0.03
�0.07, 2.75

⇤
N/A

⇥
1.92+0.55

�0.36
+0.03
�0.07, 2.75

⇤

3
⇥
9.79+0.94

�0.82
+0.31
�0.36, 16.5

⇤ ⇥
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�0.06
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�0.09, 2.75

⇤ ⇥
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�0.82
+0.31
�0.36, 16.5

⇤ ⇥
2.31+0.04

�0.04
+0.01
�0.11, 3.3

⇤

4
⇥
13.29+0.77

�0.71
+0.37
�0.53, 22.0

⇤ ⇥
1.90+0.03

�0.03
+0.01
�0.10, 2.75

⇤ ⇥
7.18+0.13

�0.13
+0.07
�0.38, 11.0

⇤ ⇥
2.57+0.04

�0.04
+0.01
�0.13, 3.67

⇤

5
⇥
16.74+0.75

�0.70
+0.44
�0.68, 27.5

⇤ ⇥
1.90+0.03

�0.03
+0.01
�0.10, 2.75

⇤ ⇥
6.06+0.11

�0.11
+0.02
�0.38, 9.17

⇤ ⇥
2.75+0.05

�0.04
+0.01
�0.15, 3.93

⇤

6
⇥
20.18+0.79

�0.74
+0.51
�0.83, 33.0

⇤ ⇥
1.90+0.03

�0.03
+0.01
�0.11, 2.75

⇤ ⇥
5.50+0.10

�0.10
+0.01
�0.36, 8.25

⇤ ⇥
2.89+0.05

�0.05
+0.01
�0.16, 4.13

⇤

7
⇥
23.60+0.84

�0.80
+0.59
�0.97, 38.5

⇤ ⇥
1.90+0.03

�0.03
+0.01
�0.11, 2.75

⇤ ⇥
5.16+0.10

�0.09
+0.01
�0.34, 7.7

⇤ ⇥
2.99+0.05

�0.05
+0.01
�0.16, 4.28

⇤

8
⇥
27.01+0.91

�0.87
+0.66
�1.12, 44.0

⇤ ⇥
1.90+0.03

�0.03
<0.01
�0.11, 2.75

⇤ ⇥
4.94+0.09

�0.09
+0.01
�0.32, 7.33

⇤ ⇥
3.07+0.05

�0.05
+0.01
�0.17, 4.4

⇤

9
⇥
30.42+0.99

�0.94
+0.74
�1.26, 49.5

⇤ ⇥
1.90+0.03

�0.03
<0.01
�0.11, 2.75

⇤ ⇥
4.78+0.09

�0.09
<0.01
�0.31, 7.07

⇤ ⇥
3.14+0.05

�0.05
+0.01
�0.17, 4.5

⇤

10
⇥
33.83+1.07

�1.02
+0.82
�1.40, 55.0

⇤ ⇥
1.90+0.01

�0.03
<0.01
�0.11, 2.75

⇤ ⇥
4.65+0.09

�0.08
<0.01
�0.30, 8.88

⇤ ⇥
3.17+0.05

�0.05
+0.01
�0.18, 4.58

⇤

Table 1. Conformal window of SU(N) gauge theories coupled to fermion matter in the fundamental
(F), adjoint (Adj), anti-symmetric (AS), and symmetric (S2) representations. The lower and upper
bounds, denoted by [N cr

f , NAF
f ], correspond to which conformality and asymptotic freedom are lost.
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the adjoint representation by construction. Analogously, the other analytical calculations

for the two-index representations yield the same results of Eq. 3.11 up to a factor of two.
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bands denote the errors, �1 and �2, defined in Eqs. 2.36 and 2.39, respectively. We recall

that these errors should not be taken simultaneously since the underlying assumptions for

the error estimates are incompatible to each other as discussed in Sec. 2.4. For the integer
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Sill of the conformal window - nonperturbative approach

2

action parameter space

RT trajectory 
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g2

bare action

GFP

continuum physics

FIG. 2. Sketch of RG flow in the multi-dimensional action
parameter space.

vides an alternative to test systematical errors.

The connection between GF and RG is discussed in
Ref. [36]. Gradient flow is a continuous smearing trans-
formation that is appropriate to define real-space RG
blocked quantities, but it is not an RG transformation
as it lacks the crucial step of coarse graining. However,
coarse graining can be incorporated when calculating ex-
pectation values. In particular, expectation values of lo-
cal operators, like the energy density that enters the def-
inition of the GF coupling, are identical with or without
coarse graining. When the dimensionless GF time t/a2

is related to the RG scale change as b /
p
t/a2, the

GF transformation describes a continuous real-space RG
transformation.

The topology of RG flow on the chiral m = 0 critical
surface in an asymptotically free gauge-fermion system
is sketched in Fig. 2. g1 represents the relevant gauge
coupling at the Gaussian fixed point (GFP), while g2
refers to all other irrelevant couplings. The GFP is on the
g1 = 0 (lattice spacing a = 0) surface and the renormal-
ized trajectory (RT) emerging from the GFP describes
the cut-o↵ independent continuum limit at finite renor-
malized coupling. Numerical simulations are performed
with an action characterized by a set of bare couplings.
If this action is in the vicinity of the GFP or its RT, the
typical RG flow approaches the RT and follows it as the
energy scale is decreased from the cut-o↵ towards the in-
frared as indicated by the blue lines. RG flows starting at
di↵erent bare couplings approach the RT di↵erently, but
once the irrelevant couplings have died out, they all fol-
low the same 1-dimensional renormalized trajectory and
describe the same continuum physics. The RT of chi-
rally broken systems continues to g1 ! 1, while con-
formal systems have an IRFP on the RT that stops the
flows from either direction. While the topology of the
RG space is universal, the location of the fixed points
and their corresponding RTs depend on the RG transfor-
mation.

The RT is a 1-dimensional line, therefore, a dimen-
sionless (zero canonical and zero anomalous dimension)
local operator with non-vanishing expectation value can

be used to define a running coupling along the RT. The
simplest such quantity in gauge-fermion systems is the
energy density multiplied by b4 (or t2) to compensate
for its canonical dimension. This is indeed the quan-
tity defined in Ref. [14] as the gradient flow coupling
g2GF(t; g

2
0) /

⌦
t2E(t)

↵
. E(t), the energy density at flow

time t, can be estimated through various local lattice op-
erators like the plaquette or clover operators. At large
flow time irrelevant terms in the lattice definition of E(t)
die out. In that limit g2GF approaches a continuum renor-
malized running coupling and its derivative is the RG �
function

�(g2GF ) = µ2 dg
2
GF

dµ2
= �t

dg2GF

dt
. (1)

The above definition is valid in infinite volume only. In a
box of finite length L the RG equation contains the term
L(dg2GF /dL), a di�cult to estimate quantity. In our ap-
proach we extrapolate L/a ! 1 at fixed t/a2 which also
sets the renormalization scheme c = 0. The continuum
limit of the � function is obtained at fixed g2GF while tak-
ing t/a2 ! 1. In QCD-like systems this automatically
forces the bare gauge coupling towards zero, the critical
surface of the GFP.
The Wilsonian RG description suggests that lattice

simulations at a single bare coupling can predict, up to
controllable cut-o↵ corrections, a finite part of the RG �
function. In practice the finite lattice volume limits the
range where the infinite volume � function is well approx-
imated. Chaining together several bare coupling values,
we can cover the entire RT while the overlap and devi-
ation between di↵erent volume and bare coupling pre-
dictions characterizes the finite volume and finite cut-o↵
e↵ects as illustrated in Fig. 1.
Once the GF coupling is determined and its derivative

is calculated as the function of the GF time, the contin-
uous � function calculation requires two steps:

A) Infinite volume extrapolation at every GF time.

B) Infinite flow time extrapolation at every g2GF .

Step B) removes cut-o↵ e↵ects and replaces the L/a ! 1
continuum limit extrapolation of the step-scaling func-
tion approach. Step A) is new in the continuous � func-
tion approach but is compensated by several advantages.
In all GF analysis the flow time has to be chosen large
enough to remove all but the largest irrelevant opera-
tor even on the smallest volume considered. In tradi-
tional step-scaling calculations the flow time grows with
L2 which leads to large statistical errors on the largest
volumes. In the continuous � function approach the flow
time is independent of the volume. This significantly re-
duces statistical errors. Finally the continuum limit of
the continuous � function is obtained by extrapolating a
continuous function of the flow time. Although the data
are highly correlated, a continuous function nevertheless
allows control to determine the functional form, e.g. the
scaling exponent of the irrelevant operator. The corre-
lations themselves can be handled by a fully correlated

• GF as continuous space RG with !  for local gauge-invariant observablesμ ∝ 1/ 8t

1) Infinite volume limit at fixed �  for each bare lattice coupling � 


2) Continuum limit at fixed � , which brings �  to infinity.

t/a2 β

g2
GF β

0)   It is not necessary, but it is convenient to take the zero quark mass.

• Beta function

• Mass anomalous dimension

g2
GF(t) = 𝒩t2⟨E(t)⟩ βGF(a; g2

GF) = − t
dg2

GF(a; t)
dt

𝒪(x) = ψ(x)Γψ(x)G𝒪(x4; t) = ⟨𝒪( ⃗p = 0,x4; t)𝒪( ⃗p = 0,0; 0)⟩ with

R𝒪(x4; t) =
G𝒪(x4, t)
GV(x4; t) γ𝒪(a; g2

GF) = t
d log R𝒪(a; t)

dt for sufficiently large �x4

Z. Fodor et al, EPJ Web Conf.  
175 (2018), 08027

A. Hasenfratz & O. Witzel, 
PRD 101 (2019) 3, 034514

continuum extrapolation
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preliminary

I Systematic e↵ects for Nf = 10 likely

underestimated

I Reach in g2 limited by 1st order

bulk phase transition (lattice artifact)

I Qualitative behavior captured by

2-loop PT prediction

Oliver Witzel (Siegen University) 13 / 13

• Confirm the previous step-scaling 
results published in a series of 
papers by A. Hasenfratz, C. 
Rebbit & O. Witzel.

• Extension to the stronger GF 
coupling is hindered by large 
UV effects or even 1st order 
bulk phase transition.

Continuous RG beta function

PLB 798 (2019), 134937; PRD 100 (2019), 114508; 
PRD 101 (2020), 114508; PRD 106 (2022), 114509; 
PRD 107 (2023), 114508

Talk by O. Witzel @ 14:30, Mon.
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We use lattice simulations and the continuous renormalization-group method, based on the gra-
dient flow, to calculate the � function and anomalous dimensions of the SU(3) gauge theory with
Nf = 10 flavors of fermions in the fundamental representation. We employ several improvements to
extend the range of available renormalized couplings, including the addition of heavy Pauli-Villars
bosons to reduce cuto↵ e↵ects and the combination of a range of gradient flow transformations.
While in the weak coupling regime our result is consistent with those of earlier studies, our tech-
niques allow us to study the system at much stronger couplings than previously possible. We find
that the renormalization group � function develops a zero, corresponding to an infrared-stable fixed
point, at gradient-flow coupling g2 = 15.0(5). We also determine the mass and tensor anomalous
dimensions: At the fixed point we find �m ' 0.6, suggesting that this system might be deep inside
the conformal window.

I. INTRODUCTION

The SU(3) gauge theory with ten Dirac fermions in the
fundamental representation is the subject of continuing
debate. The question is whether its infrared physics is
confining or conformal, as determined by the absence or
presence of an infrared fixed point (IRFP). The system
has been studied by several groups, both with domain
wall [1–5] and staggered fermions [6–8]. All these studies
have used the finite-volume gradient flow (GF) scheme
with a step-scaling renormalization-group transformation
[9–11]. While the results are in reasonable agreement at
weak gauge couplings, they di↵er at stronger couplings
and reach di↵ering conclusions.

Using domain-wall fermions, Chiu [1, 2] first claimed
an IRFP at g2 ' 7. His later study [3], however, gave
a more cautious assessment. Hasenfratz, Rebbi, and
Witzel [4, 5] observed a step-scaling � function that in-
creases in absolute value up to g2 ' 9, where it appears
to turn towards the abscissa and thus hints at an IRFP at
some g2 >⇠ 11; these simulations were limited by a first-
order phase transition blocking access to the g2 > 11
regime. Staggered-fermion calculations by the LatHC
collaboration [6–8] studied this system in larger volumes,
reaching couplings up to g2 ' 10. In this range their �
function increases steadily in magnitude and remains in
2� agreement with the result reported in Refs. [4, 5]. It
does not, however, show any sign of a developing IRFP.
No definitive conclusion on the infrared behavior of the
Nf = 10 model has been reached so far.

All the studies listed above were carried out in a range
of renormalized coupling limited by large cuto↵ e↵ects.
Recently we have proposed adding heavy Pauli-Villars
(PV) bosons to remove ultraviolet fluctuations caused
by the many fermion fields [14]. The masses of the PV
bosons are kept at the cuto↵ scale. Thus they decouple in
the continuum limit but they do generate a local e↵ective
gauge action with well-regularized short-distance prop-
erties. We have applied PV improvement successfully in

FIG. 1. The � function obtained with four di↵erent gradient-
flow transformations in overlapping regions. The orange and
dark green solid lines, with errors indicated by the dotted
lines, are results from staggered and DWF simulations [4–
8, 12]. Black solid, dotted and dashed curves correspond to
the universal 1- and 2-loop and the gradient flow 3-loop per-
turbative results [13].

the SU(3) gauge theory with Nf = 12 [14] and Nf = 8
[15] staggered fermions in the fundamental representa-
tion, as well as in a multirepresentation SU(4) gauge the-
ory with Wilson fermions [16]. In all cases we found that
the PV improved actions indeed reduced short-distance
fluctuations and allowed investigations at stronger renor-
malized couplings.

In Ref. [16] we applied the continuous � function
(CBF) method [17, 18] and uncovered an IRFP at strong
coupling. Going beyond the use of PV bosons, we further
extended the coupling range by combining the results of
a number of lattice gradient flows that possess a common
continuum limit. Here we apply the techniques used in
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FIG. 6. Comparing the di↵erence �S � �W (green) with the
standard deviation � of the S operator on volume 243 ⇥ 48
for the C23 flow. We plot ±

p
2� (solid red curves) and ±2�

(dashed red curves). Together with a similar plot for volume
283 ⇥ 56, these determine the bounds of validity g2max3 and
g2max2 in Table 2.

Flow g2min g2max1 g2max2 g2max3

Sym 6.5 18.0 8.5 7.5

Wil 7.0 20.0 16.0 10.0

C23 8.0 21.0 17.0 16.0

C13 12.0 23.0 23.0 21.0

TABLE 2. Ranges of g2 in which each flow is included in the
final result for �(g2). g2min and g2max1 result from the interpo-
lations, while g2max2 and g2max3 come from further demanding
consistency between the continuum extrapolations �S and �W

(see Fig. 6). We quote all numbers with a resolution of 0.5.
g2min and g2max2 give the ranges reflected in Fig. 1. g2max3,
rather than g2max2, gives the stricter bounds shown in Fig. 7.

IV. ANOMALOUS DIMENSIONS

The calculation of anomalous dimensions follows that
of Ref. [16] closely, with the addition of an extrapolation
to infinite volume as described in Sec. III A above. We
calculated the two-point function of each flowed mesonic
density X 0 with its unflowed source X,

hX(0)X 0(t)i ⇠ t�(d+⌘+�)/2 . (4.1)

Here � is the desired anomalous dimension of the op-
erator and ⌘/2 is the anomalous dimension of the the
elementary fermion field. To eliminate ⌘, we divide
hX(0)X 0(t)i by the two-point function of the conserved
vector current. Defining the ratio

R(t) =
hX(0)X 0(t)i
hV (0)V 0(t)i , (4.2)

we have

R(t) ⇠ t��/2 , (4.3)

FIG. 7. Same as Fig. 1, but with stricter bounds on the
domain of validity of each flow. See Table 2.

FIG. 8. The anomalous dimension of the mass (scalar) oper-
ator, �m, and that of the tensor operator, �T , obtained with
Wilson and C13 flows, extrapolated to the continuum limit
and to infinite volume.

and hence � can be extracted from the logarithmic deriva-
tive,

� = �2
t

R

@R

@t
. (4.4)

We require
p
8t ⌧ x4, where x4 is the separation of X

and X 0 in Euclidean time. This means that x4 is kept
large compared to the smearing of the operators by the
flow. The extrapolation from L/a = 24, 28 to L = 1, the
interpolation in g2 at fixed t, and the continuum extrap-
olation t/a2 ! 1 are as described above and in Ref. [16].
Final results for the mass anomalous dimension and

for that of the tensor density are shown in Fig. 8. In the
weak-coupling region, the anomalous dimensions agree
with one-loop perturbation theory,

�m =
6g2C2

16⇡2
, �T = �1

3
�m , (4.5)

where C2 = 4/3 is the quadratic Casimir operator of the

• Idea: Introduce heavy Pauli-Villars bosons, ! , to reduce the cutoff effects 
by compensating the screening effects from many flavors of fermion.

amPV ∼ 𝒪(1)

A. Hasenfratz, Y. Shamir & B. Svetitsky, 
PRD 104 (2019) 7, 074509

• Find an IR fixed point at !  and the mass anomalous dimension !g2
IR ∼ 15 γ⋆

ψ̄ψ,IR ≃ 0.6

cf) Scheme-independent perturbative result: !γ⋆
ψ̄ψ,IR(Δ4

Nf
) = 0.615

Talk by A. Hasenfratz @ 13:30, Mon.A. Hasenfratz et al, arXiv:2306.07236

Ryttov & Shrock, PRD 94 (2016) 105014
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Preliminary

• The GF coupling has been extended to ! . No sign of IR fixed point, yet (?).∼ 22

Talk by C. Peterson @ 14:10, Mon.

IR conformal 
or walking?

Chirally broken?

• Also, it has been found that BKT scaling is preferred. Poster by C. Peterson @ 19:00, Tues.

Evidence of walking scenario?



Dilaton effective field theory (dilaton EFT)

• A revival of EFT for dilaton has been triggered by the discovery of light dilaton, in 
addition to pNGBs, in lattice calculations of would-be near-conformal gauge theories.2

FIG. 1. Comparison of our spectroscopy results for Nf = 4 (left) and Nf = 8 (right). Hadron masses (vertical axis) and the
fundamental fermion mass (horizontal axis) are both shown in units of the pion decay constant F⇡; the chiral limit mf = 0 is
at the center of the plot for both theories. The hadrons shown are the lightest 0++ meson (�), 0�+ PNGB meson (⇡), 1��

vector meson (⇢), 1++ axial-vector meson (a1), and the nucleon (N). The major qualitative di↵erence between the two values
of Nf is the degeneracy of the light scalar � with the pions at Nf = 8.

ods, including the computation of the running coupling
and its discrete � function [26, 27, 33, 34], exploration
of the phase diagram through calculations at finite tem-
perature [35–41], analysis of hadron masses and decay
constants [11, 14, 19–21, 28, 30–32, 42–45], study of the
eigenmodes of the Dirac operator [29, 42–44, 46], and
more [47–55]. While most of these studies obtain results
consistent with spontaneous chiral symmetry breaking
in the massless limit for Nf = 8 [11, 19–21, 26–31, 33–
42, 45], this has not yet been established definitively
and some recent works favor the existence of a confor-
mal infrared fixed point (IRFP) [51, 52, 54]. For exam-
ple, although all lattice studies of the 8-flavor discrete �
function obtain monotonic results, with no non-trivial IR
fixed point where �(g2?) = 0, it remains possible that an
IRFP could exist at some stronger coupling that these
works were not able to access.

This possibility can be tested through complemen-
tary studies of phase transitions at finite temperature
T = 1/(aNt), where ‘a’ is the lattice spacing and Nt is
the temporal extent of the lattice. In a chirally broken
system such as QCD, the bare (pseudo-)critical couplings
gcr(Nt) of these transitions must move to the asymp-
totically free UV fixed point gcr ! 0 as the UV cuto↵
a�1

! 1 and Nt ! 1 holding T (Nt) = Tcr fixed. In an
IR-conformal system, in contrast, the finite-temperature
transitions must accumulate at a finite bare coupling as
Nt ! 1, so that Tcr is independent of Nt, and remain
separated from the weak-coupling conformal phase by a
bulk transition.

Unlike running coupling studies, finite-temperature
lattice calculations use non-zero bare fermion mass am to
give mass aM to the pseudo-Nambu–Goldstone bosons
(PNGBs) which appear in the chirally broken phase.
If the Compton wavelength of the PNGBs ⇠ 1/(aM)
is not small relative to the spatial extent of the lat-
tice, significant finite-volume e↵ects will occur. Results
must be extrapolated to the am ! 0 chiral limit to en-
sure that the chiral symmetry breaking is truly spon-
taneous. Although previous works observed QCD-like
scaling of gcr for Nf = 8 with su�ciently large masses
am & 0.01 [35, 36, 38, 39], this did not persist at smaller
am  0.005, where the finite-temperature transitions
merged with a bulk transition into a lattice phase.

In Section II we revisit this finite-temperature analy-
sis, employing larger Nt than those previous works. Al-
though these larger lattices allow us to consider smaller
masses down to am = 0.0025, we find that the finite-
temperature transitions still run into a strongly coupled
lattice phase before reaching the chiral limit. That is,
we are not able to directly confirm spontaneous chiral
symmetry breaking. The details of the lattice phase
depend on our lattice action, which we also review in
Section II. We use improved nHYP-smeared staggered
fermions, which conveniently represent Nf = 8 contin-
uum flavors as two (unrooted) lattice fields. Staggered
fermions (with or without various forms of improvement)
are also used by almost all of the other studies summa-
rized above, with the exceptions of Refs. [50, 51] (Wilson
fermions) and Refs. [28, 54] (domain wall fermions).
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vinced that it is a required feature of walking. Recent 5-loop results are only plotted in Fig. 1 to
indicate the state of the art in the perturbative loop expansion [23], perhaps for future theoretical
analysis of walking, based on speculations for a pair of complex conformal fixed points of walking
non-perturbative b -functions below the CW. It did not escape our attention that investigations of
this scenario should also include the n f = 12 model.

3. Challenges of the sextet cPT analysis and its linear s -model extensions

3.1 Early discovery of the light scalar and the associated particle spectrum

The light 0++ scalar in the two-index symmetric (sextet) fermion representation of the SU(3)
color gauge group was reported first at Lattice 2013 in [2,3] as shown in the left panel of Fig. 2. We
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Figure 2: (left) The first result on the light sextet scalar from [2, 3]; (right) The status of hadron spectroscopy in the
sextet model is shown as reported in [4] including Mp ,Fp and the scalar mass Md (Md ⌘ MH( f0) in earlier notation).
The Mp ,Fp ,Md data set of the analysis has been updated and refined since using new lattice ensembles in large volumes.
Input data Md , as used in some parts of the dilaton analysis, comes from the report in [4] as graphically represented on
the right panel of the figure.

have our Mp ,Fp ,Md sextet data set (Md ⌘ MH( f0) in earlier notation) from a very large number of
gauge ensembles at three lattice spacings in a range of fermion masses, m = 0.0010�0.0080, with
lattices sizes from 323⇥64 to 643⇥96. The finite size analysis of the data set was presented in [6].
We use infinite volume extrapolations of Mp ,Fp data sets at fixed bare gauge coupling b = 6/g2,
with b = 3.20 at each of the lowest five input fermion masses applied to the analysis. The Md input
is always taken from the largest volume of the gauge ensembles at each input fermion mass.

3.2 Pivot to dilaton EFT from cPT and its linear sigma model extensions

Motivated by the SU(2) doublet of mass deformed Goldstone pions of the sextet model, we
tested mass deformed chiral perturbation theory (cPT ) when applied to the above described sextet
data for Mp and Fp . As shown in Fig. 3, the logarithmic form of NLO one-loop cPT can be
separately fitted to Mp with the three parameters Bp , fp ,L3 and good c2 for the one-loop chiral
Lagrangian. Similarly, Fp fits well with a separate set of three parameters Bp , fp ,L4 and good c2.
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• The parametrically light scalar might be identified as a dilaton, associated with the 
spontaneous breaking of scale symmetry.

xμ ⟶ eαxμ, χ(x) ⟶ eαχ(eαx),

χ(x) ≡ fdeσ(x)/fdIf ! , dilaton can be realized in a non-linear way:⟨χ⟩ = fd

Scale transformation: ℒ(x) ⟶ e4αℒ(eαx)

S. Coleman (1971)
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The kinetic term for the dilaton takes canonical form. The pion kinetic terms
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containing both a scale-invariant term (µ c4) and a scale-breaking term (µ cD). The scaling
parameter D is determined by a fit of the dEFT to lattice data. For any D, the potential VD(c)
has a minimum at hci = fd, with curvature m

2
d

at the minimum. In the limit D ! 4 in which
the deformation is near marginal, the potential smoothly approaches a functional form that
includes a logarithm.
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The pion mass m
2
p ⌘ 2Bpm vanishes when the fermion mass in the underlying gauge theory, m,

is set to zero. The quantity Bp is a constant with dimensions of mass. The scaling dimension
y is determined by a fit of the dEFT to lattice data. It has been interpreted as the scaling
dimension of the fermion bilinear condensate in the gauge theory in Ref. [46], and it has
been suggested that near the edge of the conformal window y approaches two [47,48]. This
interaction term also breaks scale invariance.

2.1. Mass Deformation and Scaling Properties

In the presence of the mass deformation in Eq. (4), and for hSi = 1Nf
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employing a single operator breaking the scale invariance
of the potential.
We adopt the following choice of tree-level potential

VðχÞ:

VΔðχÞ≡ m2
dχ

4

4ð4 − ΔÞf2d
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This potential, also discussed in Refs. [32,41], contains two
contributions. One is a scale-invariant term (∝ χ4) repre-
senting the corresponding operators in the underlying
gauge theory. The other (∝ χΔ) captures the leading-order
effect of the scale deformation in the underlying theory.
The normalization of the two coefficients is such that the
potential has a minimum at χ ¼ fd > 0, with curvaturem2

d,
corresponding to mass md for the dilaton.
In Sec. III, we employ VΔ to fit lattice data on the SU(3)

theory with Nf ¼ 8 Dirac fundamental fermions. We then
return to Eq. (1) and to VΔ in Sec. IV, to show explicitly that
this is the leading-order part of a systematic expansion
for the EFT in a small parameter. We perform a spurion
analysis for the potential terms, which we relegate to
Appendix A. Then in Sec. IV, we classify and estimate
the magnitude of corrections to the leading-order
Lagrangian, by means of a perturbative loop analysis.
A key feature of the EFT is that the dilaton mass (the

explicit breaking of scale symmetry) can be tuned as small
as necessary with fd held fixed. In the limit, the space of
VEVs becomes a moduli space, presumably reflecting the
same feature of the underlying gauge theory. It has been
suggested in Refs. [13,30] that the explicit breaking in the
underlying theory, and also in the EFT as a consequence,
can be made arbitrarily small by tuning the number of
flavors Nf arbitrarily close to the critical value Nc

f at
which confinement gives way to IR conformality, with the
emergence of fixed points generalizing Refs. [42,43]. This
can be arranged by taking Nf to be a continuous parameter
or working in the large-N limit. The authors of Ref. [13]
make extensive use of this plausible idea. We instead work
only with the EFT, employing condition 1 as one of its
principles.
We note finally that the form of VΔðχÞ interpolates

among several specific forms found in the literature. In
Ref. [11], we fitted the lattice data available then for the
Nf ¼ 8 theory employing two forms of some historical
interest. The choice Δ ¼ 2 gives the Higgs potential of the
standard model (up to an inconsequential additive constant)
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The choice Δ → 4, corresponding to a marginal deforma-
tion of scale symmetry, leads to
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χ
fd

− 1

#
: ð6Þ

Discussion of this form can be found in Refs. [25,44]. It is
also considered in Ref. [17]. Another form [21], illustrating
the principles for building a dilaton potential, corresponds
to the limiting case Δ → 0.

A. Scaling relations

Here we summarize properties of the EFT and its
predictions to be used to study the numerical lattice data.
We draw on Refs. [11,12] supplemented by explicit use of
the potential VΔ in Eq. (4). The mass deformation encoded
in Eq. (3) contributes, in the vacuum hπi ¼ 0, an additive
term to VΔ. The entire potential is

WðχÞ ¼ VΔðχÞ −
Nfm2

πf2π
2

"
χ
fd

#
y
; ð7Þ

leading to a new minimum for χ which determines its
vacuum value hχi ¼ Fd > fd. Also, there is a new curva-
ture at this minimum, determining the dilaton mass M2

d.
By employing the value hχi ¼ Fd in Eqs. (2) and (3), and

properly normalizing the pNGB kinetic term, the simple
scaling relations for the pNGB decay constant and mass
derived in Ref. [12] can be found. These relations, which
are independent of the explicit form of the potential, are
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The ratio Fd=fd, found by minimizing the entire potential
in Eq. (7), satisfies
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2
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The quantity m2
π is in turn related to the fermion mass m in

the underlying theory bym2
π ¼ 2Bπm. The left-hand side of

Eq. (10) is a monotonically increasing function of Fd=fd
for any value of Δ (in the physical region Fd > fd so long
as y < 4), indicating that R is a useful measure of the
deformation due to the fermion mass. Large values of R
correspond to a large deformation, with Fd displaced far
from its chiral limit fd. The EFT can be used for only a
finite range of fermion mass such that the approximate
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an approximate dilaton in the composite spectrum. On the other hand, as the number of
light fermions in a gauge theory is increased, the running of the gauge coupling slows, and
it has been speculated that an approximate dilatation symmetry can develop, to be broken
spontaneously at scales relevant to bound-state formation [4–6]. This idea, suggesting the
presence of an approximate dilaton, has been supported by recent lattice studies. Gauge
theories in this class both confine and have near–conformal behavior.

Lattice studies of SU(3) gauge theories with Nf = 8 flavors of fundamental (Dirac)
fermions [7–13], as well as Nf = 2 flavors of symmetric 2-index (Dirac) fermions (sextets) [14–
19], have reported evidence for the presence of a surprisingly light flavor–singlet scalar particle
in the accessible range of fermion masses. Motivated by the possibility that such a particle
might be an approximate dilaton, we analyzed the lattice data in terms of an effective field
theory (EFT) framework that extends the field content of a conventional chiral Lagrangian [20–
24]. It includes a dilaton field c, together with the pseudo-Nambu-Goldstone-boson (pNGB)
fields p describing the other light composite particles revealed by the lattice studies.

Gauge theories that are near conformal are particularly interesting because dEFT can
provide a low energy description of a light composite Higgs boson as an approximate dila-
ton [3,25–35]. They could also form the basis for a realistic composite Higgs model in which
the Higgs boson is an admixture of the dilaton state and one of the pNGBs [23,24]. In this
context, electroweak quantum numbers must be assigned to the fermions of the gauge the-
ory, and a coupling to the top quark must be included. Having an EFT description of the
lightest degrees of freedom is then a valuable model building tool. In both cases, precision
Higgs physics could reveal the composite nature of the Higgs boson, with dEFT providing a
framework for this endeavor.

Here we revisit the dilaton-effective-field-theory (dEFT) description of the light particle
spectrum of these gauge theories [20–24], which has also been examined in Refs. [36–45]. In
Section 2, we summarize the underlying principles of the dEFT, describe the leading-order
(LO) effective Lagrangian, and briefly recall the tree-level fit to lattice data carried out in
Ref. [22]. In Section 3, we describe the dEFT more generally as a low-energy expansion,
taking into account the effect of quantum loop corrections. Most importantly, we discuss
the power-counting rules that are applied to improve the precision of the dEFT description,
providing explicitly the form of the NLO Lagrangian. This extends work presented in Ref. [42].
In Section 4, we summarize and comment on possible future applications.

2. Leading Order (LO)

To provide a low-energy description of explicit and spontaneous breaking of dilatation
symmetry, we introduce a scalar field c. It parametrizes approximately degenerate, but
inequivalent, vacua, with dilatation symmetry spontaneously broken via a finite VEV hci = fd.
The explicit breaking of dilatation symmetry yields a (small) mass md for the dilaton, the
scalar particle associated with c.

The dEFT also captures the spontaneous breaking of an approximate internal global
symmetry group G to a subgroup H. The pNGBs are described by the corresponding fields p.
Their couplings are set by the decay constant fp . A small mass m

2
p for the pNGBs is present,

as the global symmetry must be broken on the lattice. This explicit breaking also contributes
to the full potential of the dilaton, as we shall see.

With G = SU(Nf )L ⇥ SU(Nf )R and H = SU(Nf )V , the Lagrangian density is

LLO =
1
2

∂µc∂µc + LK + LM � VD(c) . (1)
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The kinetic term for the dilaton takes canonical form. The pion kinetic terms
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are written in terms of the matrix-valued field S = exp[2ip/ fp ]. It transforms as S ! ULSU
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under the unitary transformations UL,R 2 SU(Nf )L,R, and it satisfies the nonlinear constraint
SS† = 1Nf
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containing both a scale-invariant term (µ c4) and a scale-breaking term (µ cD). The scaling
parameter D is determined by a fit of the dEFT to lattice data. For any D, the potential VD(c)
has a minimum at hci = fd, with curvature m
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at the minimum. In the limit D ! 4 in which
the deformation is near marginal, the potential smoothly approaches a functional form that
includes a logarithm.

Explicit breaking of the global symmetry is described in the dEFT by
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The pion mass m
2
p ⌘ 2Bpm vanishes when the fermion mass in the underlying gauge theory, m,

is set to zero. The quantity Bp is a constant with dimensions of mass. The scaling dimension
y is determined by a fit of the dEFT to lattice data. It has been interpreted as the scaling
dimension of the fermion bilinear condensate in the gauge theory in Ref. [46], and it has
been suggested that near the edge of the conformal window y approaches two [47,48]. This
interaction term also breaks scale invariance.

2.1. Mass Deformation and Scaling Properties

In the presence of the mass deformation in Eq. (4), and for hSi = 1Nf
, the complete

dilaton potential is given by
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SU(3) + 8 Fund. fermions: dilaton EFT

• LSD collaboration updated the lattice results of meson spectrum in 2023. Combining 
the scattering data in 2021, they performed the global fit using dilaton EFT. 

LSD, PRD 99, 014509; PRD 105 (2022) 034505;  
arXiv:2306.06095

Talk by J. Ingolby @ 13:50, Thur.

Parameter LO NLO

y 2.091(32) 2.069(32)
B⇡ 2.45(13) 2.46(13)
� 3.06(41) 2.88(49)
f2
⇡ 6.1(3.2)⇥ 10�5 5.8(3.4)⇥ 10�5

f2
⇡/f

2
d 0.1023(35) 0.1089(41)

m2
d/f

2
d 1.94(65) 2.24(80)

la — 0.78(27)

�2/dof 21.3/19 10.3/18
AIC 33.3 24.3

TABLE I. Central values and uncertainties for LO (six-
parameter) and NLO (seven-parameter) fits to the dEFT.
Lattice data for M⇡, Md, F⇡, FS and the I = 2 scattering
length has been incorporated into this fit, for 5 different vales
of the underlying fermion mass m, corresponding to 25 data
points. All dimensionful quantities are presented in units of
the lattice spacing.

where |�(p)i refers to the dilaton state and JS(x) = m ̄ 
is the scheme independent scalar current [50]. The quan-
tity FS may be extracted from the dilaton contribution
to the two point correlator hJS(x)JS(0)i. The tech-
nique is demonstrated for the chiral Lagrangian EFT in
Refs. [50, 51]. We find

|FS | =
yNfM2

⇡F⇡

2M2
d

f⇡
fd

. (9)

A related formula for FS was derived using current alge-
bra and compared with lattice data in Ref. [52].

The quantity FS would control the decay rate of the
dilaton if the gauge theory were modified by including
a heavy scalar mediator with a weak Yukawa coupling
to the fermion bilinear and to other light states. The
mediator would then enable the decay of the dilaton to
these states. Both FS and this decay rate would vanish
in the chiral limit since the scalar current m ̄ defining
FS and the Yukawa interaction that enables the decay
both break chiral symmetry.

We perform a global fit at leading order to the lat-
tice data for M⇡, F⇡, Md, FS and M⇡ a

(2)
0 . This is the

first time that lattice data for FS has been used in an
EFT fit. The fit incorporates N = 25 lattice data points
and k = 6 free model parameters, which we take to be
{y, B⇡, �, f2

⇡ , f
2
⇡/f

2
d , m

2
d/f

2
d}. We obtain dEFT predic-

tions for the quantities measured on the lattice by first
solving Eq. (4) to obtain Fd/fd. We determine M⇡ and
F⇡ from the scaling relations shown in Eq. (5), and we use
Eqs. (6), (7) and (9) to determine the remaining quanti-
ties.

We construct a chi-square function and minimize
it with respect to the six model parameters to find
�2

min/Ndof = 1.12, indicating that lowest-order dEFT al-
ready provides a remarkably good fit to this expanded
dataset.

FIG. 1. Lattice data for M⇡, Md, F⇡, FS plotted against
the underlying fermion mass m. The lines represent the de-
pendence of these quantities on fermion mass predicted by
LO dEFT, with the six EFT parameters set to their central
values indicated in Table I.

FIG. 2. The points represent lattice determinations of the
pNGB scattering length in the I = 2 channel plotted against
M2

⇡/F
2
⇡ . The gray dashed line represents the LO dEFT pre-

diction.

At the chi-square minimum, the model parameters take
the best-fit values shown in the LO column of Table I.
The fit parameters are consistent with those from earlier
dEFT studies of the Nf = 8 theory [40–42], which do not
use FS or scattering data. There are also differences with
respect to the fit results of Ref. [44], which we attribute
to an improved analysis of systematic errors. Table I also
reports the AIC value (Eq. (1)).

In Fig. 1, we plot lattice data for the masses and decay
constants for several values of the fermion mass. The
plots confirm that dEFT accurately describes this lattice
data, and show predictions for these quantities at smaller
values of the quark mass, which can be checked in the
future. In the m ! 0 limit, we expect F⇡ and Md to
extrapolate to positive nonzero values.

Since all the quantities appearing on the right side of
Eq. (9) were well determined in earlier dEFT fits [40–
44], Eq. (9) can be viewed as a dEFT prediction for FS .
The new lattice measurements of FS align nicely with
this prediction, providing new evidence for the dilaton
interpretation of the light scalar.

In Fig. 2, we plot the s–wave pNGB scattering length
in the I = 2 isospin channel against M2

⇡/F
2
⇡ . We as-

3

• They also fit the data to the mass-deformed CFT scalings, which shows a less quality. 
This result seems to support the walking behavior in the 8-flavor !  theory.SU(3)

LSD, arXiv:2305.03665

- infinite volume extrapolation
- improved measurements for flavor-single scalar meson
- measured a new observable, scalar decay constant !FS



Composite Higgs and (top-)partial compositeness

• Composite Higgs (CH): an alternative description of                           electroweak 
symmetry breaking by vacuum misalignment

Figure 1. The moose diagram representing the EFT description of the vector mesons in the model.

symmetry [17–19]. One extends the symmetry from SU(4) to SU(4)A ⇥ SU(4)B, with
SU(4)A weakly gauged, with coupling g⇢. Then one enlarges the field content to include
two non-linear sigma-model fields S and ⌃. The non-linear sigma-model S transforms as
the bifundamental of SU(4)B ⇥SU(4)A, while the field ⌃ transforms on the antisymmetric
of SU(4)A:

S ! UB S U †
A
, ⌃ ! UA⌃U

T

A . (2.14)

In a composite Higgs model, the SM gauge group SU(2)L⇥U(1)Y is a subgroup of SU(4)B.
The gauging of the SU(4)A symmetry means that (for global SU(4)B) one has to

introduce the covariant derivatives

DµS = @µS � i g⇢SAµ , (2.15)
Dµ⌃ = @µ⌃ + i g⇢

�
Aµ⌃ + ⌃AT

µ

�
, (2.16)

and then L0 is replaced by all possible 2-derivative invariant operators made by S, ⌃, DS,
D⌃, together with the kinetic term for the gauge bosons. Both S and ⌃ are non-vanishing
in the vacuum, inducing the symmetry breaking pattern SU(4)A ⇥ SU(4)B ! Sp(4), and
all vectors are massive. h⌃i splits the mass of the 5 a1 and the 10 ⇢ mesons.

In unitary gauge, besides the heavy vectors only the physical pions are retained. They
are linear combinations of the fluctuations of S and ⌃. The mass term for the pions is

Lm = �
v3

4
Tr

n
M S ⌃ST

o
+ h.c. . (2.17)

The quark masses also contribute to the masses of the spin-1 states in a more complicated
way, that will be discussed elsewhere [30].

In the absence of the antisymmetric condensate (for h⌃i = 0), ⇢ and a1 mesons would
be exactly degenerate. Their mass splitting is hence a measure of the amount of breaking
SU(4) ! Sp(4). In the main body of the paper we use the mass splitting between ⇢

(vector) and a1 (axial-vector) as a way to test whether the global symmetry is restored at
high temperatures. The generalization to the case in which ⌃ is replaced by H̃ does not
require any new ingredients. In particular the restoration of the axial U(1)A and of the
chiral SU(4) can, at least in principle, be treated independently. We summarize in Table 2
the properties of the states discussed in the body of the paper. One of the purposes of this
paper is to make the first steps towards a quantitative assessment of the relation between
the two phenomena at high temperature, in the specific theory of interest here.

– 7 –

Key requirement:  electroweak symmetry not broken by new strong interaction

Georgi & Kaplan; Kaplan, Georgi & Dimopolous (1984); 
Dugan, Kaplan & Geoorgi (1985)

θ v = f sin θ
Global symmetry 
 subgroup
spontaneously broken

at scale, fG SU(2)L × U(1)Y ⊂ H

Higgs = pseudo Nambu-Goldstone boson

f
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symmetry breaking by vacuum misalignment

Figure 1. The moose diagram representing the EFT description of the vector mesons in the model.
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Key requirement:  electroweak symmetry not broken by new strong interaction

Key requirement: large anomalous dim. of the chimera baryon, e.g. top-partner
Kaplan (1991)
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Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
associated with the modified GMOR relation at NLO can be determined independently from
the measurement of m̂2

PS
when a proper determination of mf is available. Note that not all

of LECs might be independent. For instance, the linear mass dependence of f̂2

PS
can fully

be determined from the measurements of f̂2

V
and f̂2

AV
.
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• Partial compositeness: mixing between SM quarks and hybrid (Chimera) baryons ! , 
formed by fermions in two different representations, can explain quark mass hierarchy

𝒪L, R

θ v = f sin θ
Global symmetry 
 subgroup
spontaneously broken

at scale, fG SU(2)L × U(1)Y ⊂ H

Higgs = pseudo Nambu-Goldstone boson

f

γ𝒪 ∼ 2or



4D UV models for comp. Higgs + partial compositeness

G. Cacciapaglia, G. Ferretti, T. Flacke & 
H. Serodio, arXiv:1902.06890

5

bounds on the singlet pNGBs in Section IV. We o↵er our conclusions in Section V.

II. UNDERLYING MODELS FOR A COMPOSITE HIGGS WITH TOP PARTIAL

COMPOSITENESS

Coset HC  � �q�/q Baryon Name Lattice

SU(5)

SO(5)
⇥ SU(6)

SO(6)

SO(7)
5⇥ F 6⇥ Sp

5/6
 ��

M1

SO(9) 5/12 M2

SO(7)
5⇥ Sp 6⇥ F

5/6
  �

M3

SO(9) 5/3 M4

SU(5)

SO(5)
⇥ SU(6)

Sp(6)
Sp(4) 5⇥A2 6⇥ F 5/3  �� M5

p

SU(5)

SO(5)
⇥ SU(3)2

SU(3)

SU(4) 5⇥A2 3⇥ (F,F) 5/3
 ��

M6
p

SO(10) 5⇥ F 3⇥ (Sp,Sp) 5/12 M7

SU(4)

Sp(4)
⇥ SU(6)

SO(6)

Sp(4) 4⇥ F 6⇥A2 1/3
  �

M8
p

SO(11) 4⇥ Sp 6⇥ F 8/3 M9

SU(4)2

SU(4)
⇥ SU(6)

SO(6)

SO(10) 4⇥ (Sp,Sp) 6⇥ F 8/3
  �

M10

SU(4) 4⇥ (F,F) 6⇥A2 2/3 M11
p

SU(4)2

SU(4)
⇥ SU(3)2

SU(3)
SU(5) 4⇥ (F,F) 3⇥ (A2,A2) 4/9   � M12

TABLE I. Model details. The first column shows the EW and QCD colour cosets, respectively, followed

by the representations under the confining hypercolour (HC) gauge group of the EW sector fermions

 and the QCD coloured ones �. The �q�/q column indicates the ratio of charges of the fermions

under the non-anomalous U(1) combination, while “Baryon” indicate the typical top partner structure.

The column “Name” contains the model nomenclature from Ref. [27], while the last column marks

the models that are currently being considered on the lattice. Note that Sp indicates the spinorial

representation of SO(N), while F and A2 stand for the fundamental and two-index anti-symmetric

representations.

In this work we are interested in the underlying models for composite Higgs with top partial

compositeness defined in Ref. [24]. These models characterise the underlying dynamics below

the condensation scale ⇤ ⇡ 4⇡f , f being the decay constant of the pNGBs. As such, the need to

be outside of the conformal window: this leaves only 12 models [36], listed in Table I. They are

defined in terms of a confining gauge interaction, that we call hypercolour (HC), and two species

of fermions in two di↵erent irreducible representations of the HC. The two species of fermions

play di↵erent roles: the EW charged  generate the Higgs and the EW symmetry breaking

✤ In SU(4) models, the number of 
flavors are modified to be 
amenable on the lattice without 
much difficulties. 

F: fundamental rep. 
A2: 2-index antisymmetric rep.

SU(4) + (2 A2 + 2 F) Dirac

SU(4) + (4 A2 + 4 F) Dirac

Sp(4) + (3 A2 + 2 F) Dirac

no modification

• 4D UV minimal models are 
classified - nonabelian gauge 
theories coupled to fermions 
in two different reps.

G. Ferretti & T. Karataev, 
arXiv:1312:5330



SU(4) + 2 Fund. + 2 AS fermions

• Extensively studied on the lattice by TACoS collaboration for the past years: the meson and 
baryon spectra, the low-energy constants entering to the Higgs potential and the !  parameter, 
and the baryon matrix elements entering to the top Yukawa coupling.

S

FIG. 5. Fit of ĈLR to Eq. (4.1). The data appear in blue. The best fit is in hollow black points.
The lattice artifact term paâ from Eq. (4.1) identified by the fit appears in red. The green points
show the data minus the lattice artifact. The smooth green band shows the continuum prediction,
i.e., Eq. (4.1) minus the paâ term.

To conduct this joint limit, we consider the dimensionless product ĈLR = CLRt20. We
model our data with a simple linear function,

ĈLR = p0 + paâ+ p6m̂6, (4.1)

which neglects dependence on the fundamental fermion mass m̂4. Later we test the stability
of the fit parameters against alternative models, e.g., including dependence on the funda-
mental fermion mass. First, we construct jackknife correlation matrices among the lattice
quantities CLR, m4, and m6 on each ensemble. We do not include correlations with the
flow scale t0/a2 (i.e., with â ⌘ a/

p
t0 [28]), which has negligible error compared to the other

quantities we extract. We then conduct a correlated fit to Eq. (4.1), obtaining p0 = 0.028(4),
pa = �0.021(4), and p6 = 0.16(3), for �2 = 9.2/7 dof.

Figure 5 displays the result of the fit. The hollow black points show the fit at the values
of â and m̂6 of the individual ensembles; they follow the solid blue data points closely. The
lattice artifacts [(paâ) from Eq. (4.1)] identified by the fit appear in red. The green points
show the data minus the lattice artifact. According to the model, subtracting the artifacts
from the full fit yields a linear function of m̂6, which is displayed as a green band. This
band represents the continuum limit.

It is significant that the fit, Eq. (4.1), works so well without including any dependence
on m̂4, the mass of the fundamental fermions. We have found before that the fundamental
fermions have only a weak influence on quantities constructed from the sextet fermions [28,
29]. We can test the stability of our fit against the inclusion of an m̂4 term, as well as
higher-order terms in m̂6 and â:

ĈLR = p0 + paâ+ p6m̂6 + p4m̂4 + p66m̂
2
6 + pa6âm̂6 + paaâ

2 . (4.2)

Figure 6 shows the stability of the best-fit result p0 under the inclusion of these addi-
tional terms. No significant discrepancy is seen; the largest deviation comes from the fit
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FIG. 10. Baryon and meson masses in the m6 ! 0 limit. The chimera (J, I) = (1/2, 0) state
corresponds to the top partner of Ferretti’s model. The small rise of the sextet quantities in this
limit is due to the mild variation of F̂6 with the fundamental fermion mass. Mesonic quantities
were determined in [20].

corrections to be small, just as perturbative electromagnetic corrections to hadron masses
are small in QCD. We note that the present work has not attempted a detailed budgeting
of systematic e↵ects from the lattice computation itself. This includes, of course, those due
to the slightly di↵erent fermion content of the model we studied in comparison with the
Ferretti model.

Although our results for the chimera mass indicate that it is somewhat heavier than
assumed in Ref. [2], it remains to be seen whether this leads to any significant phenomeno-
logical tension or fine-tuning requirement. The most crucial role of the top partner is in
the generation of a realistic potential for the Higgs boson; we plan to investigate the top
contribution to the Higgs potential non-perturbatively in a future work. We are also plan-
ning a follow-up study of the decay matrix elements of the chimera baryon, which will allow
the calculation of its decay width; experimental bounds on the top-partner mass typically
assume a narrow width, and could be significantly weaker for a wide resonance.
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Fundamental pNGBSextet vector

Fundamental vector
J=1/2 chimera baryon

Fundamental J=0 baryon

Sextet J=0 baryon

• First lattice simulation of a gauge theory with multiple representation, but this prototype lattice 
model is QCD-like and no pheno. interesting features have been found.

FIG. 5. The overlap factors in the joint continuum and sextet-chiral (m6 ! 0) limit, plotted

against the squared mass of the fundamental pseudoscalar. The axis variables are dimensionless

ratios constructed with the sextet’s pseudoscalar decay constant F6, calculated in Ref. [5].

How big are the overlap factors in QCD? In rough physical terms, we expect them to be
approximately the square of the proton wave function at the origin. Dimensional analysis
provides an order-of-magnitude estimate,

Z ⇡ | (0)|2 ⇡
1

⇡R3
' 0.005 GeV3

, (4.1)

where R ' 0.8 fm is the radius of the proton. Models in the early literature typically yielded
estimates falling roughly between 0.004 GeV3 and 0.015 GeV3 [30]. To our knowledge, the
most precise lattice determination of the matrix element in QCD appears in Ref. [39], where
the authors determine that Z = 0.0144(3)(21) GeV3 at a renormalization scale of µ = 2 GeV
in the MS NDR scheme. In terms of dimensionless ratios, their result corresponds to

Zt
3/2
0

' 0.005

Z/f
3

⇡ ' 7,

)
in QCD, (4.2)

using
p
t0 ' 0.14 fm ' 0.71 GeV�1 and f⇡ ' 130 MeV.

Returning to the present model, the values shown in Fig. 4 for ẐL,R = ZL,Rt
3/2
0

are about
2.5 times smaller than their QCD counterparts, which places them at the lower end of the
range estimated in the early literature. More dramatically, the results for ZL,R/F

3

6
, shown in

Fig. 5, are smaller than their QCD counterparts by about a factor of 20. This has significant
phenomenological implications, as we discuss next.
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• Possible excited states in the fundamental and antisymmetric sector are constrained by symmetry.

The importance of both identifying and controlling the excited states can be appreciated by looking
at the smeared spectral density, for instance, in the pseudoscalar channel

⇢L,R
�,PP (E) =

X

n

h0|OR
P (0)|niL hn|ŌR

P (0)|0iL
2En(L)

�� (E � En(L)) . (67)

The magnitude of each matrix element hn|ŌR
P (0)|0iL determines the weight of each Gaussian ��

located at the energy En(L). If these energies are too close, or the matrix elements are too large,
resolving di↵erent states can become laborious. With this motivation, in order to control the excited
states we build correlation functions including two di↵erent types of fermionic field: local, point-
like operators and Gaussian-smeared ones3. Operator smearing allows working with interpolating
operators that have a weaker overlap with excited states. Details concerning the measurements of the
correlation functions and operator smearing can be found in Appendix C.

The states created by each operator can be identified, as we have seen, by means of its symmetries.
In the fundamental sector, at zero angular momentum, a pseudoscalar meson can induce the following
transitions from the vacuum

h0|⇡|⇡i , h0|⇡|⇡⇡⇡i , h0|⇡|⇡⇧⇧i , . . . (68)

that will enter in our analysis through Eq. (67). Since in our simulations M (2AS)
PP > M (F)

PP this
phenomenology is reminiscent, up to E3⇡, of QCD, and one can expect computational aspects to
be also similar. Conversely, due to the triviality of its G-parity, the 2AS sector has a multi-particle
threshold located at E2⇧. In addition, since the other representation has lighter particles, states
containing pseudoscalar mesons from the fundamental sector are not guaranteed to have energies far
from the ground state. Possible overlaps with a pseudoscalar meson are in fact

h0|⇧|⇧i , h0|⇧|⇧⇧i , h0|⇧|⇧⇡⇡i , h0|⇧|⇧⇡⇡⇡⇡i , . . . (69)

The aforementioned features complicate the extraction of M (2AS)
PP , as it can be understood from Fig.

8 where we show two di↵erent types of signal from a correlator built with local, unsmeared operators.
The excited states contaminate the signal for the ground state resulting, in the left panel, in an
e↵ective mass that does not reach a clear plateau. The problem is also manifest in the energy picture,

as it is shown in the right panel of the same figure, where the smeared spectral density ⇢̂(2AS)
PP,� does

not exhibit the expected Gaussian peak around the mass of the pseudoscalar meson, but it rather
grows monotonically. Indeed, by decreasing the smearing radius � of Eq. (47) one should be able
to resolve such peak, but this cannot be realised with the current quality of the data. While the
temporal length of the lattice poses an intrinsic obstacle to the thermalisation of the e↵ective mass,
the spectral reconstruction in principle allows obtaining smaller smearing radii also by increasing the
number of configurations, since the systematic and the statistical error are related by Eq. (55).

3
Operator smearing is not to be confused with the smearing of spectral densities.
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Correlator from local operators
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Figure 8: Results from a two point function of pseudoscalar operators built with point-like antisym-
metric fermionic fields. The correlator is estimated from the ensemble B1. The left panel exhibits the
e↵ective mass as a function of time. Due to the nature of the excited states in the 2AS sector, the
mass does not reach a plateau in the available time. The dominance of the excited states can also be
understood from the smeared spectral density in the right panel. The overlap between the interpola-
tor and the excited states it creates is too large: the spectral density smeared according to Eq. (47)
is dominated by contributions above the multi-particle threshold, preventing the identification of the
ground state.

Having established that the excited states present a challenge in the 2AS sector, it is natural to
look at correlation functions of smeared operators defined in Appendix C, which have suppressed
overlap with the excited states. Fig. 9 shows the e↵ective mass and the spectral reconstruction from
the correlation function of such operators. On the left panel, the plateau in the e↵ective mass shows
an improvement compared to the corresponding result in Fig. 8. The e↵ective mass is independent of
time, within its statistical errors, for t/a > 10. The smeared spectral density, shown in the right panel,
demonstrates again the suppression of the excited states, with contributions from higher-energy states

becoming smaller. As a result, a single peak is clearly visible at E ' 2M (2AS)
PP . The observed smeared

spectral density is the result of two contributions coming mainly from the energy levels M (2AS)
PP and

E⇧⇧ ' 2M (2AS)
PP , which cannot be resolved because the smearing radius is too large, � ' M (2AS)

PP .
These energies can be nonetheless estimated by fitting the spectral density to a sum of Gaussians.
This idea will be expanded in the next section.
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Correlator from smeared operators
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Figure 9: Results from Fig. 8, this time using Gaussian-smeared interpolators according to Appendix
C. These operators are tuned to have smaller overlaps with the excited states. Consequently, the

e↵ective mass plot on the left reaches a plateau, providing an estimate for aM (2AS)
PP . The right

panel similarly shows how suppressed excited states allow for a clear peak to emerge in the spectral

reconstruction smeared with � = M (2AS)
PP according to Eq. (47). The peak includes contributions from

mainly M⇧ and E⇧⇧.

7.3 Fits of spectral densities

In this section we describe fit strategies for spectral densities. A parallel discussion on fits of correlators
will highlight the di↵erences between the two methodologies and will lead to a quantitative comparison
between predictions for the pseudoscalar masses obtained from the two approaches, which is presented
in detail at the end of the section. The model functions used in the fits are c(k)(t) for correlators and

f (k)
� (t) for the smeared spectral densities

g(k)(t) =
kX

n=1

an

⇣
e�tEn + e(�T+t)En

⌘
, f (k)

� (E) =
kX

n=1

bne�(E�Ek)2/ 2�2

, (70)

where � is the smearing radius defined by Eq. (47). The integer k encodes how many states are
included in our model function. En, an and bn are the fit parameters which relate to finite volume
energies and matrix elements. These are estimated by minimising appropriate �2 functions

�2
g(k) =

X

t,t0

⇣
g(k)(t)� C(t)

⌘
Cov�1

tt0 [C]
⇣
g(k)(t0)� C(t0)

⌘
, (71)

�2
f(k)
�

=
X

E,E0

⇣
f (k)
� (E)� ⇢�(E)

⌘
Cov�1

EE0 [⇢�]
⇣
f (k)
� (E0)� ⇢�(E

0)
⌘

, (72)

where covariance matrices are estimated as in Eq. (58) both for correlators and spectral densities.
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• Explored the excite states by using the spectral density method M. Hansen, A. Lupo & N. Tantalo, 
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FIG. 1. Estimates for the location of the conformal win-
dow of the SU(4) gauge theory with Nf Dirac fermions in
the fundamental representation and nf Majorana fermions in
the sextet representation. The uppermost line is the limit of
asymptotic freedom, where the 1-loop beta function changes
sign. The other lines are various analytical estimates of the sill
of the conformal window (see text). Blue circle: M6 model;
red diamond: M11 model; black square: 2+2 model; open
circle: 4+4 model, the subject of this paper. Only the lowest
two lines are consistent with the IR fixed point that we find
for the 4+4 model.

the so-called M6 and M11 models [7, 10]. The “2+2
model,” which contains two Dirac fermions in each of the
4 and 6 representations,4 has been studied extensively
using lattice techniques. While QCD-like, and hence far
from the conformal sill, the 2+2 model served as a use-
ful laboratory, providing the first example studied of an
asymptotically free gauge theory with two representa-
tions, in particular one that produces chimera baryons
[20–27].5

In this paper we move on to the “4+4 model,” where
we increase the number of Dirac fermions in each repre-
sentation from two to four. The 4+4 model has a num-
ber of desirable features. First, the M6 and M11 models
can both be embedded into the 4+4 model, and can be
reached by giving a subset of the fermions a (Dirac or
Majorana) mass. In addition, as can be seen in the fig-
ure, the 4+4 model is much more likely to be close to, or
even inside, the conformal window.

cording to the 2-loop beta function, where it first develops an
IR fixed point; the dashed red line is from the “all-orders” beta
function; the dashed blue line reflects the “critical condition” of
Ref. [33]; the dashed black line stems from long-standing analy-
sis of Schwinger–Dyson equations—for all of these, see Ref. [33],
from which this figure was adapted, and references therein.

4 The two Dirac fermions in the real 6 representation are equivalent
to four Majorana fermions.

5 For lattice studies of a composite Higgs model based on the Sp(4)
gauge group, see Refs. [28–32].

FIG. 2. The � function obtained with five di↵erent lattice
gradient flows. All flows are the same in the continuum limit;
their regions of validity are di↵erent, though overlapping. For
details see Sec. II.

B. Method and summary of results

We extract the beta function and anomalous dimen-
sions using a continuous renormalization group (RG)
method [34, 35].6 The length scale for this RG is

p
t,

where t is the parameter of a gradient flow (GF) gen-
erated by integrating a di↵usion equation for the gauge
field [39]. The GF running coupling is defined as [40]

g
2 =

N
C(t;L, T )

t
2 hE(t)i . (1.1)

Here the energy density at scale
p
t is E = 1

4G
a

µ⌫
G

a

µ⌫
,

where G
a

µ⌫
is the flowed gauge field strength. N is a

numerical factor which depends on the gauge group, and
C(t;L, T ) is a correction for the finite dimensions L, T

of the volume being simulated (see below). Viewing the
gradient flow as an RG transformation, the beta function
is

�(g2) = �t
@g

2

@t
. (1.2)

The extension of the GF technique to fermions was de-
veloped in Ref. [41], while the use of the continuous RG
for obtaining anomalous dimensions of fermion operators
was introduced in Ref. [42].
Our main findings are the beta function (Fig. 2),

which shows an IR fixed point;7 the mass anomalous
dimensions (Fig. 3); and the anomalous dimensions of

6 for a slightly di↵erent approach see Refs. [36–38].
7 In comparing to the 2-loop curve, recall that it also crosses the
abscissa, giving an IR-stable fixed point, but at a strong coupling
well outside the range of the figure.

Talk by Y. Shamir @ 13:50, Mon.

• The other prototype SU(4) model with 4 fundamental and 4 antisymmetric Dirac 
fermions has been studied on the lattice using the continuous RG method.

Continuous RG beta function

• The IR fixed point indicates that the model is inside the conformal window.

3

FIG. 3. Anomalous dimensions of the two mass operators.
Top: fundamental representation. Bottom: sextet represen-
tation. See Sec. III for details.

the chimera operators with the lowest mass dimension,
namely, three-fermion operators with no derivatives. The
largest chimera anomalous dimension is shown in Fig. 4,
while the other two are shown in Fig. 14. The IR fixed
point places the model inside the conformal window.
Moreover, the anomalous dimensions of the mass opera-
tors are large, for both representations, at the fixed point.
Unfortunately, the anomalous dimensions of all chimera
operators are fairly small at the fixed point, making it
unlikely that the model can successfully account for a
partially composite top quark.

We obtain the flowed expectation values in Eq. (1.1) in
the presence of a lattice cuto↵, generating ensembles of
the gauge field with numerical simulations. We present
our lattice methods, including the calculation of the beta
function and its extrapolation to the continuum limit, in
Sec. II. The calculation of anomalous dimensions is the
subject of Sec. III. We o↵er our conclusions in Sec. IV.
Further technical details of the lattice calculation are
given in the appendix.

FIG. 4. The largest chimera anomalous dimension, �s
ch.

The other two chimera anomalous dimensions are smaller (see
Fig. 14).

II. GAUGE FLOW AND THE BETA
FUNCTION

A. Lattice strategy

The lattice action, our simulation algorithm, and the
ensembles we generated are described in the appendix.
We use Wilson-clover fermions and tune the bare masses
such that the fermions of both representations are essen-
tially massless.
A new ingredient in the lattice action is a set of Pauli–

Villars fields [43]. Without these, the presence of many
fermion flavors, especially with smearing-improved gauge
connections, generates a large screening e↵ect in the ef-
fective action for the gauge field. In order to obtain a
strong renormalized coupling, one would be pushed to-
wards large bare coupling g

2
0 = Nc/�. This, in turn,

would cause large ultraviolet fluctuations. As a conse-
quence, these systems often encounter phase transitions
or other discontinuities, lattice artifacts that prevent the
approach to the desired renormalized coupling, especially
when the fermions are light. Our 4+4 system exhibited
such a discontinuity when the original lattice action was
used. The addition of Pauli–Villars fields weakens the
induced term and allows us to reach much further into
strong renormalized coupling.
As mentioned in the introduction, we use the contin-

uous RG technique to determine the beta function. The
4+4 model that we simulate is a massless, asymptotically
free lattice theory. The gradient flow acts as a transfor-
mation in coupling space: as the flow time t is increased,
irrelevant operators die out and the flow converges to-
wards the renormalized trajectory (RT) emerging from
the gaussian fixed point in the ultraviolet. Our task will
be to ensure that, given a specific flow at a specific renor-

anomalous dim. of chimera baryon

A. Hasenfratz et al, PRD 107 (2023), 114504

• The mass anomalous dim. ! , which is consistent with the pert. result.γ⋆ (6)
ψ̄ψ,IR ≃ 1.0

• But, the anomalous dim. of chimera baryon is too small to be used for top partial comp.

∼ 0.5 < 2

top partial comp .

: # of flavors are different to Ferretti model

Ryttov & Shrock, arXiv:2307.12426
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Chimera baryon masses in quenched Sp(4)
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FIG. 11: massless extrapolations at continuum limit.
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• Perform the massless and continuum extrapolations using an ansatz inspired by the 
heavy baryon chiral perturbation theory.

• Generate configurations at several values of the gauge coupling for pure Sp(4).

• Construct spin-1/2 & spin-3/2 chimera baryon operators in analogy to !  & !  baryons 
in QCD, and carry out !  measurements at wide range of masses !  and ! .
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Composite dark matter

• Stability can be guaranteed by accidental symmetries at low energy, e.g. proton

• Dark matters are neutral to SM interactions (invisibility), but constituents may 
or may not interact with SM particles.

• Self interactions are naturally accommodated

• Dynamical scale (      ) associated with the confinement

• Dark matter arises from new strong dynamics in the dark sector (isolated) or 
from SM extension with new strong extension, e.g. composite Higgs

1 Sp(4) gauge theory with two-flavor Dirac fundamental fermions

1.1 Sp(4) Yang-Mills Theory

We first consider the pure Sp(4) gauge theory.

Our choice of the generators of SU(4) gauge group is as follows.

1.2 Algorithms

1.2.1 Gauge force and exponentiation

⇤D (1)

R ⌘
m2++

m0++
(2)

Q (3)

Q (4)

h�annvi2!2 =
↵2

m2
DM

(5)

MP

MV
. 0.9 (6)

1

• Dark matters are composite particles like hadrons in SM
Mesons, Baryons, Glueballs

Solution to small scale problem

Gravitational wave?



Composite dark matter
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Strongly interacting massive 
particle (SIMP)

Glueball-like
SUNonia

Composite Inelastic DM

U(1) baryon number

Species number 
(e.g. G parity)

Gauge singlet of dim. 4

Alves, Behbahani, Shuster, Wacker (2010)

Hochberg, Kuflik, Murayama, Volansky, 
Wacker (2014)

LSD collaboration (2013)

Soni & Zhang (2016)

Asadi, Kramer, Kuflik, Ridgway, Slatyer, 
Smirnov (2021)

Bai & Hill (2010), Buckley & Neil (2013), 
Hietanen, Lewis, Pica, Sannino (2014), …

Kaplan, Luty, Zurek (2009)

LSD collaboration (2013), LatKMI (2014), 
Fofor et al (2015)

Quirky composite DM
Kribs, Roy, Terning, Zuerk (2010)

Charged scalar dark matter
Frigerio, Pomarol, Riva, Urbano (2012), 
Cacciapaglia, Ma, Zhang, Wu (2017), 
Ballestreros , Carmona, Chala (2017), 
Balkin, Ruhdorfer, Salvioni, Weiler (2017), …
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Strongly interacting massive particles (SIMPs)

• Thermal freezeout is dominated by number changing process in the dark sector.

• DM sector should be remained in kinetic equilibrium with SM sector.

2

have implications for structure formation, successfully
addressing the so called ‘core vs. cusp’ and ‘too big to
fail’ problems (see e.g. [3–5]). Second, the interactions
between the DM and visible sectors predict significant
direct and indirect signatures which may be probed in
the near future.

In this letter, we aim to present a new paradigm for
DM, rather than a specific DM candidate. For this rea-
son, we do not explore particular models for the dark
sector, but instead use a simplified e↵ective description
in order to understand the properties of the DM sector
and its interaction with the SM such that the mecha-
nism is viable. A detailed study exploring models for the
SIMP mechanism is underway [6].

THE 3 ! 2 MECHANISM

As mentioned above, the 3 ! 2 annihilation mecha-
nism predicts a mass range for the DM, just as the stan-
dard 2 ! 2 annihilation mechanism predicts the TeV
scale. The estimate of the indicated mass scale is pre-
sented here, and is later verified by solving the Boltz-
mann equation explicitly.

It is useful to express quantities in the freeze-out esti-
mate in terms of measured quantities. In particular, the
DM number density is given by

nDM =
⇠mp⌘ s

mDM
=

c Teq s

mDM
, (3)

where ⇠ = ⇢DM/⇢b ' 5.4 [7], mp is the proton mass, s is
the entropy density of the Universe and ⌘ is the baryon
to entropy ratio. In the second equality, the number den-
sity is expressed in terms of the matter-radiation equality
temperature, Teq ' 0.8 eV,

Teq =
⇠

c
mp⌘ , c ⌘

⇠

1 + ⇠

3

4

g⇤,eq
g⇤s,eq

' 0.54 , (4)

where g⇤,eq and g⇤s,eq are the energy and entropy e↵ective
number of relativistic degrees of freedom at equality time.

Freeze out roughly occurs when the rate of the 3 ! 2
process, �3!2, is equal to the Hubble rate H. The 3 ! 2
rate is given by �2

�3!2, where � is the flux of particles
incident on a particle and �3!2 is the ‘cross section’ for
the 3 ! 2 process. Using this, together with � = nv,
with v parameterizing the average relative velocity be-
tween the colliding particles, the freeze-out condition is
given by

n
2
DMh�3!2v

2
i|T=TF = 0.33

p
g⇤,F

T
2
F

MPl
. (5)

We parameterize the 3 ! 2 cross section by

h�v
2
i3!2 ⌘

↵
3
e↵

m
5
DM

, (6)

where ↵e↵ is the e↵ective coupling strength entering the
thermally averaged cross section. We stress that the e↵ec-
tive coupling above can be significantly larger than unity
if, for example, the number of DM degrees of freedom is
large, if the cross-section is non-perturbatively enhanced,
or if the 3 ! 2 process is mediated by a light particle.

The rest of the freeze-out estimate proceeds in a
straight forward manner. Using (see e.g. [8])

s =


c
T

3
 =

2 ⇡
2
c g⇤s(T )

45
, (7)

and parameterizing the freeze-out temperature as

TF =
mDM

xF
, (8)

the DM mass indicated by the 3 ! 2 process is

mDM ' 1.4 ↵e↵x
�1
F

⇣
g
� 1

2
⇤,F x

�1
F ( Teq)

2
MPl

⌘ 1
3

. (9)

Taking xF = 20 and ↵e↵ = 1 for a (rather) strongly
interacting theory that freezes out while the DM is non-
relativistic, we arrive at

mDM ' 40 MeV (3 ! 2) . (10)

Small corrections are found when the more precise Boltz-
mann equations are solved (see Fig. 2). Thus in anal-
ogy to the standard thermal WIMP, where weak cou-
pling gives rise to the weak scale, the 3 ! 2 freezeout
mechanism gives rise to strong-scale DM for strong cou-
pling. Lower (higher) DM mass is of course consistent
with lower (higher) ↵e↵ . As we will see, self-interactions
of DM along with CMB and BBN constraints point to
the strongly interacting limit of large ↵e↵ . We thus dub
this scenario the Strongly Interacting Massive Particle
(SIMP) paradigm (to be distinguished from DM mod-
els with strong interactions with the visible sector, com-
monly called SIDM [9–16]).

If DM is a fermion or if the dark sector admits a Z2

symmetry, the 3 ! 2 annihilation process is forbidden.
Consequently, freeze-out can proceed via a 4 ! 2 annihi-
lation channel. For such a case with a cross section that
is parameterized as

h�v
3
i4!2 ⌘

↵
4
e↵

m
8
DM

, (11)

a similar estimate results in a DM mass of

mDM ' 1.3 ↵e↵x
�2
F

⇣
g
� 1

2
⇤,F xF ( Teq)

3
MPl

⌘ 1
4

, (12)

which, for xF = 14 (as obtained by solving the Boltz-
mann equation) and ↵e↵ = 1, points to DM mass of
order

mDM ' 100 keV (4 ! 2) . (13)

1 Sp(4) gauge theory with two-flavor Dirac fundamental fermions

1.1 Sp(4) Yang-Mills Theory

We first consider the pure Sp(4) gauge theory.

Our choice of the generators of SU(4) gauge group is as follows.

1.2 Algorithms

1.2.1 Gauge force and exponentiation

h�annvi2!2 =
↵2

m2
DM

(1)

� (2)

H0 (3)

⌦DM

⌦B
' 5 = O(1) (4)

The gauge force used in the HMC molecular dynamics evolution is give by

F a
G(x, µ) =

�

N

1

TF
Re trc[iT

a
FU(x, µ)V †(x, µ)], (5)

where V (x, µ) is the sum of the forward and backward staples around the link U(x, µ).
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We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

mDM ⇠ ↵ann (TeqMPl)
1/2

⇠ TeV , (1)

where ↵ann is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵ann ' 1/30 above, Teq is the matter-radiation
equality temperature and MPl is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵ann ' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

mDM ⇠ ↵e↵

�
T

2
eqMPl

�1/3
⇠ 100 MeV , (2)

where ↵e↵ is the e↵ective strength of the self-interaction
of the DM which we take as ↵e↵ ' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z2 symmetry, leads to DM in the keV

↵e↵ ' 1 ↵e↵ ' 1

3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

mDM ⇠ ↵ann (TeqMPl)
1/2

⇠ TeV , (1)

where ↵ann is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵ann ' 1/30 above, Teq is the matter-radiation
equality temperature and MPl is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵ann ' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

mDM ⇠ ↵e↵

�
T

2
eqMPl

�1/3
⇠ 100 MeV , (2)

where ↵e↵ is the e↵ective strength of the self-interaction
of the DM which we take as ↵e↵ ' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z2 symmetry, leads to DM in the keV

↵e↵ ' 1 ↵e↵ ' 1

3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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Such light DM in thermal equilibrium with electrons,
photons or neutrinos is mostly excluded by BBN and
CMB data, and is in tension with structure formation
(see below). It is possible, however, to evade the latter
bounds if, for example, the frozen out specie above is
not the DM and instead decays to a lighter stable state,
much as in the case of a superWIMP [17]. Finally, higher
n ! 2 freeze-out interactions yield sub-keV DM masses
and are omitted from further discussion.

THERMAL EQUILIBRIUM

Throughout the above estimate, we have assumed that
the dark sector and SM remained in thermal equilibrium.
However, the processes that keep the two sectors in ther-
mal equilibrium are the crossing diagrams of the pro-
cesses that lead to 2 ! 2 annihilation into the SM. Thus,
the assumption of thermal equilibrium might naively im-
ply that the dominant number-changing process for the
DM is the 2 ! 2 annihilation channel. In this section,
we find the condition under which the latter is subdomi-
nant while thermal equilibrium is maintained. These will
be the conditions under which the 3 ! 2 mechanism is
viable.

The ratio of the scattering rate o↵ of SM particles �kin

and the annihilation rate to SM particles �ann is

�kin

�ann
=

nSMh�vikin

nDMh�viann
'

gSM,F mDM

⇡2 Teq
' 5 ⇥ 106 (14)

where gSM,F is the e↵ective number of relativistic SM
degrees of freedom participating in the 2 ! 2 anni-
hilation process at freeze-out, the second equality uses
h�vikin ⇠ h�viann, and the last equality is derived for
mDM = 40 MeV. This large ratio is simply understood
by the sub-dominance of the DM number density at
TF � Teq. Thus, if the SM couples to the DM, the
process keeping these two sectors in kinetic equilibrium
does not have to be changing the annihilation rate. A
similar statement holds in the standard thermal WIMP
scenario.

In order for the 3 ! 2 process to control freeze-out,
while not heating up the DM, the following inequalities
must be satisfied up until freeze-out occurs:

�kin

�3!2

����
T=TF

& 1, (15)

�ann

�3!2

����
T=TF

. 1. (16)

We parameterize the DM-SM scattering by a small cou-
pling, ✏, with the relevant energy scale mDM, such that

h�vikin ⇠ h�viann ⌘
✏
2

m
2
DM

. (17)
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FIG. 2: ↵e↵ as a function of the DM mass (black solid line),
derived from the numerical solution to the Boltzmann Equa-
tion in the 3 ! 2 freeze-out scenario. The colored regions
show the preferred region as hinted by the ‘core vs. cusp’
and ‘too-big-to-fail’ small-scale structure anomalies for a = 1
(magenta), a = 0.05 (green), and a = 10�3 (blue). The re-
gion above the gray-dashed lines is excluded by the bullet-
cluster [24–26] and halo shape [21, 23] constraints, for each
value of a. The shaded gray shows the exclusion region for
a = 1.

The exact relation between the above cross sections can
be calculated for particular couplings to SM particles.
The first inequality, Eq. (15), which ensures that the cou-
pling to the SM is strong enough to keep the dark sector
and visible sector at a unified temperature, requires

✏ & ✏min ⌘ 2 ↵
1/2
e↵

✓
Teq

MPl

◆1/3

' 1 ⇥ 10�9
, (18)

where the numerical estimates use ↵e↵ = 1 and xF ' 20,
as will be justified by solving the Boltzmann equation
explicitly. The second condition, ensuring that the anni-
hilation of the dark sector to SM states is not e�cient at
freeze-out, implies

✏ . ✏max ⌘ 0.1 ↵e↵

✓
Teq

MPl

◆1/6

' 3 ⇥ 10�6
, (19)

with the same choice of parameters as above. We learn
that there is a large range of couplings of the DM to the
SM in which Eqs. (15) and (16) are satisfied.

SOLVING THE BOLTZMANN EQUATION

Thus far we have described the general setup of the
SIMP mechanism, and we now move on to validating our
results. There are a variety of scattering processes that
are relevant to the Boltzmann equation of the 3 ! 2
system. In the following, � represents the DM.

3
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SIMP condition:

• The 5-point self interaction can arise by the Wess-Zumino-Witten anomaly term.

2

to chiral symmetry breaking with the order parameter

hqiqji = µ
3
Jij , (2)

where µ is of mass dimension one and J = i�2 ⌦ Nf

is a 2Nf ⇥ 2Nf anti-symmetric matrix that preserves an
Sp(2Nf ) subgroup of the SU(2Nf ) flavor symmetry [5–8].
For Nf � 2, the topological condition is met,

⇡5(SU(2Nf )/Sp(2Nf )) = Z , Nf � 2 , (3)

and the WZW term is non-vanishing. The coset space
SU(2Nf )/Sp(2Nf ) is a symmetric space and is parame-
terized by N⇡ = 2N2

f �Nf�1 pion fields, ⇡a, correspond-
ing to the broken generators T a, with a = 1, . . . N⇡. The
pions furnish a rank-two anti-symmetric tensor represen-
tation of the unbroken Sp(2Nf ), and are stable. Assum-
ing the pions are the lightest states in the theory, dark
matter is comprised of these N⇡ pions.

A simple parametrization is found by performing a
transformation on the vacuum and promoting the trans-
formation parameters to fields,

hqqi = µ
3
J ! µ

3
V JV

T
⌘ µ

3⌃ , (4)

where V = exp(i⇡/f⇡) and f⇡ is the decay constant.
Since the broken generators obey ⇡J � J⇡

T = 0 with
⇡ = ⇡

a
T

a and Tr(T a
T

b) = 2�ab, we have

⌃ = exp(2i⇡/f⇡)J . (5)

A minimal realization of the 3 ! 2 mechanism is an
Sp(2) ' SU(2) gauge theory with Nf = 2 flavors. Dark
matter is comprised of 5 pions that transform as a 5-plet
under the preserved Sp(4) flavor symmetry. The coset
space of SU(4)/Sp(4) = SO(6)/SO(5) is then topolog-
ically an S

5. (See e.g. Refs. [9–20] for lattice work on
low-lying spectra in the minimal Sp(2) with quarks in the
fundamental representation, and Refs. [21–24] for dark-
matter examples.)

The relevant pion Lagrangian receives contributions
from several terms. The canonically normalized kinetic
term yields kinetic and 4-point interactions for the pions,

Lkin =
f
2
⇡

16
Tr @µ⌃ @

µ⌃† (6)

=
1

4
Tr @µ⇡@

µ
⇡

�
1

6f2
⇡

Tr
�
⇡
2
@
µ
⇡@µ⇡ � ⇡@

µ
⇡⇡@µ⇡

�
+O(⇡6

/f
4
⇡) ,

where in our normalization, Tr(⇡2) = 2⇡a
⇡
a. The Wess-

Zumino-Witten term [3, 4] yields 5-point pion interac-
tions. It can be written as an integral on the bound-
ary of a five-dimensional disk, identified with our four-
dimensional spacetime,

SWZW =
�iNc

240⇡2

Z
Tr (⌃†

d⌃)5 . (7)

To leading order in pion fields,

LWZW =
2Nc

15⇡2f5
⇡

✏
µ⌫⇢�Tr [⇡@µ⇡@⌫⇡@⇢⇡@�⇡] , (8)

which is responsible for the required 3 ! 2 annihilation
process. Finally, an Sp(2Nf )-preserving mass term can
be written for the quarks:

Lmass = �
1

2
M

ij
qiqj + c.c., M

ij = mQ J
ij
. (9)

The pions are then pseudo-Goldstone bosons of the bro-
ken symmetry and acquire a mass, as well as contact
interactions:

�Le↵ = �
1

2
mQµ

3TrJ⌃+ c.c. (10)

= �
m

2
⇡

4
Tr⇡2 +

m
2
⇡

12f2
⇡

Tr⇡4 +O(⇡6
/f

4
⇡) ,

where

m
2
⇡ = 8

mQµ
3

f2
⇡

. (11)

Combining all the above we arrive at the relevant pion
Lagrangian,

L⇡ = Lkin +�Le↵ + LWZW (12)

=
1

4
Tr @µ⇡@

µ
⇡ �

m
2
⇡

4
Tr⇡2 +

m
2
⇡

12f2
⇡

Tr⇡4

�
1

6f2
⇡

Tr
�
⇡
2
@
µ
⇡@µ⇡ � ⇡@

µ
⇡⇡@µ⇡

�

+
2Nc

15⇡2f5
⇡

✏
µ⌫⇢�Tr [⇡@µ⇡@⌫⇡@⇢⇡@�⇡] +O(⇡6) .

There can also be O(⇡4) terms with four derivatives
and higher. These contribute to four-pion self-scattering
with a naive-dimensional-analysis [25] suppression of at
least O(m2

⇡/⇤
2), where ⇤ = 2⇡f⇡, compared to those we

keep. The O(⇡5) terms with four derivatives that we use
are the leading 5-point pion interactions of the theory.
The same principle presented above to construct

strongly coupled models, that admit 3 ! 2 interac-
tions and realize the SIMP mechanism, is generalizable to
other gauge and flavor symmetries. For instance, one can
consider a generalized QCD-like theory with an SU(Nc)
gauge group and Nf Dirac-fermions in the fundamental
representation. The global flavor symmetry of the theory
is SU(Nf )⇥SU(Nf ), which upon chiral symmetry break-
ing preserves an SU(Nf ) subgroup. Similarly, an O(Nc)
gauge group with Nf fermions in the vector representa-
tion exhibits an SU(Nf ) flavor symmetry, which breaks
to SO(Nf ) once chiral symmetry breaking occurs. The
topological condition on the coset space in each of these
cases,

⇡5(SU(Nf )) = Z , Nf � 3 ,

⇡5(SU(Nf )/SO(Nf )) = Z , Nf � 3 , (13)

cf) In QCD, 

The SIMPlest Miracle

Realization via a class of strongly coupled models.

Concept: 

Use the Wess-Zumino-Witten term for the 5-point interaction.

Topological condition determines if exists.

(In QCD describes 𝐾+𝐾−Æ𝜋+𝜋0𝜋−)

YH, NPKI @ Jeju, Sep. 2014

Y. Hochberg, E. Kuflik, T. Volansky, J. Wacker, 
PRL 113 (2014) 171301
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FIG. 1. (left panel) Mass ratios mmeson/m⇡ for pseudoscalar and vector mesons, including the flavor-singlet pseudoscalar ⌘
0,

in the Sp(4) gauge theory with Nf = 2 Dirac flavors of fermions in the fundamental representation measured at the two values
of the inverse coupling � = 6.9 and 7.2. (right panel) The same plot but in the SU(2) gauge theory at � = 2.0. The green solid
lines m⇢/m⇡ = 1/x are displayed for reference.

expected to be less than 2%, which we estimated from the most precise results available, for m0 = �0.9, if m⇡L & 6.
We therefore safely neglect finite volume corrections to m⌘0 in the following.

In Fig. 1, we present our measurements of the ratios between the mass of the ⌘0 meson and that of the pseudoscalar
non-singlet ⇡, as a function of m⇡/m⇢. For reference, we indicate the mass of the vector meson ⇢ by a solid line. In
the Sp(4) theory we find that the pseudoscalar singlet is consistently heavier than the non-singlet, over the range of
0.7 . m⇡/m⇢ . 0.9, but lighter than the vector mesons. While in the lightest and finest ensembles the hierarchy
between the pseudoscalar singlet and vector mesons is not yet clearly resolved, the emerging trend is that m⌘0/m⇡

slowly increases as m⇡ decreases in this mass regime, and approaches m⇢/m⇡ for m⇡/m⇢ . 0.75. We do not observe
an appreciable di↵erences in the mass ratios obtained with the two di↵erent values of �, within the quoted one-sigma
error bars. We find a similar trend in the SU(2) theory, as shown in the right panel of Fig. 1. Since in this case only
one, fairly coarse lattice is considered, we cannot comment on the size of finite lattice spacing e↵ects.

The smallness of lattice artifacts in the ratios of meson masses is somewhat surprising, as the lattice spacing for
� = 7.2 is approximately 40% smaller than for � = 6.9 [184]. To assess this point, we present the meson masses in
units of the gradient flow scale w0, which defines a common scale in the continuum theory, and which we use also
to compute the topological charge Q—see Appendix A. We borrow the definition and measurements of the gradient
flow scale w0 from Ref. [184], and refer the reader to that publication for details. The left panel of Fig. 2 shows that
both the mass of the pseudoscalar singlet and the vector mesons receives significant corrections from the finite lattice
spacing. By comparing with Fig. 1, we see that such corrections to m⇡w0 and m⌘0w0 happen to have the same sign
and similar sizes, which cancel out in the mass ratios. We observe the same pattern for the mass ratio of m⇢ and m⌘0 ,
as depicted in the right panel of Fig. 2.

B. Pseudoscalar singlets in Sp(4) with Nf = 1 + 1

For non-degenerate fermions, the theory contains two flavor-singlet pseudoscalar mesons, the ⌘0 as well as the flavor-
diagonal PNGB, ⇡0. To understand the e↵ects of (explicit) flavor-symmetry breaking on the low-lying spectrum, we
first choose the ensemble for degenerate fermions with � = 6.9 and m0 = �0.9 and vary the bare mass of one of the

Dirac fermion, m(2)
0 � m0, for which we e↵ectively increase its mass, while keeping that of the other fixed, m(1)

0 = m0.
We summarize the numerical results in Tab. IV. In the table, we also present the mass of the flavor-singlet PNGB
obtained by computing only the connected diagrams after dropping the last three terms in Eq. 6, which we denote
by m⇡0

c
. We find no statistically appreciable di↵erence between m⇡0 and m⇡0

c
, which supports the connected-only

approximation considered in Ref. [197].
In Fig. 3, we show the ratio of meson masses to that of the PNGB ⇡

0, as a function of m⇡±/m⇡0 . In the degenerate
limit, we recover the mass hierarchy of the pseudoscalar and vector mesons, as expected. As we increase one of the
fermion masses, we observe a clear separation between flavored and non-flavored mesons, with the former being heavier
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FIG. 3. Mass ratios mmeson/m⇡0 for pseudoscalar and vector mesons, including the flavor-singlet pseudoscalar ⌘0, in the Sp(4)
theory with non-degenerate Dirac fermions. We fix the lattice coupling and one of the bare fermion mass to � = 6.9 and
m

(1)
0 = �0.9, respectively, while varying the other bare fermion mass. The blue solid line m⇡±/m⇡0 = x is displayed for

reference. In the left panel we display our results as a function of the pion mass ratio, while in the right panel we show them
as a function of ratio of the PCAC fermion masses.

C. Scalar singlet in Sp(4) with Nf = 2

In the case of the scalar singlet, �, the signal is consistently worse than for the other states discussed so far.
Furthermore, we see signs of finite spacing e↵ects, shown in Fig. 4. For Sp(4) on the coarse � = 6.9 lattices, we
observe a light � state, of mass comparable to the mass of the ⇡. This pattern persists over the entire mass range
considered. On finer lattices, for � = 7.2, the mass of the � increases and is heavier than the PNGBs, and comparable
to the vector meson, though with much larger statistical errors, and still below the ⇡⇡ threshold.

These results suggest the existence of larger finite-spacing e↵ects that a↵ect the mass of the scalar singlet. Yet, some
caution should be used, because, due to the large noise in our signal, the mass is extracted from much shorter times on
the finer lattices, and may therefore also be more severely a↵ected by excited-state contamination, and possibly other
systematics. Nevertheless, even for the finer lattice, the � state is lighter than its non-singlet counterpart, suggesting
that further studies are still needed. The scalar singlet might be a stable light meson at moderately heavy fermion
masses, and thus phenomenologically relevant.

D. Comparison to SU(3) with Nf = 2

In Fig. 5 we show a compilation of the available data published on the pseudoscalar singlet for the SU(3) theory
with Nf = 2 (upper panels) as well a comparison of our results for Sp(4) and SU(2) to the available data for SU(3)
(lower panels). In some cases, the measurement has been performed using di↵erent methods in the analysis or di↵erent
operators have been used to study the same mesons (e.g. the mass of the ⌘

0 has been obtained from pure gluonic
operators as well as the usual fermionic operators, or in the case of twisted mass fermions the non-singlet mesons
include isospin breaking e↵ects) and sets of results are available. In such cases, we have chosen the results that are
closest to the standard determination of directly fitting the correlator of a pure fermionic operator. When this was not
possible we quote the largest and smallest values of mi±�mi of all measurements i and symmetrize the uncertainties.
The data depicted in Fig. 5 has been taken from the UKQCD collaborations (denoted by UKQCD1 [202, 203] and
UKQCD2 [207]); the SESAM/T�L collaboration [204, 205]; the CP-PACS collaboration [206]; the RBC collaboration
using domain-wall fermions [210]; the CLQCD collaboration using Wilson clover fermions on anisotropic lattices [211];
the ETMC collaboration (denoted by ETMC1 [208, 209] and ETMC2 [212, 213]); and from the analysis of ⌘0-glueball
mixing (denoted by Beijing [214]).

• Flavor non-singlet mesons have been studied on the lattice for !0.65 ≲ mπ /mV ≲ 0.87
E. Bennett et al, JHEP 12 (2019) 053

• Flavor-singlet pseudoscalar may play an important role in the dark matter pheno., 
e.g. destabilized by dark photon, involved in the dark pion scattering, etc.

• Involves disconnected diagrams - noice source, vacuum subtractions, …

E. Bennett et al, arXiv:2304.07191

• The results are similar to 2-flavour QCD. 
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• Calculate the phase shift of dark pion s-wave scattering using Luscher’s method, and 
extract the s-wave scattering length & explore the velocity dependent cross-section.

YANNICK DENGLER - SCATTERING IN A DARK SECTOR DESCRIBED BY SP(4) GAUGE THEORY

RESULTS - EFFECTIVE a0

Effective scattering length 

 

 

“scattering state“ 

Cross-section:  

Constraint from density profiles of 
galaxy clusters:  

a0,eff = lim
| ⃗p|→0

tan(δ0)
| ⃗p |

a0mπ = −0.30−0.17
+ 0.06

a0 < 0 →

σ ≈πa2
0

σ
m

< 0.19cm2/g

mDM > 75MeV Eckert et al.: A&A 666, A41 (2022)

PRELIMINARY

12/14YANNICK DENGLER - SCATTERING IN A DARK SECTOR DESCRIBED BY SP(4) GAUGE THEORY

RESULTS - CROSS SECTION

Cross-section vs velocity 

 (s-wave) 

 vs velocity 

Do we see a hint for velocity 
dependence? 

Yes, but not the one from the 
motivation

dσ
dΩ ∝ σ

dσ
dΩ

v
c

m2
π

PRELIMINARY

13/14Talk by Y. Dengler @ 16:00, Thur.

• The density profiles of galaxy clusters are constrained by astronomical observations 
by ! , which indicates ! .σ/mDM < 0.19cm2/g mDM > 75MeV



Stealth dark matter

• !  coupled to !  fund. flavors: if !  is even, baryons are composite scalars. SU(N ) Nf N

• Stability: !  dark baryon numberU(1)

• Typical setup: !  & confinement scale ~ dark fermion massN > 2

• Dark fermions are charged under electroweak symmetry in vector reps., interactions 
to SM particles can be highly suppressed - stealth DM

LSD collaboration, PRD 89 (2014) 094508

Scalar dark baryon: magnetic dipole 
interaction (dim. 5) is absent

Proper charge assignment (e.g. custodial 
!  symmetry): no charge radius 
operators (dim. 6)
SU(2)

How does strong coupling mitigate direct detection constraints?

Effective interactions with the Standard Model arise in the expansion 

such as 

magnetic moment: 

charge radius: 

polarizability: 

1

(⇤dark)n

 �µ⌫ Fµ⌫

⇤dark

(  )vµ@⌫Fµ⌫

(⇤dark)2

(  )Fµ⌫Fµ⌫

(⇤dark)3
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How does strong coupling mitigate direct detection constraints?

Effective interactions with the Standard Model arise in the expansion 

such as 

magnetic moment: 

charge radius: 

polarizability: 

1

(⇤dark)n

 �µ⌫ Fµ⌫

⇤dark

(  )vµ@⌫Fµ⌫

(⇤dark)2

(  )Fµ⌫Fµ⌫

(⇤dark)3

The leading interaction with photon is 
electromagnetic polarizability (dim. 7)
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FIG. 2. The DM spin-independent scattering cross section per nu-
cleon evaluated for xenon is shown as the purple band obtained
from the SU(4) polarizability, where the width of the band cor-
responds to 1/3 < MA

F < 3 from low to high. The blue curve
and the light blue region above it is excluded by the LUX con-
straints [1]. The vertical, darker shaded region is excluded by
the LEP II bound on charged mesons [23]. The orange region
represents the limit at which direct detection experiments will
be unable to discriminate DM events from coherent neutrino re-
coil [40]. We emphasize that this plot is applicable for xenon, and
would require calculating Eq. (17) to apply to other nuclei.

would have form factor suppression. This implies the stan-
dard missing energy signals that arise from DM production
and escape from the detector are rare.

Finally, there are many avenues for further investiga-
tion of stealth dark matter, detailed in [23]. One vital is-
sue is to better estimate the abundance. In the DM mass
regime where stealth DM is detectable at direct detection
experiments, the abundance of stealth dark matter can arise
naturally from an asymmetric production mechanism [23]
that was considered long ago [7–9] and more recently re-
viewed in [41]. If there is indeed an asymmetric abundance
of bosonic dark matter, there are additional astrophysical
consequences [42–44] that warrant further investigation to
constrain or probe stealth DM.
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• Electric polarizability has been computed 
via lattice background method. LUX

LEP II

• Assuming the Higgs exchange between dark and ordinary baryons, the matrix elements 
have been calculated using the lattice spectroscopy & Feynman-Hellmann theorem.
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• Quantitative study of the dark baryon scattering will play a crucial role in explaining 
the dark matter self-interaction, but the calculations are very challenging because of 
the signal-to-noise problem.

200GeV ≲ mDM ≲ 700 GeV

• Taking account of experimental and  
constraints, it has been found that

neutrino 
Background

Talk by K. Cushman @ 14:30, Thur.Laplacian Heaviside, Irreducible representations, …

• !  + 1 Fund. fermion: light dark matter, 1st order phase transition, …SU(4)
Talk by V. Ayyar @ 14:50, Thur.
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Figure 1. Summary of the main Bayesian and optimal-statistic analyses presented in this paper, which establish multiple lines
of evidence for the presence of Hellings–Downs correlations in the 15-year NANOGrav data set. Throughout we refer to the
68.3%, 95.4%, and 99.7% regions of distributions as 1/2/3� regions, even in two dimensions. (a): Bayesian “free-spectrum”
analysis, showing posteriors (gray violins) of independent variance parameters for a Hellings–Downs-correlated stochastic process
at frequencies i/T , with T the total data set time span. The blue represents the posterior median and 1/2� posterior bandsa

for a power-law model; the dashed black line corresponds to a � = 13/3 (SMBHB-like) power-law, plotted with the median
posterior amplitude. See §3 for more details. (b): Posterior probability distribution of GWB amplitude and spectral exponent
in a HD power-law model, showing 1/2/3� credible regions. The value �GWB = 13/3 (dashed black line) is included in the 99%
credible region. The amplitude is referenced to fref = 1yr�1 (blue) and 0.1 yr�1 (orange). The dashed blue and orange curves
in the log

10
AGWB subpanel shows its marginal posterior density for a � = 13/3 model, with fref = 1yr�1 and fref = 0.1 yr�1,

respectively. See §3 for more details. (c): Angular-separation–binned inter-pulsar correlations, measured from 2,211 distinct
pairings in our 67-pulsar array using the frequentist optimal statistic, assuming maximum-a-posteriori pulsar noise parameters
and � = 13/3 common-process amplitude from a Bayesian inference analysis. The bin widths are chosen so that each includes
approximately the same number of pulsar pairs, and central bin locations avoid zeros of the Hellings–Downs curve. This binned
reconstruction accounts for correlations between pulsar pairs (Romano et al. 2021; Allen & Romano 2022). The dashed black
line shows the Hellings–Downs correlation pattern, and the binned points are normalized by the amplitude of the � = 13/3
common process to be on the same scale. Note that we do not employ binning of inter-pulsar correlations in our detection
statistics; this panel serves as a visual consistency check only. See §4 for more frequentist results. (d): Bayesian reconstruction
of normalized inter-pulsar correlations, modeled as a cubic spline within a variable-exponent power-law model. The violins plot
the marginal posterior densities (plus median and 68% credible values) of the correlations at the knots. The knot positions are
fixed, and are chosen on the basis of features of the Hellings–Downs curve (also shown as a dashed black line for reference): they
include the maximum and minimum angular separations, the two zero crossings of the Hellings–Downs curve, and the position
of minimum correlation. See §3 for more details.

NANOGrav collaboration 
Astrophys.J.Lett 951 (2023), L8

15-year results

• Pulsar Timing Array (PTA) - A galactic-scale nHz GW detector using highly stable 
millisecond pulsars, rapidly rotating and highly magnetized neutron stars which 
act as highly accurate clocks.

• In Jun. 28, 2023, NANOGrav (North American Nanohertz Observatory for 
Gravitational Waves) collaboration released the 15-year pulsar timing data set.

Romani (1989); Foster & Backer (1990)
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Figure 4. Same as Fig. 3 but for a di↵erent selection of models and showing a larger frequency range. The solid lines represent
median GWB spectra for a subset of new-physics models (see Appendix B for more details); the gray violins correspond to
the posteriors of an HD-correlated free spectral reconstruction of the NANOGrav signal; and the shaded regions indicate the
power-law-integrated sensitivity (Thrane & Romano 2013) of various existing and planned GW interferometer experiments:
LISA (Amaro-Seoane et al. 2017), DECIGO (Kawamura et al. 2011), BBO (Crowder & Cornish 2005), Einstein Telescope (ET;
Punturo et al. 2010), Cosmic Explorer (CE; Reitze et al. 2019), the HLVK detector network (consisting of aLIGO in Hanford
and Livingston (Aasi et al. 2015), aVirgo (Acernese et al. 2015), and KAGRA (Akutsu et al. 2019)) at design sensitivity, and
the HLV detector network during the third observing run (O3). All sensitivity curves are normalized to a signal-to-noise ratio
of unity and, for planned experiments, an observing time of one year. For the HLV detector network, we use the O3 observing
time. Di↵erent signal-to-noise thresholds ⇢thr and observing times tobs can be easily implemented by rescaling the sensitivity
curves by a factor of ⇢thr/

p
tobs. More details on the construction of the sensitivity curves can be found in Schmitz (2021).

We emphasize that models whose median GWB spectrum exceeds the sensitivity of existing experiments are not automatically
ruled out. This applies, e.g., to cosmic superstrings (super) and the O3 sensitivity of the HLV detector network. Typically, no
single GWB spectrum in a given model will coincide with the median GWB spectrum, which is constructed from distributions
of h

2⌦GW values at any given frequency. Therefore, if the median GWB spectrum is in conflict with existing bounds, typically
only some regions in the model parameter space will be ruled out, while others remain viable (see, e.g., Fig. 11 for the super
model). Finally, note that any primordial GWB signal is subject to the upper limit on the amount of dark radiation in Eq. (23),
which requires the total integrated GW energy density to remain smaller than O(10�(5···6)) (see Section 5.1).

eters in these models are fairly well known (e.g., con-
cerning the galaxy stellar mass function), others are
almost entirely unconstrained—particularly those gov-
erning the dynamical evolution of SMBHBs on subpar-
sec scales (Begelman et al. 1980). The GWOnly-Ext li-
brary assumes purely GW-driven binary evolution and
uses relatively narrow distributions of model parame-
ters based on literature constraints from galaxy-merger

observations (e.g., Tomczak et al. 2014) in addition to
more detailed numerical studies of SMBHB evolution
(e.g., Sesana 2013).

For each population contained in the GWOnly-Ext li-
brary, we perform a power-law fit of the correspond-
ing GWB spectrum across the first 14 frequency bins
that we use in our analysis. The distribution for ABHB

and �BHB obtained in this way is reported in Fig. 1

NANOGrav collaboration 
Astrophys.J.Lett.951 (2023) L11

• From the 15-year PTA data set, NANOGrav found positive evidence of a low-frequency 
stochastic gravitational wave (GW) background!

• Could it be a foot-print of a 1st order phase transition in early universe? If so, what is 
the source for the transition? A noble strong dynamics? Maybe.
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FIG. 8. The (subtracted) free energy, f , as a function of
the (discretised, microcanonical) temperature t = 1/an. f is
defined in the main body of the text. The dots (with errors)
represent the values of f corresponding to the centre of each
energy interval used in the LLR algorithm, while the solid line
is reconstructed by piece-wise linearly interpolation of an(up).
The color coding of the points and solid lines are chosen to
match those in the inset, displaying our numerical results for
an(up). In black we show the regions of t for which f is single-
valued, in blue we show the (meta-)stable solutions within
the region where f is multi-valued, and in red the unstable
(tachyonic) branch of solutions. The dots follow a colormap in
the value average plaquette, with darker colors corresponding
to smaller up.

is powerful and promises to yield information that is diffi-
cult to access otherwise, as it modifies Monte Carlo sam-
pling by restricting it to arbitrarily small energy win-
dows. It hence provides numerical access to the details
of the physics in regions of parameter space exhibiting all
the typical feature of first-order phase transitions: phase
coexistence, metastability and/or instability of multi-
ple branches of solutions, non-invertibility and/or multi-
valuedness of some state function.

We showed how the information from these energy-
bound Monte Carlo feeds into recursive relations (e.g., an
implementation of the Robbins-Monro algorithm) that
can determine the density of states for any interesting
range of energies. And we provided explicit relations be-
tween the density of states and observables such as the
critical temperature and the latent heat. Furthermore,
we found that the results for the density of states can be
recast in terms of an effective free energy and an effective
potential that exhibit with spectacular level of resolution
the details of the physics near the transition.

We restricted this study to the SU(3) lattice Yang-
Mills theory, and performed it with one choice of lattice

FIG. 9. Top panel: an (= 1/tn) against up at the centre
of the energy intervals, in close proximity of the critical re-
gion. Middle panel: the reconstructed plaquette distribution,
P�(up), at critical coupling �c = 5.69187. Bottom panel:
quantum effective potential for the plaquette at the critical
coupling. The red line in the top plot shows the critical value
of the coupling and its relation to the microcanonical tem-
perature, an. The magenta (vertical, dashed) lines show the
locations at which the red line intersects the curve an(up).

parameters, fixing NL = 20 and NT = 4. The trademark
of the LLR algorithm is that we found clear evidence
of the first-order nature of the transition, without the
need of a finite-volume study, and an extrapolation of the
scaling to large volumes. The physically interesting ob-
servables need to be extrapolated to the continuum and
infinite-volume limits, with dedicated, extensive numeri-
cal work, which would allow for a direct comparison with
results that use different numerical techniques. In the
future we plan to repeat the process with larger values
of both NT and NL, which will provide us with control
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Lucini, Mason, Rinaldi & 
Vadacchino (2023), arXiv:

2305.07463

• The strength of the 1st order phase transition might be 
too weak to produce GWs. Other gauge groups?

• Density of state method using Logarithmic Linear 
Relaxation algorithm (LLR) has been applied to 
characterize the 1st order phase transition of !  
Yang-Mills.

SU(3)

Langfeld, Lucini & Rago, PRL 109, 111601 (2012)

log ρ̃(E) ≡ an(E − En) + cn

ρ(E) ≡ ∫ Dϕ δ(S(ϕ) − E)

F(t) ≡ E − ts

1/t(E) ≡ ∂s/∂E = an

s = log ρ(E)

Sp(4): talk by D. Mason @ 16:20, Thur.

• First lattice calculation exposing the multi-valued nature 
of the free energy in the critical region.



Supersymmetric gauge theories

(III) Maximally supersymmetric Yang–Mills

Conformal SU(N) gauge theory with N = 4 fermions and 6 scalars

Reformulate theory to preserve closed sub-algebra {Q,Q} = 0
=) recover other 15 Q’s in continuum limit

Review:
Catterall, Kaplan & Ünsal

arXiv:0903.4881

Public code: github.com/daschaich/susy

David Schaich (Bern) Lattice susy overview Lattice 2018, July 24 12 / 19

• !  SYM - a minimal supersymmetric extension of !  Yang-Mills𝒩 = 1 SU(N )

• !  SYM - a maximal supersymmetric extension of !  Yang-Mills𝒩 = 4 SU(N )

• Supersymmetry - a space-time symmetry extended by !  spinor operators4𝒩
Super-Poincare algebra: , where .{QI

α, QJ·α} = i2δIJσμ
α ·α pμ I, J = 1, 2, ⋯, 𝒩

Lattice discretization breaks the supersymmetry - may require severe fine-tuning.

 gauge theory + a massless adjoint Majorana fermionSU(N )

 gauge theory + 4 fermions + 10 scalars (conformal)SU(N )

Much progress has been made to minimize the tuning of the 
parameters by reformulating the theory (topological twisting or 
orbifold dimensional reconstruction) and repackaging the fields 
contents to preserve close subalgebra . {Q, Q} = 0

Recent work focuses on the extension to supersymmetric QCD 
Talk by H. Herodotou @ 17:20, Tues.

A comprehensive review by D. Schaich, 
arXiv:2208.03580



�  supersymmetric Yang-Mills𝒩 = 4

the appendix B we include equivalent fits (figs.9 and 10) for a range of di↵erent smearing

parameters thereby verifying that the agreement with the holographic prediction is robust.

Figure 5. Coe�cient of the 1/r vs
p
� for 124 lattices at µ = 0.05

4 Conclusions

We have studied a new supersymmetric lattice action for N = 4 super Yang-Mills in four

dimensions at strong ’t Hooft coupling. We have focused on the case of three colors N = 3

and utilized lattices as large as 124. Correlators of (smeared) Polyakov lines show that

the static potential exhibits a non-Abelian Coulomb form V (r) = ↵
p
�

r where the value

of ↵ and the square root dependence on the ’t Hooft coupling match expectations from

holography.
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λ = g2
YMNc

minimum area of the world sheet. From the Wilson loop of a pair of parallel lines, Maldacena
extracted the potential function in N = 4 SYM at zero temperature[10],

V (r) = − 4π2

Γ4
(

1
4

)

√
λ

r
≃ −0.2285

√
λ

r
(1.2)

with r the distance between the quark and the antiquark. Introducing a black hole in AdS bulk,
the potential at nonzero temperature as well as that for moving quarks have been obtained by a
number of authors[11][12]. The field theoretic aspects of the potential (1.2) and its finite temper-
ature counterpart as well as their implications on RHIC physics were discussed in Ref.[13][14][12].
As was pointed out in Ref.[10], the ”heavy quarks” underlying the Wilson loop (1.2) in N = 4
SYM are actually heavy W bosons resulted in a Higgs mechanism, which implement the funda-
mental representation of SU(Nc). Since the function (1.2) measures the force between two static
fundamental color objects, we shall borrow the terminology of QCD by naming it the heavy quark
potential throughout this paper.

The strong coupling expansion of the SYM Wilson loop corresponds to the semi-classical ex-
pansion of the string-sigma action and reads

V (r) = − 4π2

Γ4
(

1
4

)

√
λ

r

[

1 +
κ√
λ
+O

(

1

λ

)

]

(1.3)

for the heavy quark potential. Computing the coefficient κ is the main subject of the present paper.
κ comes from the one loop effective action of the world sheet fluctuations around its minimum area.
This effective action has been obtained explicitly for some simple Wilson loops including parallel
lines[15] [16] and is expressed in terms of functional determinants. Evaluating these determinants,
we end up with the numerical value of κ,

κ ≃ −1.33460. (1.4)

The classical solution of the string-sigma model and the one loop effective action underlying κ
is briefly reviewed in the next section. There we also outline our strategy of computation, which
is along the line suggested in [16]. We parametrize the string world sheet of the single Wilson
line or parallel lines by conformal coordinates. Then a scaling transformation is made that leaves
the measure of the spectral problem of the functional determinants trivial. Instead of solving the
eigenvalue problem of the operators underlying the determinants, we use the method employed in
[17], which amounts to solve a set of ordinary differential equations. Unlike the straight Wilson line
and the circular Wilson loop dealt with in [17], some of differential equations for the parallel lines
are not analytically tractable. The presence of various singularities makes numerical works highly
nontrivial. It is critical to isolate the singularities analytically in order to obtain a robust numerical
result. So we did and the procedure is described in sections 3 and 4. The finite terms of the scaling
transformation of the determinants involved are examined in section 5 and we find them adding up
to zero. In section 6, we discuss our results along with few open questions. Some technical details
are explained in appendices. Throughout the paper, we shall work with Euclidean signature with
the AdS radius L set to one.

2. The one-loop effective action

Let us begin with a brief review of the classical limit that leads to the leading order potential (1.2).
The string-sigma action in this limit reduces to the Nambu-Goto action

SNG =
1

2πα′

∫

d2σ
√
g, (2.1)

– 2 –



SU(3) + 1 AS fermion

AS 
QCD

Adj 
QCD

Orientfold equivalence

�Nc → ∞

• At large ! , the bosonic sector of a gauge theory with a antisymmetic Dirac fermions 
is non-perturbatively equivalent to that of !  SYM. 

Nc
𝒩 = 1

• To start with, M. Morte et al consider one flavor QCD assuming !  is large.Nc = 3

In the case of ! , Fund. rep. !  Two-index antisymm. (AS) repSU(3) ≡

Armoni, Shifman, Veneziano (2003)

M. Morte, B. Jager, F. Sannino, J. Tsang, 
F. Ziegler (2023), arXiv:2302.10514• Simulation setup

- Wilson fermions with tree-level improvement in both the gauge and fermionic actions 
with ! .cSW = 1

- Rational hybrid Monte Carlo (RHMC) + reweighting for negative fermion determinant
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FIG. 12. Comparison of the fit results when varying the cor-
relator fit choice and the fit ansatz for the pseudoscalar (top)
and the scalar mass (bottom).

for the fits of method 1 (method 2) that produced an
acceptable p-value.

In general, we notice that the ratio of separate chiral
extrapolations leads to larger variations than the extrap-
olation of the ratio of masses. This is unsurprising as,
ensemble by ensemble, the underlying datapoints are sta-
tistically correlated, and therefore statistical fluctuations
are reduced for the individual ratios of datapoints. Fur-
thermore the extrapolation of the individual datapoints
is more di�cult to control since the slope with the fake
pion mass is steeper. Our preferred number is therefore
the direct extrapolation (green band in Fig. 14) whilst
the orange band provides a sanity check.

We are now in a position to compare the results of the
fits including even and odd powers of mfake

⇡ to those only
using even powers. These two choices are compared in
the two panels of Fig. 14 for the example of the ratio of
pseudoscalar to scalar masses. The green bands of the
two panels are in ⇠ 2� agreement, lending confidence in
the results. However the errorbands of the direct and
indirect methods do not overlap for the fit of the even
powers only. This is even more pronounced for the case
of the ratio mP /mI (c.f. the bottom panel of Fig 17).
This numerical evidence further supports our preference
for the more conservative fit ansatz including even and
odd powers of mfake

⇡ and we therefore quote results from

FIG. 13. Example extrapolation to the chiral limit of the ratio
of pseudoscalar to scalar mass via method 1.

this choice as our final numbers.
In addition to mP , mS we have data for the vector

mass mI . An example fit for the extrapolation of the
vector mass is shown in Fig. 15 (cf. Fig. 11) whilst dif-
ferent fit variations are shown in Fig. 16 (cf. Fig. 12).
Finally, we also construct the ratios mP /mI (see Fig. 17)
and mI/mS (see Fig. 18) in the chiral limit via the two
methods described above.

VI. DISCUSSION AND OUTLOOK

We have presented a detailed study of the spectrum of
one-flavour QCD using Wilson fermions with tree-level
O(a) improvement.
Results are obtained at one single lattice spacing

(approximatively 0.06 fm) for di↵erent volumes (up to
323 ⇥ 64) and several quark masses. After extrapolating
to the massless limit we obtain

mP

mS
= 0.356(54) , (6.1)

for the pseudoscalar to scalar meson mass ratio and

mP

mI
= 0.489(49) , (6.2)

for the pseudoscalar to vector ratio. In Ref. [6] a predic-
tion using an e↵ective field theory approach and a 1/NC

expansion was derived. In the massless limit this reads

mP

mS
= 1� 22

9NC
� 4

9
� +O

✓
1

N2
C

◆
, (6.3)

where � is a positive constant of order 1/NC . The equa-
tion above therefore provides an estimate for an upper

• In the massless limit, EFT calculation yields
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where � is a positive constant of order 1/NC . The equa-
tion above therefore provides an estimate for an upper

mP

mS
≲ 0.185 + 𝒪(

1
N2

c
) Saninno & Shifman(2004)
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the orange band provides a sanity check.

We are now in a position to compare the results of the
fits including even and odd powers of mfake

⇡ to those only
using even powers. These two choices are compared in
the two panels of Fig. 14 for the example of the ratio of
pseudoscalar to scalar masses. The green bands of the
two panels are in ⇠ 2� agreement, lending confidence in
the results. However the errorbands of the direct and
indirect methods do not overlap for the fit of the even
powers only. This is even more pronounced for the case
of the ratio mP /mI (c.f. the bottom panel of Fig 17).
This numerical evidence further supports our preference
for the more conservative fit ansatz including even and
odd powers of mfake

⇡ and we therefore quote results from

FIG. 13. Example extrapolation to the chiral limit of the ratio
of pseudoscalar to scalar mass via method 1.

this choice as our final numbers.
In addition to mP , mS we have data for the vector

mass mI . An example fit for the extrapolation of the
vector mass is shown in Fig. 15 (cf. Fig. 11) whilst dif-
ferent fit variations are shown in Fig. 16 (cf. Fig. 12).
Finally, we also construct the ratios mP /mI (see Fig. 17)
and mI/mS (see Fig. 18) in the chiral limit via the two
methods described above.

VI. DISCUSSION AND OUTLOOK

We have presented a detailed study of the spectrum of
one-flavour QCD using Wilson fermions with tree-level
O(a) improvement.
Results are obtained at one single lattice spacing

(approximatively 0.06 fm) for di↵erent volumes (up to
323 ⇥ 64) and several quark masses. After extrapolating
to the massless limit we obtain

mP

mS
= 0.356(54) , (6.1)

for the pseudoscalar to scalar meson mass ratio and

mP

mI
= 0.489(49) , (6.2)

for the pseudoscalar to vector ratio. In Ref. [6] a predic-
tion using an e↵ective field theory approach and a 1/NC

expansion was derived. In the massless limit this reads

mP

mS
= 1� 22

9NC
� 4

9
� +O

✓
1

N2
C

◆
, (6.3)

where � is a positive constant of order 1/NC . The equa-
tion above therefore provides an estimate for an upper

mP

mS
≲ 0.185 + 𝒪(

1
N2

c
)

• To verify the orlentfold equivalence and obtain a better insight on !  SYM, 
they have extended their studies to larger values of ! .

𝒩 = 1
Nc = 4, 5, 6

Talk by S. Martins @ 15:10, Thur.

Saninno & Shifman(2004)

Topological Charge
amπ ≈ 0.6, clover-improved, Nc = 4, κ = 0.1450
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• Challenges: opological freezing problem gets severe as !  and ! .Nc → ∞ amπ → 0

Preliminary



The 38th International Symposium on Lattice 
Field Theory presents

QCD: The Glory 
and The Power
Professor Frank Wilczek

PUBLIC LECTURE 
July 27th 12:00 EDT

After a brief oration in praise of the ideal mathematical 
beauty of QCD and its imposing experimental 

success, I will describe several of its ongoing and 
future applications at the frontiers of knowledge. 

These are the frontier of precision (muon g-2), the 
frontier of high temperature and density (heavy ion 

collisions), the frontier of late stellar evolution 
(supernovae and neutron stars), and the frontier of 

theoretical adventure (axions and dark matter).

Frank Wilczek is a theoretical physicist, author, and 
intellectual adventurer. He has received many 
prizes for his work, including a Nobel Prize in 
Physics. Wilczek has made seminal contributions to 
fundamental particle physics, and is (amongst other 
positions) the Herman Feshbach professor of 
physics at MIT. His latest book, “Fundamentals”, 
was released in January 2021. 
www.frankawilczek.com

Livestreaming at  https://youtu.be/2uSURxHAY6U

Another exploratory aspect that’s of 
special interest to physicists is to 
look at variants of QCD, with four 
quarks or a different color group or 
some that might show up in future 
models of fundamental interactions, 
but also would enable us to frame 
the properties of QCD in a broader 
context and see what is contingent 
in a sense and what really is crucial. 
And there are also attempts to make 
anthropic arguments, quantitative, 
how much could you vary the 
parameters and still get something 
to friendly biology, things like that.

In his response to the question from Z. 
Davoudi



Thank you for your attention!

Any questions?
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