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Introduction
We simulate lattice QED in (large) external electromagnetic(EM)
fields using methods developed for lattice QED.
Our first project is simulating lattice QED in large constant (in
space and time) magnetic fields using the RHMC method. We
shall assume that the external magnetic field B is oriented in
the z (3) direction so that the external vector potential Aext lies
in the x− y (1-2) plane.
Classically electrons(positrons) in such a field traverse helical
orbits around magnetic field lines. In quantum mechanics the
motion in the x− y plane is in discrete energy levels – Landau
levels – while that in the z direction is free.

En(pz) = ±
√
m2 + 2eBn+ p2z

where n = 0, 1, 2, ..., and the degeneracy of the lowest Lan-
dau level (n = 0) is half that of the higher levels.
When QED is taken into account, for large enough eB, we ex-
pect the energy levels to behave similarly, and the lowest Lan-
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dau level LLL to give the dominant contribution to the functional
integral.

One of the more interesting predictions of approximate anal-
yses of QED in large B using a truncated Schwinger-Dyson
approach is Magnetic Catalysis of dynamical symmetry break-
ing, giving a dynamical (non-perturbative) mass to the electron
∝

√
eB and a non-vanishing chiral condensate ∝ (eB)3/2

when the input electron mass vanishes, associated with a di-
mensional reduction from 3+1 to 1+1 dimensions for charged
particles.

For fine-structure constant α = 1/137 the Schwinger-Dyson
prediction for the dynamical electron mass at our chosen eB ≈
0.4848..., mdyn ≈ 2× 10−35. Since this is far below anything
we could measure on the lattice, we choose a stronger electron
charge α = 1/5 where the predicted mdyn ≈ 3 × 10−4.
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Our simulations show clear evidence that the chiral condensate
⟨ψ̄ψ⟩ remains non-zero as m → 0. Hence chiral symmetry is
broken dynamically by the magnetic field.

4



Extracting chiral condensate from lattice simulations

We simulate lattice QED in a strong magnetic field using the
RHMC algorithm. A non-compact gauge action is used for the
internal electromagnetic fields. We use staggered fermions and
a rational approximation to tune to 1 electron flavour. We use
a compact interaction between the electromagnetic fields (inter-
nal and external) and the fermions to render the action gauge-
invariant. [See appendix for more details.]

As mentioned above we choose α = 1/5 to give a measurable
signal. Since for free fermions in an external magnetic field,
our approach fails when eB ≳ 0.63 we choose eB = 2π ×
100/362 ≈ 0.4848... on lattices with Nx = Ny = 36 or Nx =
Ny = 18.

Since we are interested in the limit m → 0, we need to perform
simulations down to rather small m (We use masses as small
as m = 0.001).

For the smallest masses we will need to measure the chiral con-
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densate on a series of lattice sizes until increasing the lattice
size does not increase ⟨ψ̄ψ⟩.
Because we expect the functional integral will be dominated by
the LLLs, then provided Nx and Ny are appreciably greater
than the size of the LLL in the x − y plane (∼ 1/

√
eB) we

do not need to increase these dimensions in our simulations.
Hence we run our simulations for a series of Nz = Nt values
with Nx = Ny = 36 or Nx = Ny = 18.

We simulate at a selection of masses covering the range 0.001 ≤
m ≤ 0.2 In order to remove finite size effects, we need to sim-
ulate on lattices with Nz = Nt as large as 128 (in particular
182 × 1282) at m = 0.001. We simulate for a total of at least
1250 trajectories for each choice of parameters.

Figures 1,2,3, show the mass dependence of the chiral con-
densates ⟨ψ̄ψ⟩ for the lattice sizes we use. Note that, for each
m value, we consider the measurement for the lattice with the
largest Nz = Nt to be our best estimate for the infinite lattice
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Figure 1: ⟨ψ̄ψ⟩ as a function of mass
at eB = 2π × 100/362,showing de-
pendence on lattice size in the z and t
directions.

Figure 2: As in figure 1, but on an ex-
panded scale
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Figure 3: As in figure 2, but on an expanded scale.
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value.

• From these plots, it would appear that the chiral condensate
remains finite as m → 0, and that the m = 0 value ≈ 0.004,
indeed a selected set of fits to the simple form

⟨ψ̄ψ⟩ = a+ bm+ cm log(m)

gives good qualitative fits with

0.0035 ≲ ⟨ψ̄ψ⟩(m = 0) ≲ 0.0046
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Comparison of lattice QED with Schwinger-Dyson results

Our lattice QED simulations at α = 1/5, eB = 0.4848...,
Nf = 1 are consistent with a chiral condensate ⟨ψ̄ψ⟩ ≈ 4 ×
10−3 in the limit m → 0. This result is gauge invariant.

The Schwinger-Dyson estimates at α = 1/5, eB = 0.4848...,
Nf = 1 give ⟨ψ̄ψ⟩ ≈ 1.2 × 10−4 in the massless limit.
This is for what is considered to be the optimal gauge for this
truncation. A generic covariant gauge choice yields ⟨ψ̄ψ⟩ ≈
2.4 × 10−3 in the limit m → 0.

However, if we ignore the fact that the 3+1 → 1+1 dimensional
reduction only applies to charged particles and apply it to all
fields, the dynamics reduces to that of the Schwinger model (1+
1 dimensional QED) for which we know the chiral condensate.
Relating this to the 3+1 dimensional condensate gives ⟨ψ̄ψ⟩ =
5.43...× 10−3, suspiciously close to what we measured.

If the Schwinger-Dyson results are correct, this suggests that
our simulations use a LLL whose xy projection covers too few
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lattice sites to be able to distinguish that our photons are really
3 + 1 dimensional, i.e. the lattice is too coarse. So we need to
simulate at lower eB where the LLL has a larger xy projection
in lattice units to test if the Schwinger-Dyson results are correct.

Of course, the lattice α is the bare value measured at lattice
spacing 1 while the Schwinger-Dyson α is the running α mea-
sured at the dynamical mass, which should be smaller. This
would make the disagreement even larger, but difficult to esti-
mate.

The main sources of systematic errors for the lattice calculation
are the continuation to m = 0, and those related to the ‘flavour’
symmetry violations associated with using (rooted) staggered
fermions. Other sources include the momentum cutoff provided
by the lattice, which is required, since QED is presumably only
an effective field theory and does not have an ultraviolet com-
pletion.

The approximations used to justify the truncations used to make
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the Schwinger-Dyson approach tractable can only be justified
for small α. It is quite possible that α = 1/5 is large enough
that these approximations have broken down.

Although the lattice and Schwinger-Dyson estimates of the chi-
ral condensate differ by between 1 and 2 orders of magnitude at
α = 1/5 this should be compared with the difference between
the value of the dynamical electron masses at α = 1/137 and
at α = 1/5, which is more than 30 orders of magnitude.
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Discussions and Conclusions

• Our simulations of Lattice QED in a constant magnetic field
using the RHMC method show evidence of a non-zero chiral
condensate in the m → 0 limit at a relatively strong coupling
(α = 1/5). However, the chiral condensate appears to be about
1.5 orders of magnitude larger than the best estimate using a
truncated Schwinger-Dyson approach, and closer to an earlier
estimate which used an unimproved rainbow approximation.

• The lattice simulations admit systematic improvements to un-
derstand the source of any disagreements between lattice and
continuum methods.

• The stored configurations allow for further measurements of
properties of QED in an external magnetic field, beyond those
that are measured during the simulations.

• We will measure the effect that QED in an external magnetic
field has on the coulomb field of a point charge using (large)
Wilson loops on stored configurations. This is expected to be
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a combination of partial screening and distortion of this electric
field, and should be visible even at physical charge α ≈ 1/137.

• Other quantities we plan to calculate on stored configurations
include the electron and photon propagators and the fermion
effective action (proportional to log(D+m)) in a small constant
external electric field.

• We are currently extending our simulations to a weaker external
magnetic field to check the dependence of the chiral conden-
sate on eB.

• QED in an external electric field is of interest because of the
Sauter-Schwinger effect (production of electron-positron pairs
from the vacuum). We will check lattice calculations against
known results in the absence of QED.

• We are now investigating how we might simulate the Sauter-
Schwinger effect, including QED, on the lattice. This is a much
more difficult problem, since the action with an external elec-
tric field becomes complex. A first attempt will be to simulate
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with external magnetic and electric fields where this external
field configuration comes from boosting a system with only an
external magnetic field.

• Future plans include to attempt to check the validity of our sim-
ulations with an external magnetic field, using improved lattice
actions.

These simulations were performed on the Bebop Cluster at
ANL, Cori at NERSC using an ERCAP(DOE) allocation, Perlmutter
at NERSC using early-user access and using ACCESS(NSF) allo-
cations on Expanse at UCSD, Bridges-2 at PSC and Stampede-2
at TACC.

One of us (DKS) would like to thank G. T. Bodwin for helpful
discussions, while JBK would like to acknowledge conversations
with A. Shovkovy and V. Yakimenko.
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Appendix: Lattice QED in an external Magnetic Field

We simulate using the non-compact gauge action

S(A) =
β

2

∑
n,µ<ν[Aν(n+µ̂)−Aν(n)−Aµ(n+ ν̂)+Aµ(n)]2

where n is summed over the lattice sites and µ and ν run from 1
to 4 subject to the restriction. β = 1/e2. The functional integral to
calculate the expectation value for an observable O(A) is then

⟨O⟩ =
1

Z

∫ ∞

−∞
Πn,µdAµ(n)e

−S(A)[detM(A+Aext)]
1/8O(A)

where M = M†M and M is the staggered fermion action in the
presence of the dynamic photon field A and external photon field
Aext describing the magnetic fieldB (or rather eB). M is defined
by

M(A+Aext) =
∑

µDµ(A+Aext) +m
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where the operator Dµ is defined by

[Dµ(A+Aext)ψ](n) =
1

2
ηµ(n){ei(Aµ(n)+Aext,µ(n))ψ(n+ µ̂)

− e−i(Aµ(n−µ̂)+Aext,µ(n−µ̂))ψ(n− µ̂)}
and ηµ are the staggered phases. Note that this treatment of the
gauge-field–fermion interactions is compact and so has period 2π
in the gauge fields.

We implement the RHMC simulation method of Clark and
Kennedy, using a (12, 12) [(15, 15)] rational approximation to M−1/8

and (20, 20) [(25, 25)] rational approximations M±1/16. To ac-
count for the range of normal modes of the non-compact gauge
action we vary the trajectory lengths τ over the range,

π

2
√
β

≤ τ ≤
4π√

2β(4 −
∑
µ cos(2π/Nµ))

,

of the periods of the modes of this gauge action.
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Aext are chosen in the symmetric gauge as

Aext,1(i, j, k, l) = −
eB

2
(j − 1) i ̸= N1

Aext,1(i, j, k, l) = −
eB

2
(N1 + 1) (j − 1) i = N1

Aext,2(i, j, k, l) = +
eB

2
(i− 1) j ̸= N2

Aext,2(i, j, k, l) = +
eB

2
(N2 + 1) (i− 1) j = N2

while Aext,3(n) = Aext,4(n) = 0. In practice we subtract the
average values of Aext, µ from these definitions. This choice
produces a magnetic field eB in the +z direction on every 1, 2
plaquette except that with i = N1, j = N2, which has the
magnetic field eB(1 − N1N2). Because of the compact nature
of the interaction, requiring eBN1N2 = 2πn for some integer
n = 0, 1, ......N1N2/2 makes the value of this plaquette indistin-
guishable from eB. Hence eB = 2πn/(N1N2) lies in the interval
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[0, π].
One of the observables we calculate is the electron contribu-

tion to the effective gauge action per site −1
8V trace[ln(M)]. For

ln(M) we use a (30, 30) rational approximation to the logarithm.
Here we use the Chebyshev method of Kelisky and Rivlin. While
this has worse errors than a Remez approach, it preserves some
of the properties of the logarithm itself, and is applicable on the
whole complex plane cut along the negative real axis.
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