Computing hadronic vacuum polarization on 0.048 fm lattices with GPUs

Gen Wang

Centre de Physique Théorique de Marseille

Budapest-Marseille-Wuppertal collaboration (BMWc)

Motivation

Colangelo et al., arXiv:2203.15810

- Experimental result is 4.2σ SM predictions (WP Aoyama et al., 2020)
- BMW20 result 707.5(2.3)(5.0) is 2.1б higher than R -ratio and consistent with experiment value at 1.5σ level
$\left.\begin{array}{rcc}\beta & a[\mathrm{fm}] & L \times T \\ \hline \hline 3.7000 & 0.1315 & 48 \times 64 \\ \hline 3.7500 & 0.1191 & 56 \times 96 \\ \hline 3.7753 & 0.1116 & 56 \times 84 \\ \hline 3.8400 & 0.0952 & 64 \times 96 \\ \hline 3.9200 & 0.0787 & 80 \times 128 \\ \hline & 4.0126 & 0.0640\end{array}\right) 96 \times 144$.

Nature 593 (2021) no. $7857,51-55$

- Omega baryon measurements
- Staggered eigensystem on GPU

Omega baryon operators

- For the Ω baryon, two staggered baryon operators in [1] and an operator which only couples to a single taste [2]
$\Omega_{\mathrm{VI}}(t)=\sum_{x_{k} \text { even }} \epsilon_{a b c}\left[S_{1} \chi_{a} S_{12} \chi_{b} S_{13} \chi_{c}-S_{2} \chi_{a} S_{21} \chi_{b} S_{23} \chi_{c}+S_{3} \chi_{a} S_{31} \chi_{b} S_{32} \chi_{c}\right](x)$
$\Omega_{\mathrm{XI}}(t)=\sum_{x_{k} \text { even }} \epsilon_{a b c}\left[S_{1} \chi_{a} S_{2} \chi_{b} S_{3} \chi_{c}\right](x)$
$\Omega_{\mathrm{Ba}}(t)=\left[2 \delta_{\alpha 1} \delta_{\beta 2} \delta_{\gamma 3}-\delta_{\alpha 3} \delta_{\beta 1} \delta_{\gamma 2}-\delta_{\alpha 2} \delta_{\beta 3} \delta_{\gamma 1}+(\cdots \beta \leftrightarrow \gamma \cdots)\right]$

$$
\sum_{x_{k} e v e n} \epsilon_{a b c}\left[S_{1} \chi_{a \alpha} S_{12} \chi_{b \beta} S_{13} \chi_{c \gamma}-S_{2} \chi_{a \alpha} S_{21} \chi_{b \beta} S_{23} \chi_{c \gamma}+S_{3} \chi_{a \alpha} S_{31} \chi_{b \beta} S_{32} \chi_{c \gamma}\right](x)
$$

- Wuppertal smearing connects 2a lattice spacing

$$
[\hat{W} v]_{x}=(1-\sigma) v_{x}+\frac{\sigma}{6} \sum_{\mu=1,2,3}\left(U_{\mu, x}^{3 d} U_{\mu, x+\mu}^{3 d} v_{x+2 \mu}+U_{u, x-\mu} U_{\mu, x-2 \mu}^{3 d, \dagger} v_{x-2 \mu}\right)
$$

- Use CPU memory as buffers for smeared propagator
- $128^{3} \times 196$ could fit into 64 V100 GPUs with around 1.6 TFlops per GPU

Four-state fits

- A four-state fit function with two positive and two negative parity states:

$$
\begin{gathered}
h(t, A, M)=A_{0} h_{+}\left(M_{0}, t\right)+A_{1} h_{-}\left(M_{1}, t\right)- \\
h_{+}(M, t)=e^{-M t}+(-t)^{t-1} e^{-M(T-t)} \\
h_{-}(M, t)=-h_{+}(M, T-t)
\end{gathered}
$$

s	$\mu_{s} \cdot 1672 \mathrm{MeV}$	$\delta \mu_{s}$
1	2012 MeV	0.10
2	2250 MeV	0.10
3	2250 MeV	0.15

- Priors
- $s=1$ motivated from Belle collaboration [1]
- $s=2,3$, from the quark model [2]
- Fits to smear to smear/point propagators
- Joint fits of above two propagators
- The results are consistent across all fits and operators

GEVP method

Construct matrix [1] from folded propagator $\mathrm{C}(\mathrm{t})$:

$$
H(t)=\left(\begin{array}{cccc}
C_{t+0} & C_{t+1} & C_{t+2} & C_{t+3} \\
C_{t+1} & C_{t+2} & C_{t+3} & C_{t+4} \\
C_{t+2} & C_{t+3} & C_{t+4} & C_{t+5} \\
C_{t+3} & C_{t+4} & C_{t+5} & C_{t+6}
\end{array}\right)
$$

Solve GEVP at two time slices:

$$
H\left(t_{a}\right) v\left(t_{a}, t_{b}\right)=\lambda\left(t_{a}, t_{b}\right) H\left(t_{b}\right) v\left(t_{a}, t_{b}\right)
$$

Extract mass from latter time slices:

$$
C(t)=v^{\dagger}\left(t_{a}, t_{b}\right) H(t) v\left(t_{a}, t_{b}\right)
$$

- Group state can be observed at very early time slice
- GEVP excited state agrees very well with prior in the 4-state fit

Omega mass

- Results on phys1 and phys2 (different quark masses) with $\mathrm{a}=0.048 \mathrm{fm}$
- GEVP fits
- Four-state fits to smear-smear
- Joint fit with smear-point/smear propagator
- All the fits are consistent with each other with noise/signal ratio < 0.1\%

- Omega baryon measurements

- Staggered eigensystem on GPU

Staggered-fermion performance with QUDA

- Staggered even-even eigensystem as preconditioning for light quark CG inversion
- Only 64 GPUs needed
- Need 512 GPUs to solve the eigensystem
- All double precision eigenvectors on GPU
- Cost even more to save the eigenvectors to disc

Quda Scaling

[I] M. A. Clark, R. Babich, K. Barros, R. Brower, C. Rebbi and et. al. "https:// github.com/lattice/quda"
[2] M.A. Clark, Chulwoo Jung, C. Lehner, EPJ Web Conf. 175 (2018) 14023, ar Xiv:1710.06884

Eigensystem compression

1) Compute N basis vectors with lowest eigen values

$$
\vec{v}_{i}^{N} \rightarrow V \times s \times c
$$

2) For a given block ($4 \times 4 \times 4 \times 4$), create a locally orthogonal basis with the N basis vectors

$$
\vec{v}_{i}^{N} \rightarrow L_{B} \times \vec{B} \text { with } L_{B}=V \times s \times c / B \quad \vec{u}=\left[\sum_{n=0}^{N} a_{n}^{b} \vec{B}_{n}^{b}\right]_{b \in L_{B}}+\vec{X}_{u}
$$

3) Compress ratio

$$
\text { Ratio }=\frac{4 \times 4 \times 4 \times 4 \times s \times c}{N}
$$

4) Solve the K basis vectors on the coarse Grid to obtain the full set of eigenvectors
5) Compute the eigenvalues of the K vectors

Staggered eigensystem compression

- Compute $\mathrm{N}+\mathrm{K}=128+1072$ full eigen vectors
- Use $\mathrm{N}=128$ as the basis to compress $\mathrm{K}=$ 1072 vectors
- Calculate the residual of reconstructed K's

$$
\begin{aligned}
& r \equiv\left\|\vec{u}_{d}-\left(\vec{u}_{d}^{\dagger} \vec{u}^{\prime}\right) \vec{u}^{\prime}\right\|^{-1 / 2}, \vec{u}_{d}=D_{e o} D_{o e} \vec{u}^{\prime} \\
& \qquad \vec{u}^{\prime}=\vec{u}-\vec{X}_{u} \\
& \text { - Two step of CG corrections }
\end{aligned}
$$

$$
\mathrm{D}_{e o} D_{o e} \vec{u}^{\prime \prime}=\vec{u}^{\prime}, D_{e o} D_{o e} \vec{u}^{\prime \prime \prime}=\vec{u}^{\prime \prime}
$$

- Calculate the residual of $\mathrm{u}^{\prime \prime}$

Conclusions

- Omega mass on 0.048 fm lattice shows consistent results across different fit methods
- Eigensystem compression on staggered fermion is promising for light quark measurements on GPUs

Thank You

