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sextet model -function  defined in infinite volume     approached from p-regime


step 1   (a) select target renormalized coupling  on the GF held fixed at several lattice spacings  

            (b) at each lattice spacing in the p-regime calculate  on the flow at several   

                 fermion masses, for several L at each m


step 2    at each lattice spacing for each m take L  limit of  


step 3    at target  take chiral limit  at each lattice spacing for 


step 4    repeat for 3 lattice spacings and take  continuum limit of 

β

g2

t dg2 /dt

→ ∞ Mπ, t0(g2), tdg2 /dt

g2 m → 0 t0, tdg2 /dt

a2 /t → 0 β = tdg2 /dt

original sextet algorithm for  :β(t(g2)) = t dg2/dt

Toward a novel determination of the strong QCD coupling at the Z-pole Chik Him Wong

mass deformations < of the p-regime in the chiral symmetry breaking phase [3]. An alternative
implementation of the infinite-volume V-function through C ·362

/3C is applied here using simulations
with massless fermions set in finite lattice volumes and extrapolated to the infinite lattice volume
limit at fixed lattice spacing. Tests are reported here in SU(3) Yang-Mills gauge theory and the
ten-flavor QCD model based on simulations directly at < = 0. The infinite-volume limit is taken at
fixed reference values of the gradient flow time C/02 before the cutoff 0 is eliminated in the 02

/C ! 0
continuum limit. This lattice algorithm was tested earlier in the ten-flavor and twelve-flavor BSM
theories [4] and in the two-flavor QCD model [5] .

2. Outline

Test results are reported in Section 3 for the SU(3) Yang-Mills gauge sector of QCD without
dynamical fermions. The three-loop V-function of Harlander and Neumann is used in the gradient
flow based renormalization scheme to connect the ⇤MS scale of the SU(3) Yang-Mills gauge sector
with the nonperturbative flow time scale C0, or the equivalent Sommer scale A0. Similarly, in Section
4, the ⇤MS scale is connected with a selected nonperturbative scale in the ten-flavor theory. The two
tests are pilot studies in applying the new lattice based nonperturbative V-function to high precision
determination of the strong coupling UB (</ ) at the Z-boson pole in QCD with three massless
fermion flavors. This goal is an important alternative to results from the finite volume based step
V-function of the Alpha collaboration. Work, not reported here, is ongoing on application of the
method directly to QCD with three massless fermion flavors.

3. Precision tests of the Yang-Mills sector of QCD without dynamical fermions

Algorithmic implementation of the infinite-volume V-function through C · 362
/3C is applied

in this section to new tests in the SU(3) Yang-Mills gauge sector of QCD without dynamical
fermions. The infinite-volume limit is taken at fixed reference values of the gradient flow time
C/02 in lattice units 0 before the cutoff 0 is eliminated in the 02

/C ! 0 limit. To demonstrate
achievable high precision, we present an efficient and accurate implementation of the algorithm
where the derivative 362

/3C with respect to the flow time variable C/02 is approximated numerically
by five-point discretization in the small flow time step n ,

[�62
(C + 2n) + 862

(C + n) � 862
(C � n) + 62

(C � 2n)]/(12n) = 362
/3C + O(n4

) . (1)

The discrete flow time step n in Eq. (1) is used in an adaptive integration scheme of the gradient
flow equations on the lattice with the required accuracy level. For cross-checks, we also use in the
lattice analysis spline based determination of the V-function C · 362

/3C and a robust interpolation
method of derivatives from a scheme introduced by Akima [6].

The algorithm of the lattice analysis has three steps:

Step 1: The first step is applied to a large set of lattice ensembles in the broad range of 39 bare
gauge couplings 6/62

0 at linear volume sizes ! = 32, 36, 40, 48, 64 with ! = 80 and ! = 96 added
for cross checks at a few select couplings 6/62

0 = 4.81, 6.36, 7.8. At each ! and at each of the 39
bare gauge couplings 6/62

0 we measure the renormalized coupling 62
(C) and the V-function defined

as C · 362
/3C over discretised small step increments n of the gradient flow time C/02, as given in
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f (5)(x) ⋅ ϵ4
checked by 7-point stencil

Since the goal is the infinite volume beta function, it is necessary to correct for finite volume
dependence. We use an ansatz with an infinite sum g1 of Bessel functions dependent on the aspect
ratio Lt/Ls of the lattice volume to account for Goldstone bosons wrapping around the finite vol-
ume [15] e.g. Mπ(L) = Mπ + cMg1(MπL) where the complicated sum g1 is evaluated numerically. At
1-loop in chiral perturbation theory cM = M2

π/(64π2F2
π), we leave the prefactor cM of the g1 function

as a free parameter to be fitted. In Figures 2 and 3 we show examples of such infinite volume extrapo-
lations for the Goldstone boson mass, the scale t0 and the corresponding beta function. These figures
are typical: the volume effect is relatively small but visible and is well described by the ansatz. Note
that the infinite volume mass Mπ is first determined by the Goldstone boson volume fit and is then
used as one of the inputs for the t0 and beta function volume fits.
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Figure 3. (left) Infinite
volume extrapolation of the
beta function at the
renormalized coupling
g2(t0) = 6.7. (right) Chiral
extrapolation of the scale t0

as a function of M2
π . The

cyan data points are not
included in the fit.

The next natural step is the extrapolation to zero fermion mass at fixed bare coupling. From [16]
if the smearing radius

√
8t is small compared to the Goldstone boson Compton wavelength, a chiral

expansion gives

t0 = t0,ch

(
1 + k1

M2
π

(4π f )2 + k2
M4
π

(4π f )4 log
(

M2
π

µ2

)
+ k3

M4
π

(4π f )4

)
(3)

where f is the Goldstone boson decay constant in the chiral limit. We show in Figure 3 an example
of such a chiral fit of the infinite-volume t0 data. We do not have sufficient data at all lattice spacings
for a quadratic fit in M2

π or to fit the chiral logarithm, hence we use a linear fit in M2
π for the data at

the lighter masses. At this leading order, linear dependence in M2
π is equivalent to linear dependence

in the fermion mass m itself, extrapolating in either variable to the chiral limit should give consistent
results. We show in Figure 4 the results of linear fits in the mass m at the same bare coupling, which
are indeed consistent with extrapolating in M2

π. The determination of the scale in the chiral limit
is t0/a2 = 6.20 ± 0.14 at this bare coupling 6/g2

0 = 3.20, which corresponds to our coarsest lattice
spacing.

The entire procedure is repeated for two other sets of ensembles: 6/g2
0 = 3.25 corresponding to

our intermediate lattice spacing, and 6/g2
0 = 3.30, our finest lattice spacing. We hold the renormalized

coupling g2(t0) = 6.7 fixed, find the corresponding t0/a2 and beta function values for a variety of
lattice volumes and fermion masses, fit their finite-volume dependence at fixed mass and then extrap-
olate to the chiral limit. The final step is shown in Figures 5 and 6. We see that estimates of the
chiral limit scale t0/a2 are 10.48± 0.23 and 15.85± 0.46 for the intermediate and fine lattice spacings
respectively, giving an overall change of ≈ 1.6 in lattice spacing from coarsest to finest ensembles.
The chiral limit of the beta function shows modest cutoff effects on the order of 10%, which makes
the continuum extrapolation mild. Note that a larger choice of the renormalized coupling to define the
scale e.g. g2(t0) = 8 would give a larger value of t0/a2, which might not be possible to accommodate
at the finest lattice spacing such that the finite-volume dependence could be removed. On the other
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Figure 4. Chiral extrapolations of (left) the scale t0 and (right) the beta function in the fermion mass m.

hand too small a value of g2(t0) would give much larger lattice artifacts, hence the choice g2(t0) = 6.7
balances these two considerations.
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Figure 5. Similar to Figure 4, chiral extrapolations at 6/g2
0 = 3.25, our intermediate lattice spacing.

We show the last step, the continuum extrapolation of the beta function, in Figure 7. In the chiral
limit we expect the leading cutoff effect to be O(a2), hence we fit the data linearly in a2/t0, with only
three data points a more extended fitting form is not possible. Because the fitting variable t0 has its
own error, this effect in included in the fit as described in [17], with the χ2 function being generalized
to include the error in both x and y coordinates

χ2 =

n∑

k=1



(Xk − xk)2

σ2
x,k

+
(Yk − yk)2

σ2
y,k


 , (4)

where xk and yk are the data pairs with their respective errors σx,k and σy,k, and Yk = c · Xk + d is
the fitting form with c and d as the parameters to be determined. Using this form, our result for the
infinite-volume infinitesimal beta function at g2 = 6.7 is β(g2) = 0.548 ± 0.047. Any physical target,
like the beta function in this work, requires appropriate orders of the chiral and continuum limits as

5

EPJ Web of Conferences 175, 08027 (2018) https://doi.org/10.1051/epjconf/201817508027
Lattice 2017

if a light composite scalar particle, perhaps a Higgs impostor, exists in such a model. Given the
large computational resources each such study requires, a beta function measurement which can take
advantage of pre-exisiting particle spectrum type gauge ensembles would be very valuable, since (a)
it would involve negligible additional computational cost, (b) the beta function would be measured
at renormalized gauge couplings strong enough to see if chiral symmetry could be spontaneously
broken in the chiral limit, and (c) it would complement independent beta function measurements from
simulations directly at zero fermion mass. In this report we describe such a technique. We apply it in
the context of near-conformal gauge theories, the method can just as well be applied to other gauge
theories such as QCD.

2 Gradient flow and step-scaling in finite volume

The gradient flow dAµ/dt = DνFνµ defines the gauge field Aµ(t) at flow time t. Perturbatively, the
action density E = (Fa

µν)2/4 has an expectation value

〈E〉 = 3(N2 − 1)g2

128π2t2

{
1 + c1g

2 + O(g4)
}

(1)

in the MS scheme for SU(N) gauge theory where the renormalized coupling g is defined at the renor-
malization group scale µ = 1/

√
8t. This motivates a non-perturbative definition of the renormalized

coupling

g2(t) ≡ 1
N

(
128π2

3(N2 − 1)

)
t2〈E〉latt, (2)

where the expectation value of the action density at flow time t is measured via lattice simulations and
the normalization factor N depends on the choice of boundary conditions. As the action density is a
bulk quantity, the observable 〈E〉 can be measured non-perturbatively very precisely.

One way to measure the beta function in finite volume is via step-scaling: in a physical volume
L4, the flow is adjusted holding c =

√
8t/L fixed, each choice of c corresponding to a particular

renormalization group (RG) scheme. The RG scale µ is now in terms of the only remaining scale L.
For a given lattice volume (L/a)4 the bare gauge coupling (and hence the lattice spacing) is adjusted
such that the renormalized coupling has a chosen fixed value e.g. g2

c(L/a) = 6. Keeping the lattice
spacing a fixed, a second simulation on a larger volume e.g. (sL/a)4 with s = 2 gives the discrete
step β(g2

c) = {g2
c(sL/a) − g2

c(L/a)}/ log(s2) i.e. the response of the gauge coupling as the RG scale is
changed by a finite amount. In this context discrete has nothing to do with the lattice discretization.
However the beta function will contain lattice artifacts which must be removed. To take the continuum
limit, the procedure is repeated for a sequence of lattice volumes e.g. L/a = 16, 18, 20, 24, 28 on each
of which g2

c(L/a) = 6 is tuned via the bare coupling and larger volumes e.g. 2L/a = 32, 36, 40, 48, 56
from which the discrete step is measured and the limit a/L → 0 is obtained. The final result is the
continuum finite-step beta function in finite volume. This approach, widely used in QCD, has already
been applied in the context of near-conformal gauge theories [5–11].

3 Beta function in infinite volume

The main message of this report is to describe an alternative approach. Since the gradient flow defines
a renormalized coupling g2(t) at any flow time t, one can also directly measure on the same ensemble
of gauge configurations the derivative t · dg2/dt = −µ2 · dg2/dµ2 i.e. the usual beta function with
an infinitesimal change in the RG scale at any particular g2 value. Note that asymptotic freedom

corresponds to t · dg2/dt > 0. In comparison to the approach at fixed c in Section 2, the flow time t is
not held fixed relative to the lattice size L/a in the new method as described in what follows. From a
sequence of ensembles with various lattice volumes, fermion masses and lattice spacings, a sequence
of limits can be taken to reach the continuum infinitesimal-step beta function in infinite volume in the
chiral limit.

We have previously generated a large set of such ensembles in our study of the particle spectrum
of two flavor sextet SU(3) gauge theory. We use staggered fermions with stout link improvement and
the Symanzik gauge action in generating the gauge configurations as described in [12]. Our previous
lattice studies of the model found a set of massless Goldstone bosons in the chiral limit separated
from massive vector, axial vector and baryonic states, with an emergent light scalar, as well as strong
evidence that the chiral condensate is non-zero at zero fermion mass [12–14]. These p-regime gauge
ensembles, already strongly indicative of near-conformal behavior, provide the basis for this beta
function computation.
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Figure 1. (left) The gradient
flow renormalized coupling
g2 and (right) its associated
beta function on a lattice
volume 563 × 96 at a
Goldstone boson mass of
mπ · a ≈ 0.08.

In Figure 1 we show the renormalized coupling g2 and its corresponding derivative t · dg2/dt for
one ensemble, a lattice volume 563 × 96 at the bare gauge coupling 6/g2

0 = 3.20 and fermion mass
ma = 0.001, corresponding to a Goldstone boson mass mπ · a ≈ 0.08. The derivative is approximated
by {−F(t+ 2ε)+ 8F(t+ ε)− 8F(t− ε)+ F(t− 2ε)}/(12ε) = dF/dt+O(ε4). As opposed to step-scaling
where the flow time t is set by the choice of c =

√
8t/L, in this method the value of the renormalized

coupling g2 is chosen and the flow time where this value is reached is measured. We show the choice
g2(t0) = 6.7, which for this ensemble occurs at t0/a2 = 5.487 ± 0.077. (Note that this does not
correspond to the choice of t0 set by t2 · 〈E〉t0 = 0.3 in the original investigation of [1].) A larger
choice of g2 gives a larger statistical error on t0, however too small a value of g2 gives a beta function
distorted by large cutoff effects, as seen on the right of Figure 1 for t < 2. These and other constraints
we describe later influence which fixed value of g2(t0) we choose to target.
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if a light composite scalar particle, perhaps a Higgs impostor, exists in such a model. Given the
large computational resources each such study requires, a beta function measurement which can take
advantage of pre-exisiting particle spectrum type gauge ensembles would be very valuable, since (a)
it would involve negligible additional computational cost, (b) the beta function would be measured
at renormalized gauge couplings strong enough to see if chiral symmetry could be spontaneously
broken in the chiral limit, and (c) it would complement independent beta function measurements from
simulations directly at zero fermion mass. In this report we describe such a technique. We apply it in
the context of near-conformal gauge theories, the method can just as well be applied to other gauge
theories such as QCD.

2 Gradient flow and step-scaling in finite volume

The gradient flow dAµ/dt = DνFνµ defines the gauge field Aµ(t) at flow time t. Perturbatively, the
action density E = (Fa

µν)2/4 has an expectation value

〈E〉 = 3(N2 − 1)g2

128π2t2

{
1 + c1g

2 + O(g4)
}

(1)

in the MS scheme for SU(N) gauge theory where the renormalized coupling g is defined at the renor-
malization group scale µ = 1/

√
8t. This motivates a non-perturbative definition of the renormalized

coupling

g2(t) ≡ 1
N

(
128π2

3(N2 − 1)

)
t2〈E〉latt, (2)

where the expectation value of the action density at flow time t is measured via lattice simulations and
the normalization factor N depends on the choice of boundary conditions. As the action density is a
bulk quantity, the observable 〈E〉 can be measured non-perturbatively very precisely.

One way to measure the beta function in finite volume is via step-scaling: in a physical volume
L4, the flow is adjusted holding c =

√
8t/L fixed, each choice of c corresponding to a particular

renormalization group (RG) scheme. The RG scale µ is now in terms of the only remaining scale L.
For a given lattice volume (L/a)4 the bare gauge coupling (and hence the lattice spacing) is adjusted
such that the renormalized coupling has a chosen fixed value e.g. g2

c(L/a) = 6. Keeping the lattice
spacing a fixed, a second simulation on a larger volume e.g. (sL/a)4 with s = 2 gives the discrete
step β(g2

c) = {g2
c(sL/a) − g2

c(L/a)}/ log(s2) i.e. the response of the gauge coupling as the RG scale is
changed by a finite amount. In this context discrete has nothing to do with the lattice discretization.
However the beta function will contain lattice artifacts which must be removed. To take the continuum
limit, the procedure is repeated for a sequence of lattice volumes e.g. L/a = 16, 18, 20, 24, 28 on each
of which g2

c(L/a) = 6 is tuned via the bare coupling and larger volumes e.g. 2L/a = 32, 36, 40, 48, 56
from which the discrete step is measured and the limit a/L → 0 is obtained. The final result is the
continuum finite-step beta function in finite volume. This approach, widely used in QCD, has already
been applied in the context of near-conformal gauge theories [5–11].

3 Beta function in infinite volume

The main message of this report is to describe an alternative approach. Since the gradient flow defines
a renormalized coupling g2(t) at any flow time t, one can also directly measure on the same ensemble
of gauge configurations the derivative t · dg2/dt = −µ2 · dg2/dµ2 i.e. the usual beta function with
an infinitesimal change in the RG scale at any particular g2 value. Note that asymptotic freedom

corresponds to t · dg2/dt > 0. In comparison to the approach at fixed c in Section 2, the flow time t is
not held fixed relative to the lattice size L/a in the new method as described in what follows. From a
sequence of ensembles with various lattice volumes, fermion masses and lattice spacings, a sequence
of limits can be taken to reach the continuum infinitesimal-step beta function in infinite volume in the
chiral limit.

We have previously generated a large set of such ensembles in our study of the particle spectrum
of two flavor sextet SU(3) gauge theory. We use staggered fermions with stout link improvement and
the Symanzik gauge action in generating the gauge configurations as described in [12]. Our previous
lattice studies of the model found a set of massless Goldstone bosons in the chiral limit separated
from massive vector, axial vector and baryonic states, with an emergent light scalar, as well as strong
evidence that the chiral condensate is non-zero at zero fermion mass [12–14]. These p-regime gauge
ensembles, already strongly indicative of near-conformal behavior, provide the basis for this beta
function computation.
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In Figure 1 we show the renormalized coupling g2 and its corresponding derivative t · dg2/dt for
one ensemble, a lattice volume 563 × 96 at the bare gauge coupling 6/g2

0 = 3.20 and fermion mass
ma = 0.001, corresponding to a Goldstone boson mass mπ · a ≈ 0.08. The derivative is approximated
by {−F(t+ 2ε)+ 8F(t+ ε)− 8F(t− ε)+ F(t− 2ε)}/(12ε) = dF/dt+O(ε4). As opposed to step-scaling
where the flow time t is set by the choice of c =

√
8t/L, in this method the value of the renormalized

coupling g2 is chosen and the flow time where this value is reached is measured. We show the choice
g2(t0) = 6.7, which for this ensemble occurs at t0/a2 = 5.487 ± 0.077. (Note that this does not
correspond to the choice of t0 set by t2 · 〈E〉t0 = 0.3 in the original investigation of [1].) A larger
choice of g2 gives a larger statistical error on t0, however too small a value of g2 gives a beta function
distorted by large cutoff effects, as seen on the right of Figure 1 for t < 2. These and other constraints
we describe later influence which fixed value of g2(t0) we choose to target.
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extrapolations of (left) the
Goldstone boson mass and
(right) the scale t0 at which
g2(t0) = 6.7, at fixed
fermion mass and bare
coupling.
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Since the goal is the infinite volume beta function, it is necessary to correct for finite volume
dependence. We use an ansatz with an infinite sum g1 of Bessel functions dependent on the aspect
ratio Lt/Ls of the lattice volume to account for Goldstone bosons wrapping around the finite vol-
ume [15] e.g. Mπ(L) = Mπ + cMg1(MπL) where the complicated sum g1 is evaluated numerically. At
1-loop in chiral perturbation theory cM = M2

π/(64π2F2
π), we leave the prefactor cM of the g1 function

as a free parameter to be fitted. In Figures 2 and 3 we show examples of such infinite volume extrapo-
lations for the Goldstone boson mass, the scale t0 and the corresponding beta function. These figures
are typical: the volume effect is relatively small but visible and is well described by the ansatz. Note
that the infinite volume mass Mπ is first determined by the Goldstone boson volume fit and is then
used as one of the inputs for the t0 and beta function volume fits.
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volume extrapolation of the
beta function at the
renormalized coupling
g2(t0) = 6.7. (right) Chiral
extrapolation of the scale t0
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The next natural step is the extrapolation to zero fermion mass at fixed bare coupling. From [16]
if the smearing radius

√
8t is small compared to the Goldstone boson Compton wavelength, a chiral

expansion gives

t0 = t0,ch

(
1 + k1

M2
π

(4π f )2 + k2
M4
π

(4π f )4 log
(

M2
π

µ2

)
+ k3

M4
π

(4π f )4

)
(3)

where f is the Goldstone boson decay constant in the chiral limit. We show in Figure 3 an example
of such a chiral fit of the infinite-volume t0 data. We do not have sufficient data at all lattice spacings
for a quadratic fit in M2

π or to fit the chiral logarithm, hence we use a linear fit in M2
π for the data at

the lighter masses. At this leading order, linear dependence in M2
π is equivalent to linear dependence

in the fermion mass m itself, extrapolating in either variable to the chiral limit should give consistent
results. We show in Figure 4 the results of linear fits in the mass m at the same bare coupling, which
are indeed consistent with extrapolating in M2

π. The determination of the scale in the chiral limit
is t0/a2 = 6.20 ± 0.14 at this bare coupling 6/g2

0 = 3.20, which corresponds to our coarsest lattice
spacing.

The entire procedure is repeated for two other sets of ensembles: 6/g2
0 = 3.25 corresponding to

our intermediate lattice spacing, and 6/g2
0 = 3.30, our finest lattice spacing. We hold the renormalized

coupling g2(t0) = 6.7 fixed, find the corresponding t0/a2 and beta function values for a variety of
lattice volumes and fermion masses, fit their finite-volume dependence at fixed mass and then extrap-
olate to the chiral limit. The final step is shown in Figures 5 and 6. We see that estimates of the
chiral limit scale t0/a2 are 10.48± 0.23 and 15.85± 0.46 for the intermediate and fine lattice spacings
respectively, giving an overall change of ≈ 1.6 in lattice spacing from coarsest to finest ensembles.
The chiral limit of the beta function shows modest cutoff effects on the order of 10%, which makes
the continuum extrapolation mild. Note that a larger choice of the renormalized coupling to define the
scale e.g. g2(t0) = 8 would give a larger value of t0/a2, which might not be possible to accommodate
at the finest lattice spacing such that the finite-volume dependence could be removed. On the other
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noted in [18]. An alternative to the approach presented here would take the chiral and continuum
limits simultaneously in terms of

√
t0 ·m and a2/t0, similar to [13]. This method is being investigated

for the beta function.
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Figure 6. Similar to Figures 4 and 5, chiral extrapolations at 6/g2
0 = 3.30, our finest lattice spacing.

4 Comparison and conclusion

The infinite volume beta function we determine is in a different scheme than the finite volume beta
function measured via step-scaling, which in turn has its own dependence on the choice of c, the ratio
of flow time to lattice volume. It is still instructive to compare these different results for the sextet
model as shown in Figure 7, where the finite volume beta function is taken from our own work in [19].
We see that the two calculations are in good agreement – the beta function is small but non-zero in
the range of renormalized couplings which, from our independent studies of the particle spectrum,
are strong enough that chiral symmetry is spontaneously broken in the chiral limit. Our recent ex-
tended study of the beta function of the twelve-flavor SU(3) model with fundamental representation
fermions [20] shows that at small values of c there is little volume dependence in the method of Sec-
tion 2. This may explain the good agreement between our infinite and finite volume beta functions at
g2 = 6.7 in the sextet model since the new beta function in some sense might be viewed as the c→ 0
limit.

The finite volume beta function, calculated directly at zero mass, starts in the perturbative regime
and moves to stronger coupling as the physical volume grows. If no infrared fixed point (IRFP) is
found i.e. a non-trivial zero of the beta function, one could argue it is simply because strong enough
coupling and large enough physical volumes have not yet been reached. However, the gauge ensem-
bles where the finite volume beta function at g2 = 6.7 could be attained are matched by p-regime
gauge configurations at the same coupling for the targeted scale but with massless fermions in the
infinite volume limit and spontaneous chiral symmetry breaking. This is demonstrated by the particle
spectrum and the eigenvalues of the Dirac operator. In this phase the theory has sufficiently strong
coupling to generate a p-regime with massive states separated from the massless Goldstone bosons,
there is no room left at stronger coupling for the theory to have a conformal spectrum of massless
states whose mass deformation would be governed by a universal anomalous dimension. This bridges
the gap between the weak and strong coupling regimes and obviates any need to continue exploring
even stronger coupling with the finite volume beta function in the hunt for an IRFP.
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Figure 7. (left) Continuum extrapolation of the beta function at g2(t0) = 6.7, yielding β = 0.548 ± 0.047 as the
continuum result. (right) Comparison of this calculation with previous finite volume beta function measurements.
In the gradient flow scheme in infinite volume, the 3-loop beta function [21] has an infrared fixed point at g2 ≈ 6.8,
in the MS scheme the corresponding 3-loop beta function has a zero at g2 ≈ 6.3.

Our beta function calculations, consistent with one another, contradict other lattice studies of the
finite volume beta function for the sextet model [22, 23]. We believe this is because of lattice artifacts
whose effects were not fully removed in those works. The range of lattice volumes we employ is
larger than in either of those studies, which allows us to push further towards the continuum. This is
mostly an issue of systematic errors, not a question of underestimated statistical errors, and should be
accounted for without any speculation about differing universality classes for different fermion dis-
cretizations, contrary to the claims made in [24]. Our beta function determinations are also consistent
with our large-volume non-perturbative study of the particle spectrum, which shows that chiral sym-
metry is spontaneously broken in the massless fermion limit, with associated Goldstone bosons and a
spectrum of massive states [12–14]. This is inconsistent with other studies of the sextet model using
Wilson fermion discretization, which interpret the sextet model as being infrared conformal [25].

In comparison to SU(3) gauge theory with Nf massless fermion flavors in the fundamental repre-
sentation, the sextet model appears to have near-conformal behavior, with a lighter composite scalar
than in the Nf = 4 and 8 theories. Our first investigations of the anomalous mass dimension, measured
via the Dirac operator eigenvalues, indicates that it could be sufficiently large to be phenomenologi-
cally viable [26]. If this first sign holds, and is combined with the other properties of the sextet model,
the theory continues to be a relevant and interesting candidate for explicit realization of the composite
Higgs paradigm. However the entangled dynamics of the light scalar and the light Goldstone pion
with need for a generalized framework in chiral perturbation theory remains an unsolved problem.
This is under active investigation as addressed in [27] with potential implications for the beta function
analysis presented here.
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step 4   continuum limit of a2 /t → 0 β = tdg2 /dt

step 4 

The main idea behind the new infinite volume based  function from the p-regime:


• If the limiting  function from the p-regime matches the infinite volume based  function, 
calculated directly with massless fermions, the model is probably not conformal with confidence


  


• There was concern about the reliability of the infinite volume extrapolation of the direct  beta 
function and not implemented in the sextet model with insufficient data. 


• Before 2019, experimenting with various m=0 direct implementations of  , tests worked better 

with mored data  in the multi-flavor models after finding the  scheme at fixed lattice 
spacing a and fixed t, with hints from scaling arguments, but remained unpublished. 


     
• Recent high precision data show the scaling behavior at strong coupling as well:
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noted in [18]. An alternative to the approach presented here would take the chiral and continuum
limits simultaneously in terms of

√
t0 ·m and a2/t0, similar to [13]. This method is being investigated

for the beta function.
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Figure 6. Similar to Figures 4 and 5, chiral extrapolations at 6/g2
0 = 3.30, our finest lattice spacing.

4 Comparison and conclusion

The infinite volume beta function we determine is in a different scheme than the finite volume beta
function measured via step-scaling, which in turn has its own dependence on the choice of c, the ratio
of flow time to lattice volume. It is still instructive to compare these different results for the sextet
model as shown in Figure 7, where the finite volume beta function is taken from our own work in [19].
We see that the two calculations are in good agreement – the beta function is small but non-zero in
the range of renormalized couplings which, from our independent studies of the particle spectrum,
are strong enough that chiral symmetry is spontaneously broken in the chiral limit. Our recent ex-
tended study of the beta function of the twelve-flavor SU(3) model with fundamental representation
fermions [20] shows that at small values of c there is little volume dependence in the method of Sec-
tion 2. This may explain the good agreement between our infinite and finite volume beta functions at
g2 = 6.7 in the sextet model since the new beta function in some sense might be viewed as the c→ 0
limit.

The finite volume beta function, calculated directly at zero mass, starts in the perturbative regime
and moves to stronger coupling as the physical volume grows. If no infrared fixed point (IRFP) is
found i.e. a non-trivial zero of the beta function, one could argue it is simply because strong enough
coupling and large enough physical volumes have not yet been reached. However, the gauge ensem-
bles where the finite volume beta function at g2 = 6.7 could be attained are matched by p-regime
gauge configurations at the same coupling for the targeted scale but with massless fermions in the
infinite volume limit and spontaneous chiral symmetry breaking. This is demonstrated by the particle
spectrum and the eigenvalues of the Dirac operator. In this phase the theory has sufficiently strong
coupling to generate a p-regime with massive states separated from the massless Goldstone bosons,
there is no room left at stronger coupling for the theory to have a conformal spectrum of massless
states whose mass deformation would be governed by a universal anomalous dimension. This bridges
the gap between the weak and strong coupling regimes and obviates any need to continue exploring
even stronger coupling with the finite volume beta function in the hunt for an IRFP.
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Figure 7. (left) Continuum extrapolation of the beta function at g2(t0) = 6.7, yielding β = 0.548 ± 0.047 as the
continuum result. (right) Comparison of this calculation with previous finite volume beta function measurements.
In the gradient flow scheme in infinite volume, the 3-loop beta function [21] has an infrared fixed point at g2 ≈ 6.8,
in the MS scheme the corresponding 3-loop beta function has a zero at g2 ≈ 6.3.

Our beta function calculations, consistent with one another, contradict other lattice studies of the
finite volume beta function for the sextet model [22, 23]. We believe this is because of lattice artifacts
whose effects were not fully removed in those works. The range of lattice volumes we employ is
larger than in either of those studies, which allows us to push further towards the continuum. This is
mostly an issue of systematic errors, not a question of underestimated statistical errors, and should be
accounted for without any speculation about differing universality classes for different fermion dis-
cretizations, contrary to the claims made in [24]. Our beta function determinations are also consistent
with our large-volume non-perturbative study of the particle spectrum, which shows that chiral sym-
metry is spontaneously broken in the massless fermion limit, with associated Goldstone bosons and a
spectrum of massive states [12–14]. This is inconsistent with other studies of the sextet model using
Wilson fermion discretization, which interpret the sextet model as being infrared conformal [25].

In comparison to SU(3) gauge theory with Nf massless fermion flavors in the fundamental repre-
sentation, the sextet model appears to have near-conformal behavior, with a lighter composite scalar
than in the Nf = 4 and 8 theories. Our first investigations of the anomalous mass dimension, measured
via the Dirac operator eigenvalues, indicates that it could be sufficiently large to be phenomenologi-
cally viable [26]. If this first sign holds, and is combined with the other properties of the sextet model,
the theory continues to be a relevant and interesting candidate for explicit realization of the composite
Higgs paradigm. However the entangled dynamics of the light scalar and the light Goldstone pion
with need for a generalized framework in chiral perturbation theory remains an unsolved problem.
This is under active investigation as addressed in [27] with potential implications for the beta function
analysis presented here.
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step 4   continuum limit of a2 /t → 0 β = tdg2 /dt

step 4 
The main idea behind the new infinite volume based  function from the p-regime:


• If the limiting  function from the p-regime matches the infinite volume based  function, calculated 
directly with massless fermions, the model is probably not conformal with added confidence in the analysis.


• There was concern about the reliability of the infinite volume extrapolation of the direct  beta function and 
not implemented in the sextet model with insufficient data. 


• Before 2019, experimenting with various m=0 direct implementations of  , tests worked better with mored 
data  in the multi-flavor models after finding the  scheme at fixed lattice spacing and fixed t, with hints 
from scaling arguments, but remained unpublished. High precision data show that scaling behavior at strong 
coupling as well.


• Lattice 2019 surprise: first direct nf=2 calculation of   goes public for the first time   1910.06408    

     switching  fitting of the talk to  in the publication.


•  We chose to immediately publish our previously unpublished multi-flavor results of the  fitting procedure 
for  as shown in 1912.07653.


• Back to the future? How to apply the  and   methods to the nf=10 model for testing if its chiral 

symmetry  is broken in the  limit? (Recent announcement claiming IRFP in the model).   arXiv:2306.07236

βmf→0
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βmf =0
a2 /L2 → 0 a4 /L4 → 0

a4 /L4 → 0
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βmf =0 βmf →0
m → 0

https://arxiv.org/abs/1711.04833
https://arxiv.org/abs/1910.06408
https://arxiv.org/abs/1912.07653
https://arxiv.org/abs/2306.07236


main purpose of the talk: to highlight results and questions about the new infinite volume based -function 

on the gradient flow


• Lattice 2017: the origin of the method and the challenge of going to infinite volume


•Applications to the nf=10 BSM model including the newly claimed IRFP      arXiv:2306.07236


•Short summary of recent focus: the scale dependent  coupling at the Z-pole in QCD


β

αs

https://arxiv.org/abs/2306.07236


From ten-flavor tests of the �-function to ↵s at the Z-pole Kieran Holland and Julius Kuti
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Figure 4: Results from LatHC staggered fermions at c = 0.275 are shown in the two upper panels with fits
from [1] also marked. Our own fits at c = 0.275 to DWF data from [1] are shown in the two lower panels.
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J
H
E
P
0
7
(
2
0
2
1
)
2
0
2

Nf β m L/a amπ afπ am" t0/a
2 mπL fπL

7 2.88 0.0149 24 0.2583(5) 0.0612(2) 0.478(3) 2.45(2) 6.20(1) 1.469(5)
0.0122 28 0.2327(4) 0.0565(1) 0.449(2) 2.70(2) 6.52(1) 1.583(4)
0.0100 28 0.2092(4) 0.0519(1) 0.410(4) 2.99(2) 5.86(1) 1.452(4)
0.0086 32 0.1932(4) 0.04904(9) 0.389(4) 3.17(2) 6.18(1) 1.569(3)

3.00 0.0147 28 0.2353(8) 0.0520(2) 0.406(3) 3.92(2) 6.59(2) 1.455(4)
0.0125 28 0.2164(4) 0.0480(2) 0.386(4) 4.28(4) 6.06(1) 1.345(4)
0.0100 32 0.1914(5) 0.0443(2) 0.333(6) 4.77(3) 6.12(2) 1.418(7)
0.0084 36 0.1738(5) 0.0412(1) 0.320(6) 5.12(3) 6.26(2) 1.484(5)

3.20 0.0115 36 0.1741(6) 0.0359(2) 0.284(6) 8.74(6) 6.27(2) 1.292(6)
0.0100 36 0.1630(8) 0.0333(2) 0.269(4) 9.65(6) 5.87(3) 1.198(7)
0.0085 40 0.1479(3) 0.0319(2) 0.260(4) 10.07(9) 5.92(1) 1.277(7)
0.0077 40 0.1403(5) 0.0305(2) 0.241(3) 10.3(1) 5.61(2) 1.219(7)

8 2.58 0.0149 24 0.2619(5) 0.0567(2) 0.448(4) 3.67(3) 6.28(1) 1.361(5)
0.0124 28 0.2355(5) 0.0515(2) 0.402(2) 4.30(5) 6.59(1) 1.442(4)
0.0099 28 0.2096(8) 0.0463(1) 0.366(3) 5.01(5) 5.87(2) 1.296(4)
0.0087 32 0.1945(5) 0.0432(1) 0.337(3) 5.55(3) 6.23(2) 1.383(4)

2.68 0.0145 28 0.2400(7) 0.0492(2) 0.380(8) 5.35(5) 6.72(2) 1.378(5)
0.0124 28 0.2207(6) 0.0460(2) 0.361(2) 5.86(6) 6.18(2) 1.288(4)
0.0103 32 0.1983(5) 0.0417(1) 0.332(4) 6.76(5) 6.34(2) 1.336(4)
0.0083 36 0.1750(5) 0.0375(1) 0.296(3) 7.97(7) 6.30(2) 1.350(4)

2.82 0.0120 36 0.1959(6) 0.0387(2) 0.300(3) 9.13(8) 7.05(2) 1.394(6)
0.0100 36 0.1770(5) 0.0352(1) 0.281(3) 10.4(1) 6.37(2) 1.269(5)
0.0080 36 0.1583(6) 0.0314(3) 0.253(4) 11.9(2) 5.70(2) 1.132(9)
0.0075 40 0.1515(5) 0.0302(1) 0.243(2) 13.0(1) 6.06(2) 1.207(5)

9 2.28 0.0164 28 0.2672(5) 0.0526(2) 0.406(2) 4.66(4) 7.48(1) 1.472(4)
0.0128 32 0.2311(5) 0.0452(1) 0.355(3) 6.12(6) 7.39(2) 1.447(4)
0.0100 36 0.1994(3) 0.0393(1) 0.302(3) 7.86(9) 7.18(1) 1.416(4)
0.0090 40 0.1875(2) 0.03703(9) 0.285(3) 8.81(7) 7.500(9) 1.481(4)

2.47 0.0140 32 0.2198(5) 0.0400(1) 0.315(2) 8.98(8) 7.03(2) 1.281(4)
0.0110 36 0.1906(5) 0.0345(2) 0.275(2) 11.5(2) 6.86(2) 1.243(6)
0.0090 40 0.1684(6) 0.0309(2) 0.244(2) 13.8(2) 6.74(2) 1.234(7)
0.0070 48 0.1442(3) 0.0270(1) 0.210(2) 17.6(2) 6.92(2) 1.296(5)

2.66 0.0200 28 0.248(1) 0.0423(2) 0.340(1) 9.4(1) 6.95(3) 1.185(7)
0.0150 32 0.2078(7) 0.0351(2) 0.287(2) 12.8(2) 6.65(2) 1.124(7)
0.0120 40 0.1785(8) 0.0313(2) 0.249(2) 15.6(3) 7.14(3) 1.250(7)
0.0098 48 0.1568(5) 0.0277(2) 0.222(2) 19.3(2) 7.53(2) 1.331(7)

10 2.10 0.0165 32 0.2423(7) 0.0416(2) 0.326(2) 7.00(7) 7.75(2) 1.330(5)
0.0126 36 0.2037(7) 0.0342(1) 0.275(1) 10.2(1) 7.33(2) 1.230(5)
0.0100 40 0.1801(9) 0.0297(2) 0.241(2) 13.4(3) 7.20(3) 1.186(6)
0.0081 48 0.1535(6) 0.02567(9) 0.202(2) 17.4(2) 7.37(3) 1.232(4)

2.30 0.0185 32 0.2386(7) 0.0390(1) 0.310(1) 9.0(1) 7.63(2) 1.247(5)
0.0142 36 0.2005(9) 0.0320(1) 0.259(2) 13.4(2) 7.22(3) 1.152(5)
0.0112 40 0.174(1) 0.0277(1) 0.227(1) 17.4(3) 6.95(4) 1.106(4)
0.0091 48 0.1502(9) 0.0243(2) 0.194(2) 21.3(4) 7.21(4) 1.166(7)

2.50 0.0233 28 0.2584(9) 0.0393(3) 0.328(2) 10.0(2) 7.23(3) 1.100(8)
0.0178 36 0.2106(5) 0.0332(2) 0.267(2) 13.5(3) 7.58(2) 1.194(8)
0.0141 40 0.1800(7) 0.0282(1) 0.227(2) 18.2(3) 7.20(3) 1.128(6)
0.0114 48 0.1571(6) 0.0249(1) 0.202(1) 22.4(2) 7.54(3) 1.195(7)

Table 3. Data used for the chiral-continuum extrapolations. The temporal extent of the lattices
were always twice L/a.
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were always twice L/a.
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FIG. 6. Comparing the di↵erence �S � �W (green) with the
standard deviation � of the S operator on volume 243 ⇥ 48
for the C23 flow. We plot ±

p
2� (solid red curves) and ±2�

(dashed red curves). Together with a similar plot for volume
283 ⇥ 56, these determine the bounds of validity g2max3 and
g2max2 in Table 2.

Flow g2min g2max1 g2max2 g2max3

Sym 6.5 18.0 8.5 7.5

Wil 7.0 20.0 16.0 10.0

C23 8.0 21.0 17.0 16.0

C13 12.0 23.0 23.0 21.0

TABLE 2. Ranges of g2 in which each flow is included in the
final result for �(g2). g2min and g2max1 result from the interpo-
lations, while g2max2 and g2max3 come from further demanding
consistency between the continuum extrapolations �S and �W

(see Fig. 6). We quote all numbers with a resolution of 0.5.
g2min and g2max2 give the ranges reflected in Fig. 1. g2max3,
rather than g2max2, gives the stricter bounds shown in Fig. 7.

IV. ANOMALOUS DIMENSIONS

The calculation of anomalous dimensions follows that
of Ref. [16] closely, with the addition of an extrapolation
to infinite volume as described in Sec. III A above. We
calculated the two-point function of each flowed mesonic
density X 0 with its unflowed source X,

hX(0)X 0(t)i ⇠ t�(d+⌘+�)/2 . (4.1)

Here � is the desired anomalous dimension of the op-
erator and ⌘/2 is the anomalous dimension of the the
elementary fermion field. To eliminate ⌘, we divide
hX(0)X 0(t)i by the two-point function of the conserved
vector current. Defining the ratio

R(t) =
hX(0)X 0(t)i
hV (0)V 0(t)i , (4.2)

we have

R(t) ⇠ t��/2 , (4.3)

FIG. 7. Same as Fig. 1, but with stricter bounds on the
domain of validity of each flow. See Table 2.

FIG. 8. The anomalous dimension of the mass (scalar) oper-
ator, �m, and that of the tensor operator, �T , obtained with
Wilson and C13 flows, extrapolated to the continuum limit
and to infinite volume.

and hence � can be extracted from the logarithmic deriva-
tive,

� = �2
t

R

@R

@t
. (4.4)

We require
p
8t ⌧ x4, where x4 is the separation of X

and X 0 in Euclidean time. This means that x4 is kept
large compared to the smearing of the operators by the
flow. The extrapolation from L/a = 24, 28 to L = 1, the
interpolation in g2 at fixed t, and the continuum extrap-
olation t/a2 ! 1 are as described above and in Ref. [16].
Final results for the mass anomalous dimension and

for that of the tensor density are shown in Fig. 8. In the
weak-coupling region, the anomalous dimensions agree
with one-loop perturbation theory,

�m =
6g2C2

16⇡2
, �T = �1

3
�m , (4.5)

where C2 = 4/3 is the quadratic Casimir operator of the

flavor system exhibits a fast running β function close to the
perturbative 1-loop prediction, whereas for Nf ¼ 12 our
step-scaling calculation shows that the β function is small
in magnitude and identifies an infrared fixed point (IRFP)
in the range 5.2 ≤ g2c ≤ 6.4 using the c ¼ 0.250 renorm-
alization scheme.
In this work we present a detailed analysis of our step-

scaling calculation for ten fundamental flavors. Compared
to our results published in Refs. [14,15], we performed
additional simulations at stronger bare couplings and added
further volumes to improve the infinite volume continuum
limit extrapolation. The additional simulations allowed
us to increase the explored coupling range for c ¼ 0.300
from g2c ≈ 6.5 in Refs. [14,15] to g2c ≳ 11. At that strong
coupling we also discovered previously unaccounted lattice
artifacts. In an accompanying paper we discuss that
gradient flow on coarse configurations can promote dis-
locations to instantonlike objects. This introduces a non-
perturbative lattice artifact to the step-scaling beta function
which leads to incorrect continuum limit extrapolations
[25]. We find that the perturbatively preferable Symanzik
and Zeuthen flows introduce many more of these artifacts.
In order to minimize this artifact, we choose Wilson flow as
our preferred analysis.
In Fig. 1 we present our final result of the continuum

limit extrapolated GF step-scaling β function in the
renormalization schemes c ¼ 0.300, 0.275, and 0.250.
Our predictions are labeled “MDWF” (for Möbius domain
wall fermions) and shown by green bands. For the c ¼
0.300 scheme we also show the nonperturbative lattice
determinations by Chiu (blue symbols) [26–28] and LatHC
(gray band) [21,29,30].1 In addition we display by the
yellow/orange/pink/purple/red lines the MS perturbative
predictions at 1–5-loop order [31–34].
Comparing the different nonperturbative lattice predic-

tions in the c ¼ 0.300 scheme, we find that our result is in
perfect agreement at weak coupling (g2c ≲ 5.8) with the
findings by Chiu and sits just below LatHC’s result in the
range 5.0≲ g2c ≲ 8. At present only our calculation has
reached the 8.0≲ g2c ≲ 11.0 range where we observe a
down-turn of the β function pointing to a possible IRFP
around g2c ∼ 13. Our nonperturbative results suggest that
Nf ¼ 10 is likely conformal.
The bottom two panels of Fig. 1 show our continuum

limit predictions in the c ¼ 0.275 and 0.250 schemes. The
results reveal that the GF step-scaling β-function exhibits a
dependence on the renormalization scheme parameter c.
However, cutoff effects on the finite volume step-scaling
function are more severe at smaller c. Unfortunately, our
available data set does not allow to rigorously scrutinize our
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FIG. 1. Our final results for GF step-scaling function for
SU(3) with ten fundamental flavors using the renormalization
schemes c ¼ 0.300, 0.275, and 0.250 (from top to bottom).
The green bands show our result based on domain wall
fermions in comparison to perturbative predictions (yellow/
orange/pink/purple/red) lines [31–34] and other lattice deter-
minations [21,26–30] in the c ¼ 0.300 scheme. Lattice correc-
tions due to small flow time in the c ¼ 0.250 scheme could be
significant, affecting the continuum limit shown on the last
panel.

1We estimate the values of the LatHC result (gray band) for
s ¼ 2 based on Fig. 5 of Ref. [30] as the numerical values are not
yet published. The blue data points are from private communi-
cation with T.-W. Chiu and from Ref. [28].
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consistency between linear and quadratic fitting in a2
/L2 for extrapolation to the continuum limit.

The consistency of the continuum limit with linear and quadratic fitting in the g2 = 8�10.5 range is
particularly important in comparison with the c = 0.25 analysis of [1] in the same range, as further
discussed below.

Moving now to the targeted continuous g2 range where continuum limits can be taken with
statistical consistency, in Fig. 2 we show fitted results of the continuum step �-function, (g2

(sL) �
g2
(L))/log(s2

). Sampling from the continuous (color-shaded) range of g2 values are shown with fits
in the �2

/do f ⇡ 1 range. The size of the finite physical volume in the continuum limit is implicitly
set by the value of g2

(L) which is held fixed for all L-pairs while the cuto� is being removed. The

Figure 2: Fits of our data sets without tree-improvement are marked with LatHC tag in the plots and fit results
from the authors of [1] are marked with Boulder-BU tag. We will keep these tags in several plots of the report.
The upper left panel shows LatHC fit results for the continuum step �-function, (g2

(sL) � g2
(L))/log(s2

), in
the SSC scheme at three di�erent step sizes in the g2 = 1.5 � 12 range of the continuum theory. The s = 2
fits were quadratic in a2

/L2, the s = 3/2 and s = 4/3 fits were linear in a2
/L2. Two black lines represent the

upper and lower errors of the band from [1] in the tree-level improved nWSS scheme of the paper. The upper
right panel shows the same fitting procedure for gauge configurations with the topological charge restricted
to the Qtop  0.3 range without any significant e�ect, as discussed in the text. The two lower panels show
the tests for the SSS scheme with the same fitting procedure as the SSC scheme.

incompatible results in Fig. 2 are striking with overwhelming statistical significance between the
LatHC-tagged analysis with monotonic step �-function and the BoulderBU-tagged analysis of [1]
hitting an IRFP around g2

⇡ 11. We will identify the most likely source of this discrepancy in what
follows below. Cuto� e�ects from topological charge fluctuations do not explain the discrepancy.
On the two right-side panels of Fig. 2 we show that restricting the topological charge in the LatHC
fits to the Qtop  0.3 range has no significant e�ect. We only did this in response to [1] where the
issue was raised, although with small e�ects found in the DWF based analysis as well. We do not
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      here comes the new challenge: 

IRFP 

BSM sign convention is flipped in the plot 

I added the dashed part from 

published LatHC
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10-6  infrared test of the correlated quartet averaged fermion determinants

2/dof = 0.16

g2 = 7.815 

ten flavors 

precision control on the staggered Dirac spectrum



• 11.5  reach of our earlier analysis is not shown


• if the IRFP is reached from the UVFP, this must be demonstrated  

   without switching operator scheme and flow scheme   

   nothing less should be acceptable in going from UV to IR


• only L=24 and L=28 for infinite volume extrapolation? 

    why infinite volume method rather than running with the volume?


• what supports the continuum -function beyond the IRFP?

    no second zero in -function?


• tuning Wilson fermion with PCAC is not accuracy issue in the small lattice

    there is a residual mass ~ 1/L which effects how the infinite volume limit is taken


• why switch from staggered to Wilson fermion?   

   earlier results with PV regulator were done with staggered fermions


• No control on the decoupling of the ghost sector at strong coupling 

    Is this still the original nf=10 model at strong coupling?


g2 ∼

β
β

5

FIG. 6. Comparing the di↵erence �S � �W (green) with the
standard deviation � of the S operator on volume 243 ⇥ 48
for the C23 flow. We plot ±

p
2� (solid red curves) and ±2�

(dashed red curves). Together with a similar plot for volume
283 ⇥ 56, these determine the bounds of validity g2max3 and
g2max2 in Table 2.

Flow g2min g2max1 g2max2 g2max3

Sym 6.5 18.0 8.5 7.5

Wil 7.0 20.0 16.0 10.0

C23 8.0 21.0 17.0 16.0

C13 12.0 23.0 23.0 21.0

TABLE 2. Ranges of g2 in which each flow is included in the
final result for �(g2). g2min and g2max1 result from the interpo-
lations, while g2max2 and g2max3 come from further demanding
consistency between the continuum extrapolations �S and �W

(see Fig. 6). We quote all numbers with a resolution of 0.5.
g2min and g2max2 give the ranges reflected in Fig. 1. g2max3,
rather than g2max2, gives the stricter bounds shown in Fig. 7.

IV. ANOMALOUS DIMENSIONS

The calculation of anomalous dimensions follows that
of Ref. [16] closely, with the addition of an extrapolation
to infinite volume as described in Sec. III A above. We
calculated the two-point function of each flowed mesonic
density X 0 with its unflowed source X,

hX(0)X 0(t)i ⇠ t�(d+⌘+�)/2 . (4.1)

Here � is the desired anomalous dimension of the op-
erator and ⌘/2 is the anomalous dimension of the the
elementary fermion field. To eliminate ⌘, we divide
hX(0)X 0(t)i by the two-point function of the conserved
vector current. Defining the ratio

R(t) =
hX(0)X 0(t)i
hV (0)V 0(t)i , (4.2)

we have

R(t) ⇠ t��/2 , (4.3)

FIG. 7. Same as Fig. 1, but with stricter bounds on the
domain of validity of each flow. See Table 2.

FIG. 8. The anomalous dimension of the mass (scalar) oper-
ator, �m, and that of the tensor operator, �T , obtained with
Wilson and C13 flows, extrapolated to the continuum limit
and to infinite volume.

and hence � can be extracted from the logarithmic deriva-
tive,

� = �2
t

R

@R

@t
. (4.4)

We require
p
8t ⌧ x4, where x4 is the separation of X

and X 0 in Euclidean time. This means that x4 is kept
large compared to the smearing of the operators by the
flow. The extrapolation from L/a = 24, 28 to L = 1, the
interpolation in g2 at fixed t, and the continuum extrap-
olation t/a2 ! 1 are as described above and in Ref. [16].
Final results for the mass anomalous dimension and

for that of the tensor density are shown in Fig. 8. In the
weak-coupling region, the anomalous dimensions agree
with one-loop perturbation theory,

�m =
6g2C2

16⇡2
, �T = �1

3
�m , (4.5)

where C2 = 4/3 is the quadratic Casimir operator of the
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We use lattice simulations and the continuous renormalization-group method, based on the gra-
dient flow, to calculate the � function and anomalous dimensions of the SU(3) gauge theory with
Nf = 10 flavors of fermions in the fundamental representation. We employ several improvements to
extend the range of available renormalized couplings, including the addition of heavy Pauli-Villars
bosons to reduce cuto↵ e↵ects and the combination of a range of gradient flow transformations.
While in the weak coupling regime our result is consistent with those of earlier studies, our tech-
niques allow us to study the system at much stronger couplings than previously possible. We find
that the renormalization group � function develops a zero, corresponding to an infrared-stable fixed
point, at gradient-flow coupling g2 = 15.0(5). We also determine the mass and tensor anomalous
dimensions: At the fixed point we find �m ' 0.6, suggesting that this system might be deep inside
the conformal window.

I. INTRODUCTION

The SU(3) gauge theory with ten Dirac fermions in the
fundamental representation is the subject of continuing
debate. The question is whether its infrared physics is
confining or conformal, as determined by the absence or
presence of an infrared fixed point (IRFP). The system
has been studied by several groups, both with domain
wall [1–5] and staggered fermions [6–8]. All these studies
have used the finite-volume gradient flow (GF) scheme
with a step-scaling renormalization-group transformation
[9–11]. While the results are in reasonable agreement at
weak gauge couplings, they di↵er at stronger couplings
and reach di↵ering conclusions.

Using domain-wall fermions, Chiu [1, 2] first claimed
an IRFP at g2 ' 7. His later study [3], however, gave
a more cautious assessment. Hasenfratz, Rebbi, and
Witzel [4, 5] observed a step-scaling � function that in-
creases in absolute value up to g2 ' 9, where it appears
to turn towards the abscissa and thus hints at an IRFP at
some g2 >⇠ 11; these simulations were limited by a first-
order phase transition blocking access to the g2 > 11
regime. Staggered-fermion calculations by the LatHC
collaboration [6–8] studied this system in larger volumes,
reaching couplings up to g2 ' 10. In this range their �
function increases steadily in magnitude and remains in
2� agreement with the result reported in Refs. [4, 5]. It
does not, however, show any sign of a developing IRFP.
No definitive conclusion on the infrared behavior of the
Nf = 10 model has been reached so far.

All the studies listed above were carried out in a range
of renormalized coupling limited by large cuto↵ e↵ects.
Recently we have proposed adding heavy Pauli-Villars
(PV) bosons to remove ultraviolet fluctuations caused
by the many fermion fields [14]. The masses of the PV
bosons are kept at the cuto↵ scale. Thus they decouple in
the continuum limit but they do generate a local e↵ective
gauge action with well-regularized short-distance prop-
erties. We have applied PV improvement successfully in

FIG. 1. The � function obtained with four di↵erent gradient-
flow transformations in overlapping regions. The orange and
dark green solid lines, with errors indicated by the dotted
lines, are results from staggered and DWF simulations [4–
8, 12]. Black solid, dotted and dashed curves correspond to
the universal 1- and 2-loop and the gradient flow 3-loop per-
turbative results [13].

the SU(3) gauge theory with Nf = 12 [14] and Nf = 8
[15] staggered fermions in the fundamental representa-
tion, as well as in a multirepresentation SU(4) gauge the-
ory with Wilson fermions [16]. In all cases we found that
the PV improved actions indeed reduced short-distance
fluctuations and allowed investigations at stronger renor-
malized couplings.

In Ref. [16] we applied the continuous � function
(CBF) method [17, 18] and uncovered an IRFP at strong
coupling. Going beyond the use of PV bosons, we further
extended the coupling range by combining the results of
a number of lattice gradient flows that possess a common
continuum limit. Here we apply the techniques used in
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main purpose of the talk: to highlight results and questions about the new infinite volume based -function 

on the gradient flow


• Lattice 2017: the origin of the method and the challenge of going to infinite volume


•Applications to the nf=10 BSM model including the newly claimed IRFP      arXiv:2306.07236


•Short summary of recent focus: the scale dependent  coupling at the Z-pole in QCD


β
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• Our YM and multi-flavor analyses are motivated by the Harlander-Neumann 3-loop 

GF based beta-function over infinite Euclidean volume in the continuum limit — 
contact with PT in GF based renormalization needs new infinite volume -function 


• With all the BSM controversies, like ten flavors, can a new method help QCD?


• After careful precision calculations of the Alpha collaboration who needs another 
QCD strong coupling?


• But even the simplest SU(3) Yang-Mills model shows significant tension after    
repeated FLAG reviews 


     —  FLAG 2019 was without first high precision GF result of Dalla Brida and Ramos

     —  combined FLAG 2021 error analysis hides the tension

     —  results from new inf. vol. GF based -function increase the tension with earlier lattice work
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FIG. 13. Comparison of our result for
˘
8t0⇤GF (ü) to the prelimi-

nary result by Wong et al. [20] (⁄) and Dalla Brida/Ramos [7] (À).
In addition we show values for r0⇤MS which enter the FLAG 2021
averages: ALPHA 98 [39] (ù), QCDSF/UKQCD 05 [40] (+), Bram-
billa 10 [41] (⁄), Kitazawa 16 [42] (õ), and Ishikawa 17 [43] (~).
These values are converted to

˘
8t0⇤GF using

˘
8t0_r0 from [3] (open

symbols) or Ref. [7] (filled symbols).

In addition, we compare our value to determinations of r0⇤MS
listed by the flavor lattice averaging group (FLAG) [8] to meet
the quality criteria to enter the average. These determinations
are obtained using Schrödinger functional step-scaling meth-
ods [39, 43], Wilson loops [40, 42], or the short distance poten-
tial [41]. We use the values quoted by FLAG 2021 for r0⇤MS
and convert them to

˘
8t0⇤MS using

˘
8t0_r0 = 0.948(7) [3]

(open symbols) or
˘
8t0_r0 = 0.9414(90) [7] (filled symbols).

Following the FLAG convention, we refer to the di�erent re-
sults in Fig. 13 using either the name of the first author or,
if applicable, the name of the collaboration and the two-digit
year.

Given the spread in the values of
˘
8t0⇤MS, further scrutiny

and understanding are needed before obtaining an average. We
note, however, that the three most recent predictions are all
mutually consistent. The high-precision result of Ref. [7] was
re-a�rmed in Ref. [44] using an alternative approach with bet-
ter control over the continuum extrapolation. The estimate
given in Ref. [38] is also consistent with these predictions. A
possible source of di�erence to the older determinations is the
conversion of r0 to

˘
8t0.

D. Nonperturbative matching of di�erent schemes

A considerable source of systematical error in our analysis
is the lack of numerical data in the g

2
GF < 1.8 weak coupling

regime. The gradient flow method is not e�cient at weak cou-
pling. It would be more economical to use data from exist-
ing calculations, e.g. the high precision Schrödinger functional
data of Ref. [7] in the 0 < g

2
GF < 1.8 regime and match it non-

perturbatively to our data.
Such a matching requires finding the relation between our

g
2
GF coupling and the coupling g

2
S

of another scheme S ex-
pressed as g2GF = �

�
g
2
S

�
. The relation of the corresponding �

functions can be obtained using the chain rule applied to the

derivative of g2GF with respect to �
2, which leads to the simple

relation

�GF
�
�(g2

S
)
�

�®�g2
S

� = �S

�
g
2
S

�
, (12)

where �
®�
g
2
S

�
í d�

�
g
2
S

�
_dg2

S
. Parametrizing � as a polyno-

mial

�(x) ˘ x + x
2
Np*1…
n=0

cix
i
, (13)

turns Eq. (12) into a straightforward fitting problem with Np

undetermined coe�cients. The only constraint is to identify
and use the renormalized coupling range in the fit where the
two schemes overlap. Such a nonperturbative matching and
combination of di�erent schemes could lead to a significantly
improved prediction. Although we do not explore this method
in the present analysis, it is worth considering in the future.

V. DISCUSSION

In this paper we present a nonperturbative determination of
the renormalization group � function for the pure gauge Yang-
Mills action. Using the gradient flow based continuous RG �

function, we present results for a wide range of values of the
renormalized running coupling. Our results span the range of
the perturbative weak coupling region g

2
GF ˘ 1.8 up to the

strongly coupled regime at g2GF ˘ 27. This showcases the ad-
vantage of the continuous RG � function because the continu-
ous infinite volume � function can be extended without limi-
tation to the confining region. We also demonstrate the e�ec-
tiveness of tree level improvement of the gradient flow even in
the strong coupling regime.

We investigate various sources of systematical uncertain-
ties. For most of the g

2
GF range covered, the systematical un-

certainties are of similar size as our statistical uncertainties
and around 0.6%. In the strong coupling region, however, fi-
nite volume e�ects tend to dominate and we conservatively
estimate an error of approximately 1.5%.

While in the weak coupling our results are close to the per-
turbative values, we observe in the confining regime that the
GF � function depends approximately linearly on the running
coupling, implying a scaling relation of the flowed energy den-
sity ÍE(t)Î Ì ↵ + bt

c1 with exponent c1 ˘ 1.326(12). This
observation could be related to the topological structure of the
vacuum, a possibility that warrants further investigation.

In the weak coupling regime we are able to match our nu-
merical results to the 3-loop GF � function by extending the
perturbative expression with a single g10GF term. This matching
allows us to predict the ⇤ parameter in the GF scheme. Us-
ing the perturbatively determined relation of the GF coupling
g
2
GF and the MS coupling, we obtain

˘
8t0⇤MS = 0.632(12),

where the error combines statistical and systematic uncertain-
ties. This value is in good agreement with recent direct deter-
minations of

˘
8t0⇤MS [7, 20].

A. Hasenfratz et al. 2303.00704 [hep-lat]

YM plot from Boulder-Siegen • Shortly after our publication, almost identical results of Boulder-Siegen YM project


• Move toward an ambitious new goal: to create similar competing result in QCD 

      with three massless fermions?

https://arxiv.org/abs/2301.06611
https://arxiv.org/abs/2303.00704


 Yang-Mills project
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td /dt and inf. vol. based step beta-function at weak coupling g2
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   YM   infinite volume  g 1
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   YM  g2= 0.78-0.81 range  infinite volume    SSC improved  

6/g0
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2 = 11, 11.1, 11.2 selected 

step beta-function 

infinite euclidean space 

High precision contact with Harlander’s 

3-loop -function in the continuum limit


needed for precise scale setting of 

β

ΛMS
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2/dof = 1.03g2 = 15.79    target 

t  dg2/dt = 14.981(14)

2/dof = 1.03g2 = 15.79    target 

t  dg2/dt = 14.981(14)

0 0.1 0.2 0.3 0.4 0.5 0.6

  a2/t  

3.34

3.36

3.38

3.4

3.42

3.44

3.46

3.48

3.5

t 
dg

2 /d
t  

  -function (cont. lim.) improved SSC scheme  SU(3) YM test  

2/dof = 0.37g2 = 6.3    target 

t  dg2/dt = 3.4237(33)
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new analysis is being prepared for journal publication



 QCD with three massless flavors



nf=3  infinite volume based step beta-function at weak coupling 
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   QCD nf=3   inf. vol.  g2(t1)=0.91, g2(t2) = 0.94   SSC improved  
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precision contact with Harlander’s 3-loop -function in the continuum limit

needed for precise scale setting of 

β
ΛMS

reaching the strong scale is in the works


