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Introduction

Common to many analysis pipelines in lattice field theory is the need to fit data to
a model that is determined only partially by a finite number of model parameters.
Familiar examples include analyses of finite-size scaling (FSS) and ground state
spectroscopy. Motivated by promising results in condensed matter physics [1], we
conjecture that the expressivity of neural networks makes them good candidates
for parameterizing the unknown component of such models. We test this conjec-
ture by performing a curve collapse analysis of the 2nd-order finite-temperature
phase transition of the 2D Ising model and the zero-temperature phase transition
of the 4D massless Nf/Nc = 8/3 gauge-fermion system.

Network architecture & training
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Figure 1: Neural network architecture.

Architecture

• Full model MΘ maps input features in RMin × RMout to output features in RN

given the model parameters {Θ} = {θin, θMLP, θout}; see Fig. 1.
– {θMLP} denote learnable parameters of a multilayer perception (MLP) that pa-

rameterize the a priori unknown component of the model, such as the scaling
function in an FSS analysis or the infinite sum of excited-state exponentials
in an analysis of hadron spectroscopy.

– {θin} and {θout} denote additional learnable parameters of the model, such as
critical exponents or ground-state energies/amplitudes, that enter the model
function through explicitly-defined activation functions that act upon a com-
bination of input features of the full network and output features of the MLP.

Training

• Training is performed by least-squares minimization of the augmented χ2 [2]

χ2
aug. = χ2

data + χ2
priors,

where χ2
data and χ2

priors include information from the covariance of the data &
priors, respectively.
– Priors on the networks weights in {θMLP} provide a lever arm for controlling

overfitting; equivalent to L2 regularization in the ML literature
– Appropriate priors can be estimated using the empirical Bayes method

• We optimize χ2
aug. using the “basin hopping” algorithm championed in Ref. [3]:

1. Random perturbation of coordinates (Θ)
2. Local minimization (trust region reflective)
3. Metropolis accept/reject

Gradient flow coupling & FSS

The gradient flow coupling at smearing radius
√
8t = cL defined by

g2c(β, L) ∼ t2⟨E(t)⟩
∣∣
8t=(cL)2

can be utilized as a scaling variable for use in finite-size scaling [4].
• At a 1st/2nd-order phase transition, g2c(β, L) is expected to scale as

g2c(β, L) ∼ LηGc

(
t̃L1/ν

)
with ν = 1/d signaling first order transition.

• At a Berezinskii–Kosterlitz–Thouless (BKT) transition the scaling is

g2c(β, L) ∼ Lγ/νGc

(
L exp(−ζt̃−ν)

)
,

where t̃ ≡ β/βc − 1.

Results
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Figure 2: (Top panel) Curve collapse for the 2D Ising model using a 3-layer network with n1 = n2 = 2 nodes in the
first and second layers and n3 = 1 nodes in the third (output) layer. (Bottom panel) Curve collapse for the 4D massless
Nf/Nc = 8/3 gauge-fermion system with n1, n2, n3 = 2, 2, 1 nodes in each layer.

Conclusions & forthcoming research

• Our FSS results are consistent with the published literature

– Prediction for Ising critical exponents consistent with exact prediction: βc ≈
0.4407 and ν, η = 1, 1/4.

–Nf = 8 test rules out 1st-order scaling and appears to have a very slight pref-
erence for BKT.

• Even a relatively small neural network is sufficiently expressive to accurately
represent the scaling function for the systems that we have tested

– Bayesian priors provide level arm to control overfitting

• We are currently testing this method on the XY model

• We will begin testing the application of this method to ground state spec-
troscopy
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