Collins-Soper kernel from lattice QCD at close-to-physical pion mass

Artur Avkhadiev¹

in collaboration with Phiala Shanahan¹, Michael Wagman², and Yong Zhao³

International Symposium on Lattice Field Theory July 31–August 4, 2023

arXiv:2307.12359

The Collins-Soper (CS) kernel

• Related to TMDs (transverse-momentum-dependent distributions): a generalization of hadronic structure functions, e.g. PDFs:

PDFs $f_{q/h}(x,\mu) \longrightarrow \text{TMD PDFs} f_{q/h}(x,b_T,\mu,\zeta)$

• Describes RG evolution of TMDs along ζ :

$$f_{q/h}(x,b_T,\mu,\zeta) = f_{q/h}(x,b_T,\mu,\zeta_0) \exp\left[rac{1}{2}\gamma_q(b_T,\mu)\lnrac{\zeta}{\zeta_0}
ight],$$

$$xP$$
 q h h $x \in [0,1]$

 $k_T \sim b_T^{-1}$

Based on Fig. 1.1 in TMD Handbook, 2304.03302

• \Rightarrow Computed as a ratio of TMDs at different ζ :

$$\begin{array}{l} \text{Independent of hadronic} \\ \text{state (\Rightarrow choose pion)} \\ \text{Non-perturbative at large} \end{array} \gamma_q(b_T,\mu) = \frac{2}{\ln(\zeta_1/\zeta_2)} \ln \frac{f_{q/h}(x,b_T,\mu,\zeta_1)}{f_{q/h}(x,b_T,\mu,\zeta_2)} \quad \bullet \end{array}$$

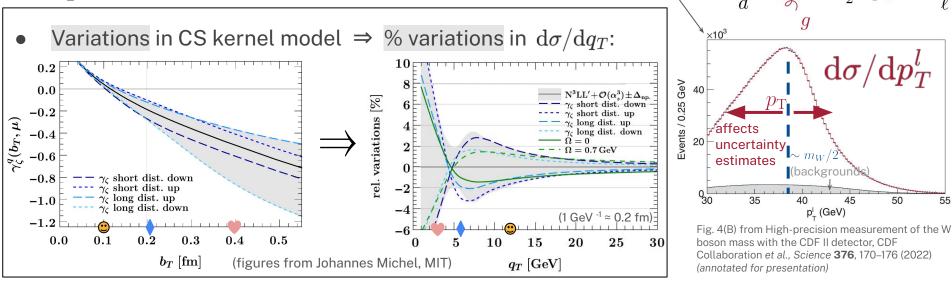
Encoded by light-like matrix elements

• Non-perturbative at large b_T (for any μ)

Proportional to hadron momentum P

Example: CS kernel in W mass measurement

- Extract M_W from $p\bar{p} \to W^- \to l^- \nu_l$ via lepton's p_T^l + <u>template fits</u> of $d\sigma/dp_T^l$:
- p_T^l depends on q_T : transverse momentum of the $\bar{u}d$ pair.



Non-perturbative CS kernel affects M_W measurement through the <u>template shape</u> for $\mathrm{d}\sigma/\mathrm{d}p_T^l$ (but not enough to explain the discrepancy).

Artur Avkhadiev, MIT

55

 $\bar{\nu}_{\ell}$

 $\frac{Q}{2}\pm p_{\mathrm{T}}$

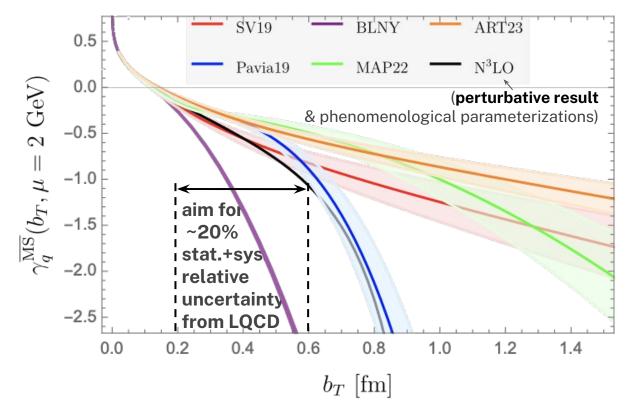
 W^{-}

45

50

Non-perturbative CS kernel

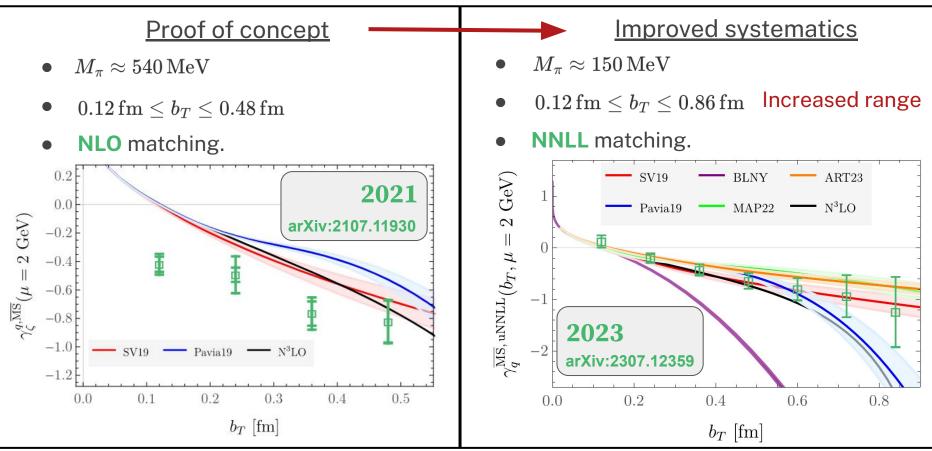
- ullet Consistent for $b_T \lesssim 0.2 \, {
 m fm} \, (pprox 1 \, {
 m GeV}^{-1})$
- Non-perturbative modeling significant for $b_T\gtrsim 0.2\,{
 m fm}$
- LQCD goal: sufficient precision for direct comparison



BLNY: F. Landry et. al, PRD 67 (2003), [hep-ph/0212159] SV19: I. Scimemi and A. Vladimirov, JHEP 06, 137 [1912.06532] Pavia19: A. Bacchetta et. al, JHEP 07, 117, [1912.07550] MAP22: A. Bacchetta et. al, JHEP 10, 127, [2206.07598] ART23: V. Moos et. al, [2305.07473]

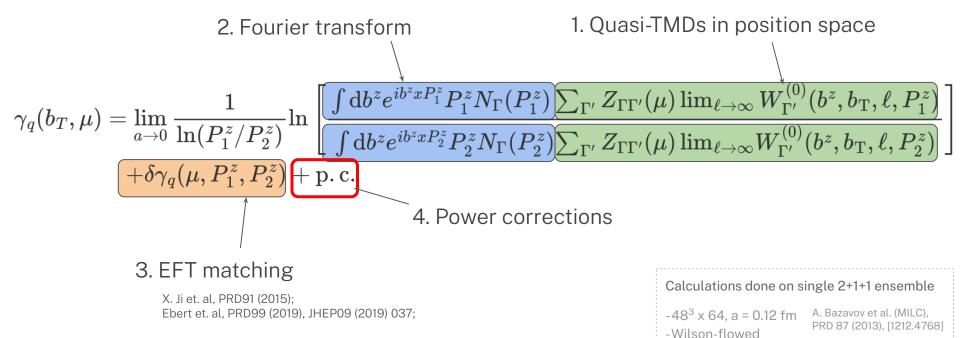
Artur Avkhadiev, MIT

Status of our group's calculations of the CS kernel

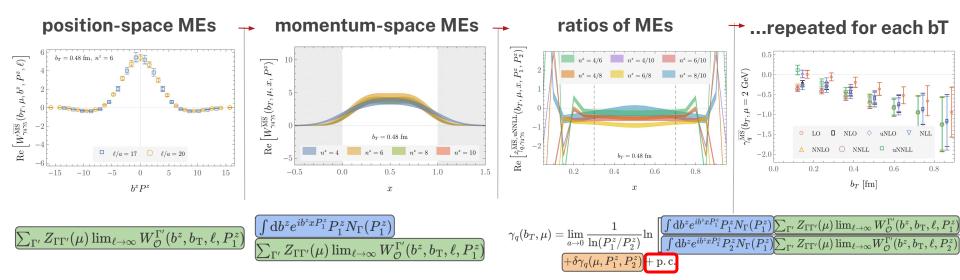


CS kernel from LQCD: outline

-Clover-on-HISQ



CS kernel from LQCD: outline



Position-space quasi-TMDs

- Compute quasi-TMD wavefunctions (WFs) $\phi_{\Gamma}(b_T, b^z, P^z, \ell)$ $= \langle 0 | \mathcal{O}_{\Gamma}(b_T, b^z, 0, \ell) | \pi(P^z) \rangle$
- Operators $\mathcal{O}_{\Gamma}(b_T, b^z, y, \ell)$ with staple-shaped Wilson lines: $\frac{\ell}{2}$
- For each $P^z, b_T, b^z, \ell-$ expensive!

Artur Avkhadiev, MIT

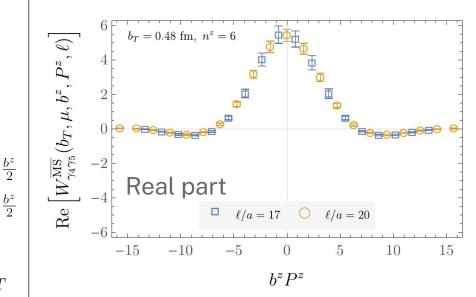
• Matrix elements have divergences $\sim \ell + b_T$

 $u(y-\frac{b}{2})$

 $\overline{d}(y+\frac{b}{2})$

- $\gamma_{q}(b_{T},\mu) = \lim_{a \to 0} \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \begin{bmatrix} \int db^{z} e^{ib^{z}xP_{1}^{z}}P_{1}^{z}N_{\Gamma}(P_{1}^{z}) \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu) \lim_{\ell \to \infty} W_{\Gamma'}^{(0)}(b^{z},b_{T},\ell,P_{1}^{z}) \\ \int db^{z} e^{ib^{z}xP_{2}^{z}}P_{2}^{z}N_{\Gamma}(P_{2}^{z}) \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu) \lim_{\ell \to \infty} W_{\Gamma'}^{(0)}(b^{z},b_{T},\ell,P_{2}^{z}) \\ + \delta\gamma_{q}(\mu,P_{1}^{z},P_{2}^{z}) + \text{p.c} \end{bmatrix}$
 - Subtract divergences in quasi-TMD WF ratios

 $W^{(0)}_{\Gamma}(b_T, b^z, P^z, \ell) = rac{\phi_{\Gamma}(b_T, b^z, P^z, \ell)}{ ilde{\phi}_{\gamma^4\gamma^5}(b_T, 0, 0, \ell)}$



Position-space quasi-TMDs

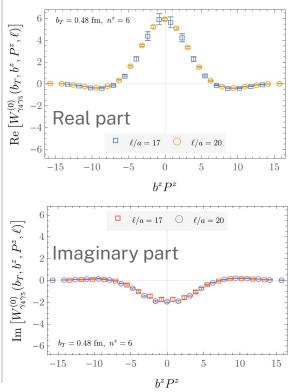
Mixing effects included via
 RIxMOM scheme (in backup)

$egin{aligned} W^{ ext{MS}}_{\Gamma}(b_T,\mu,b^z,P^z,\ell) & = \ & = \sum_{\Gamma'} Z^{\overline{ ext{MS}}}_{\Gamma\Gamma'}(\mu) \, W^{(0)}_{\Gamma}(b_T,b^z,P^z,\ell) \ & \Gamma \in \{\gamma_4\gamma_5,\gamma_3\gamma_5\} \end{aligned}$

- Shown for bT = 0.48 fm,
 Pz = 1.29 GeV.
- Consistent between different staple lengths *l*.
- Decay to zero within computed bz ranges.

without mixing

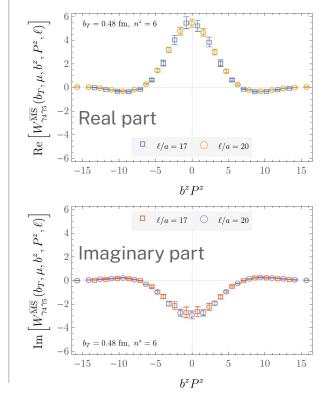
 $\gamma_q(b_T,\mu) = \lim_{a o 0} \gamma_q(b_T,\mu)$



with mixing (via RIxMOM)

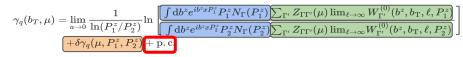
 $\left| \mathrm{d} b^z e^{i b^z x P_2^z} P_2^z N_\Gamma(P_2^z) \right| \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu) \lim_{\ell o \infty} W^{(0)}_{\Gamma'}(b^z, b_{\mathrm{T}}, \ell, P_2^z)$

 $\sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu) \lim_{\ell o \infty} W^{(0)}_{\Gamma'}(b^z, b_{\mathrm{T}}, \ell, P^z_1)$

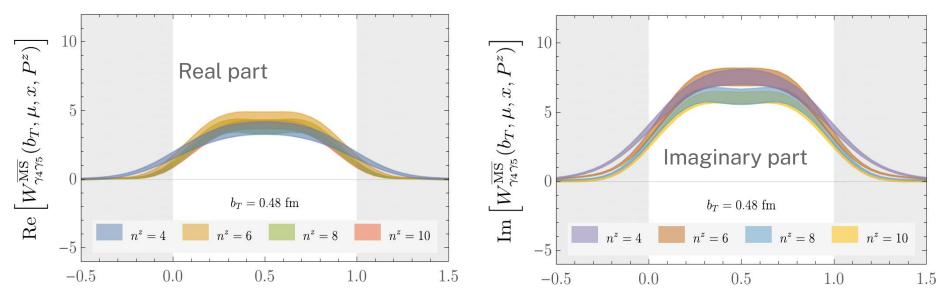


Artur Avkhadiev, MIT

Momentum-space quasi-TMDs



- Have support outside $x \in [0, 1]$, as expected.
- Converge to physical range $x \in [0,1]$ with increasing $P^z = \frac{2\pi}{I}n^z$.



CS kernel estimate

$$egin{aligned} &\hat{\gamma}_{\Gamma}^{\overline{ ext{MS}}}(b_{T},x,P_{1}^{z},P_{2}^{z},\mu) \ &=rac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \mathrm{ln}\left[rac{W_{\Gamma}^{\overline{ ext{MS}}}(b_{T},x,P_{1}^{z},\ell)}{W_{\Gamma}^{\overline{ ext{MS}}}(b_{T},x,P_{2}^{z},\ell)}
ight] \ &+\delta\gamma_{q}^{\overline{ ext{MS}}}(x,P_{1}^{z},P_{2}^{z},\mu) \end{aligned}$$

- Separate for each momentum pair, bT, Dirac structure, and matching accuracy.
- Differ by power corrections:

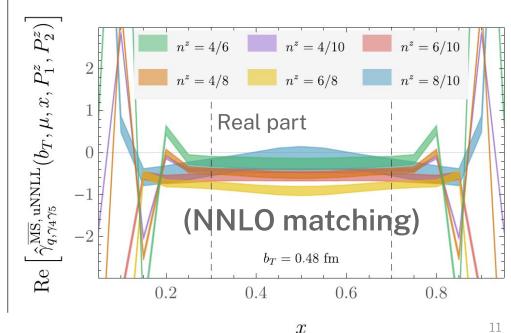
$$\mathcal{O}\left(rac{1}{(xP^zb_T)^2},rac{m_\pi^2}{(xP^z)^2}
ight)+(x\leftrightarrow 1-x)$$

 P^z -dependent \Rightarrow cannot disentangle from O(a) effects at finite a.

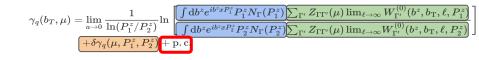
Artur Avkhadiev, MIT

X. Ji et. al., Phys. Lett. B 811 [1911.03840] X. Ji and Y. Liu, PRD 105, [2106.05310] Z.-F. Deng et. al, JHEP 09, [2207.07280]

- $$\begin{split} \gamma_q(b_T,\mu) = \lim_{a \to 0} \frac{1}{\ln(P_1^z/P_2^z)} \ln \begin{bmatrix} \int \mathrm{d} b^z e^{ib^z x P_1^z} P_1^z N_{\Gamma}(P_1^z) \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu) \lim_{\ell \to \infty} W_{\Gamma'}^{(0)}(b^z, b_{\mathrm{T}}, \ell, P_1^z) \\ \int \mathrm{d} b^z e^{ib^z x P_2^z} P_2^z N_{\Gamma}(P_2^z) \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu) \lim_{\ell \to \infty} W_{\Gamma'}^{(0)}(b^z, b_{\mathrm{T}}, \ell, P_2^z) \\ + \delta \gamma_q(\mu, P_1^z, P_2^z) + \mathrm{p.c} \end{split}$$
- Fit each estimator separately to a constant in $x \in [0.3, 0.7]$, then average fits at fixed bT and matching accuracy.

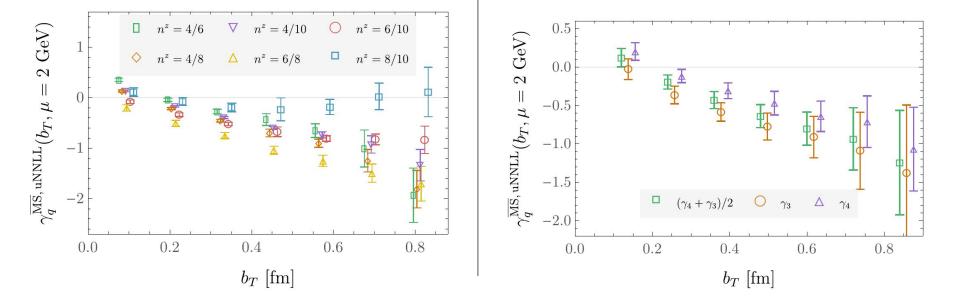


CS kernel estimate



Before averaging over Dirac structures:

Before averaging over momentum pairs:

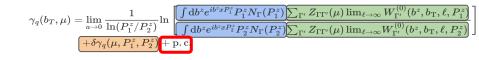


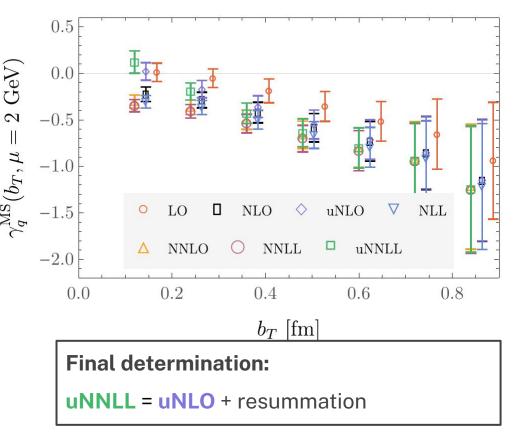
Artur Avkhadiev, MIT

Matching corrections

- New results at **NNLO** and **NNLL**. O. del Río and A. Vladimirov, [2304.14440], and X. Ji et. al, [2305.04416].
- $b_T \gtrsim 0.36\,{
 m fm}$: consistent between matching corrections above LO.
- $b_T \lesssim 0.36\,{
 m fm}$: deviations related to power corrections:
- Power corrections reduced by **uNLO**:

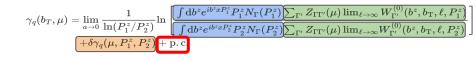
 $\delta \gamma_q^{\mathbf{NLO}}(\mu, P_1^z, P_2^z) + \mathbf{p. c.}$ $\lambda = \delta \gamma_q^{\mathbf{uNLO}}(b_T, \mu, P_1^z, P_2^z) + \mathrm{p.\,c.'}$ incorporates some of the bT-dependent power corrections in **p. c.** (more in backup)

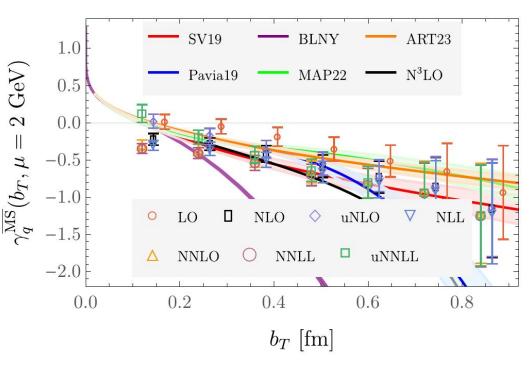




Conclusion and outlook

- First calculation at ~physical pion mass and NNLO + NNLL matching.
- Can begin to discriminate between phenomenological parameterizations.
- Perturbative convergence for bT > .36 fm.
- Power corrections for bT < .36 fm accounted by uNLO, uNNLL.
- Significant progress from the 2021 calculation.
- Next steps: better quantify power corrections by disentangling O(a) effects at multiple lattice spacings.

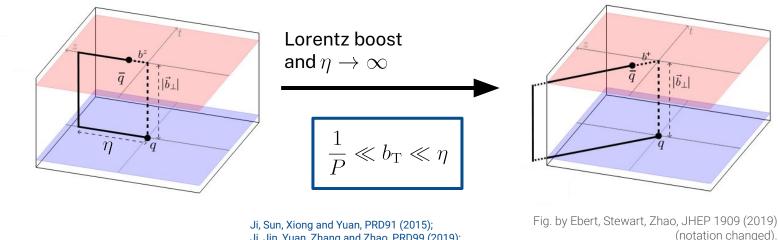




Backup slides

CS Kernel from Lattice QCD

- CS kernel defined through ratios of **light-like MEs** of staple-shaped operators.
- Corresponding **space-like MEs** computed in LQCD, then matched onto the **light-like MEs** via Large-Momentum Effective Theory (LaMET).



JI, Sun, Xiong and Yuan, PRD91 (2015); Ji, Jin, Yuan, Zhang and Zhao, PRD99 (2019); Ebert, Stewart, Zhao, PRD99 (2019), JHEP09 (2019) 037; Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020); Vladimirov and Schäfer, PRD 101 (2020); Ebert, Schindler, Stewart and Zhao, JHEP04 (2022) 178.

Unsubtracted quasi-TMD WFs: examples

Extracted from correlation functions $[GeV^2]$ Re -Im -0.006 $\sum e^{i{f P}\cdot{f y}}\left\langle {\cal O}_{\Gamma}(b_T,b^z,y,\ell)\chi^{\dagger}_{f P}(0)
ight
angle$ -0.008 $\mathcal{R}^{\gamma_4\gamma_5}(t,b_T,b^z,P^z,$ $\stackrel{t\gg 0}{\longrightarrow} rac{Z^S_{\pi}(\mathbf{P})}{2E_{\pi}(\mathbf{P})} ilde{\phi}_{\Gamma}(b_T, b^z, \mathbf{P}, \ell) e^{-E_{\pi}(\mathbf{P})t}$ $b_T = 0.12 \text{ fm}, \ n^z = 4$ -0.010 $b^z = 0.24$ fm. $\ell = 3.12$ fm -0.012Momentum-smeared interpolators $\chi_{\mathbf{P}}^{\dagger}$ -0.014 $E_{\pi}(\mathbf{P})$ and $Z_{\pi}^{S}(\mathbf{P})$ fit and cancelled in 0.21.01.2 0.00.40.6 0.8 ratios $\mathcal{R}^{\Gamma}(t, b_T, b^z, P^z, \ell)$: $t \, [\mathrm{fm}]$

- A range of time windows chosen systematically

-AIC-preferred fits (1 + 2 state)

-Covariance matrix from bootstrap + linear shrinkage

-Correlated determinations between staple geometries

- Further selection cuts + combine in weighted average

:17

- Plateau gives $ilde{\phi}_{\Gamma}(b_T,b^z,\mathbf{P},\ell)$.
- Repeated for each P^z , b_T , b^z , ℓ .

Artur Avkhadiev, MIT

Mixing effects quantified with RIxMOM

• Calculation of mixing effects in RIxMOM independent of staple geometry.

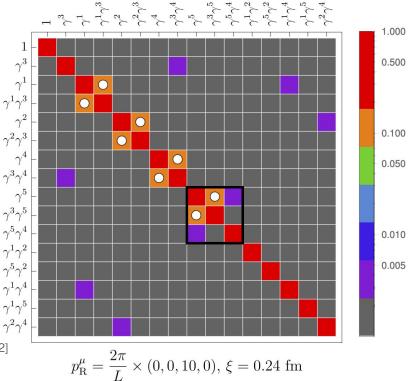
$$W^{\overline{ ext{MS}}}_{\Gamma}(b_T,\mu,b^z,P^z,\ell) = \sum_{\Gamma'} Z^{\overline{ ext{MS}}}_{\Gamma\Gamma'}(\mu) \, W^{(0)}_{\Gamma}(b_T,b^z,P^z,\ell) \, .$$

• Full 16x16 mixing matrix computed

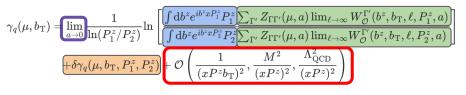
$$egin{aligned} \mathcal{M}^{\mathrm{RI/xMOM}}_{\Gamma\Gamma'}(p_{\mathrm{R}},\,\xi_{\mathrm{R}},a) \ &\equiv rac{\mathrm{Abs}[Z^{\mathrm{RI/xMOM}}_{\Gamma\Gamma'}(p_{\mathrm{R}},\xi_{\mathrm{R}},a)]}{rac{1}{16}\sum_{\Gamma}\mathrm{Abs}[Z^{\mathrm{RI/xMOM}}_{\Gamma\Gamma}(p_{\mathrm{R}},\xi_{\mathrm{R}},a)]} \end{aligned}$$

• Dominant mixings consistent with lattice perturbation theory at 1-loop.*

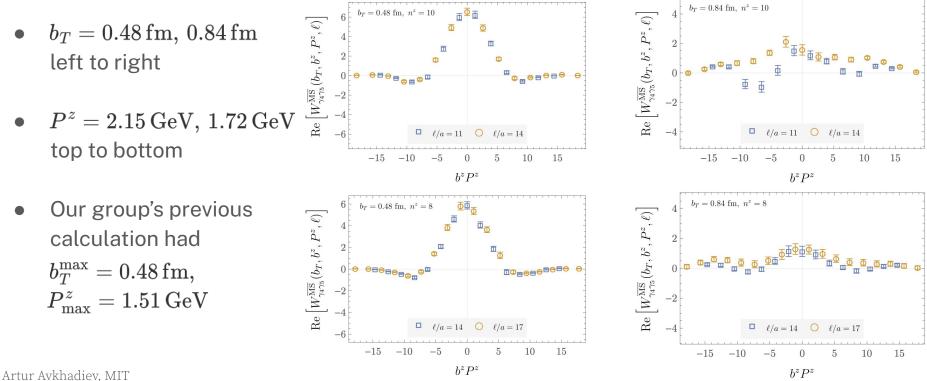
X. Ji, et. al, PRL 120 (2018), [1706.08962]*M. Constantinou et al., PRD 99 (2019), [1901.03862]J. Green et. al, PRL 121 (2018), [1707.07152]Y. Ji et. al., PRD 104 (2021), [2104.13345]J. Green et. al, PRD 101 (2020), [2002.09408]C. Alexandrou et al., [2305.11824]



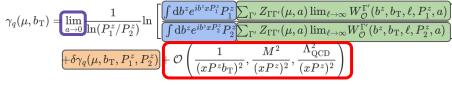
TMD WFs in position space



Statistical noise makes computation challenging for large P^z , ℓ , and b_T



TMD WFs in momentum space

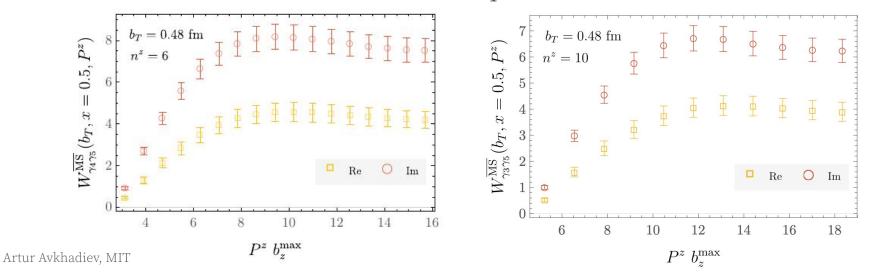


bz range sufficient to use a Discrete Fourier Transform

$$ar{W}_{\Gamma}^{\overline{ ext{MS}}}(b_T,\mu,x,P^z) = rac{P^z}{2\pi} N_{\Gamma}(P) \sum_{|b_z| \leq b_z^{ ext{max}}} e^{i(x-rac{1}{2})P^z b^z} ar{W}_{\Gamma}^{\overline{ ext{MS}}}(b_T,\mu,b^z,P^z)$$

Dirac structures

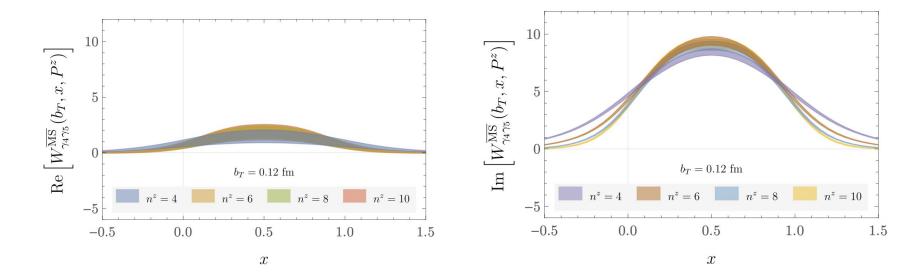
The DFT is stable to decreasing the range in b_T^{\max} :



TMD WFs in momentum space

$$\begin{split} \gamma_q(\mu, b_{\mathrm{T}}) = & \lim_{a \to 0} \frac{1}{\ln(P_1^z/P_2^z)} \ln \begin{bmatrix} \int \mathrm{d}b^z e^{ib^z x P_1^z} P_1^z \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu, a) \lim_{\ell \to \infty} W_{\mathcal{O}}^{\Gamma'}(b^z, b_{\mathrm{T}}, \ell, P_1^z, a) \\ \int \mathrm{d}b^z e^{ib^z x P_2^z} P_2^z \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu, a) \lim_{\ell \to \infty} W_{\mathcal{O}}^{\Gamma'}(b^z, b_{\mathrm{T}}, \ell, P_2^z, a) \\ + \delta \gamma_q(\mu, b_{\mathrm{T}}, P_1^z, P_2^z) + \mathcal{O}\left(\frac{1}{(xP^z b_{\mathrm{T}})^2}, \frac{M^2}{(xP^z)^2}, \frac{\Lambda_{\mathrm{QCD}}^2}{(xP^z)^2}\right) \end{bmatrix} \end{split}$$

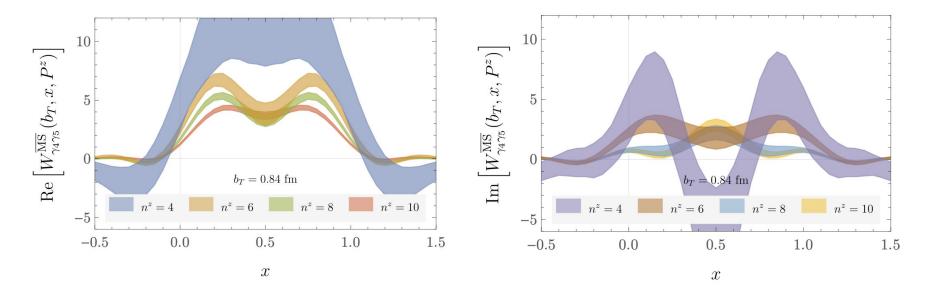
See convergence to the physical range $x \in [0,1]$ with increasing $P^z = rac{2\pi}{L}n^z$



TMD WFs in momentum space

$$\begin{split} \gamma_{q}(\mu, b_{\mathrm{T}}) = & \lim_{a \to 0} \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \left[\underbrace{\int \mathrm{d}b^{z} e^{ib^{z}xP_{1}^{z}} P_{1}^{z}}_{\int \mathrm{d}b^{z} e^{ib^{z}xP_{2}^{z}} P_{2}^{z}} \sum_{\Gamma'} Z_{\Gamma\Gamma'}(\mu, a) \lim_{\ell \to \infty} W_{\mathcal{O}}^{\Gamma'}(b^{z}, b_{\mathrm{T}}, \ell, P_{1}^{z}, a) \right] \\ + \delta\gamma_{q}(\mu, b_{\mathrm{T}}, P_{1}^{z}, P_{2}^{z}) + \mathcal{O}\left(\frac{1}{(xP^{z}b_{\mathrm{T}})^{2}}, \frac{M^{2}}{(xP^{z})^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{(xP^{z})^{2}}\right) \end{split}$$

See convergence to the physical range $\,x\in[0,1]\,$ with increasing $\,P^z=rac{2\pi}{L}n^z$



NLO, NNLO, and resummations

The correction is given by coefficients
$$\delta\gamma_q(x,P_1^z,P_2^z,\mu)\equiv rac{1}{\ln(P_1^z/P_2^z)}\left(\lnrac{C_\phi(xP_2^z,\mu)}{C_\phi(xP_1^z,\mu)}+(x\leftrightarrowar x)
ight)$$

 $C_{\phi}(p^z,\mu)~$ appear in the TMD WF matching formula and are computed perturbatively as

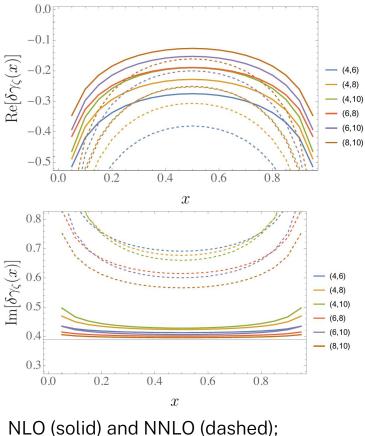
$$C_{\phi}(p^{z},\mu) = 1 + \sum_{n=1}^{} \left(rac{lpha_{s}(\mu)}{4\pi}
ight)^{\!\!n} C_{\phi}^{(n)}(p^{z},\mu) \, ,$$

at LO, NLO and recently at NNLO, and resummed as

O. del Río and A. Vladimirov, [2304.14440] X. Ji et. al, [2305.04416]

Resummation kernel

$$egin{aligned} C_{\phi}(p^z\!,\mu) &= C_{\phi}(p^z,2p^z) &
otin \ & imes \exp[K_{\phi}(p^z,2p^z)] \end{aligned}$$



No convergence in the imaginary part 23

Artur Avkhadiev, MIT

NLL and NNLL

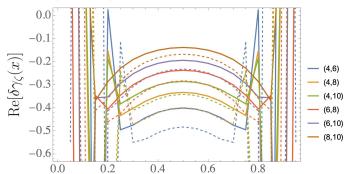
Resummation kernel is $K_{\phi}(2p^z,\mu)=2K_{\Gamma}(2p^z,\mu)-K_{\gamma_{\mu}}(2p^z,\mu)-i\pi\eta(2p^z,\mu)$

$$egin{aligned} K_{\gamma_{\mu}}(\mu_{0},\mu) &= \int_{lpha_{s}(\mu_{0})}^{lpha_{s}(\mu)} rac{\mathrm{d}lpha_{s}}{eta(lpha_{s})} \gamma_{\mu}\left(lpha_{s}
ight), \ K_{\Gamma}(\mu_{0},\mu) &= \int_{lpha_{s}(\mu_{0})}^{lpha_{s}(\mu)} rac{\mathrm{d}lpha_{s}}{eta(lpha_{s})} \Gamma_{\mathrm{cusp}}(lpha_{s}) \int_{lpha_{s}(\mu_{0})}^{lpha_{s}} rac{\mathrm{d}lpha'_{s}}{eta(lpha'_{s})}, \ \eta_{\Gamma}(\mu_{0},\mu) &= \int_{lpha_{s}(\mu_{0})}^{lpha_{s}(\mu)} rac{\mathrm{d}lpha_{s}}{eta(lpha_{s})} \Gamma_{\mathrm{cusp}}(lpha_{s}) \end{aligned}$$

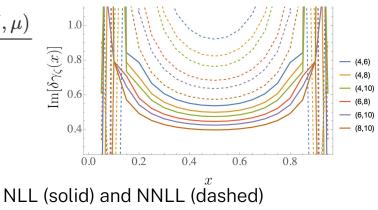
where
$$\Gamma_{ ext{cusp}}(lpha_s(\mu)) = rac{\mathrm{d}\gamma_{\mu}\left(p^z,\mu
ight)}{\mathrm{d}\ln p^z}$$
 and $\gamma_{\mu}(p^z,\mu) \equiv rac{d\ln C_{\phi}(p^z,\mu)}{d\ln \mu}$

are computed perturbatively at following loop orders for each resummation accuracy:

	K_{Γ}	K_{γ_C}	$K_{\gamma_{\mu}}$	$ \eta $	C_{ϕ}
NLL	2	1	1	1	0
NNLL	3	2	2	2	1

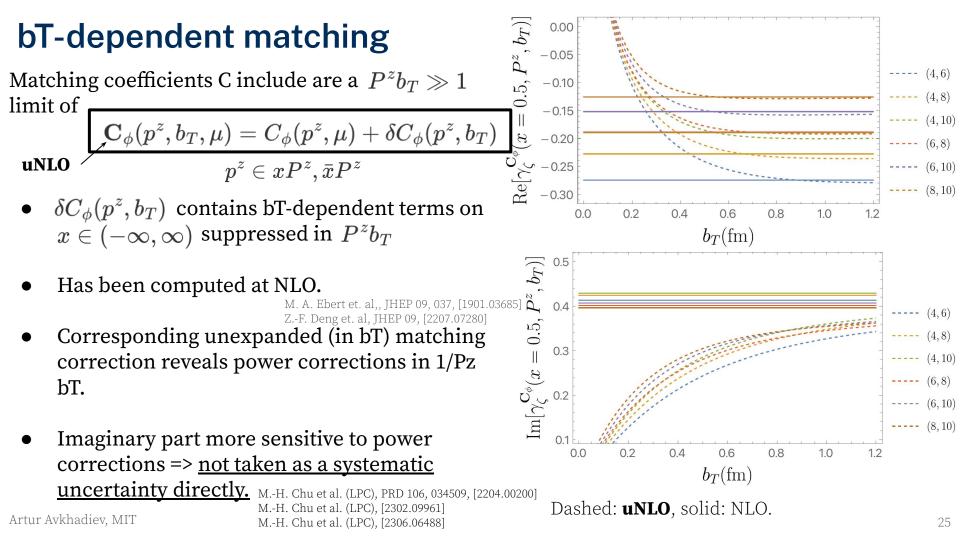


x



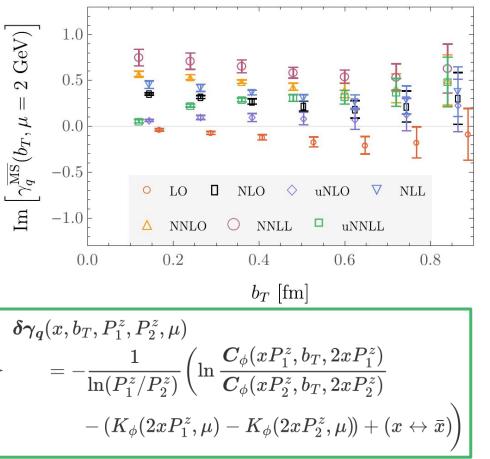
No convergence in the imaginary part

Artur Avkhadiev, MIT



The imaginary part in the CS kernel estimate

- The CS kernel is real-valued.
- The CS kernel *estimate* has a non-zero imaginary part, primarily from matching.
- This is explained by poor perturbative convergence and power corrections in bT => <u>not treated as a systematic directly</u> M.-H. Chu et al. (LPC), PRD 106, 034509, [2204.00200] M.-H. Chu et al. (LPC), [2302.09961] M.-H. Chu et al. (LPC), [2306.06488]
- Estimates of power corrections expected to improve with multiple lattice spacings, by disentangling O(a) effects
- For this calculation, uNNLL dominated by uNLO at small bT – unexpanded matching accounts for power corrections.



Using auxiliary fields for non-perturbative renormalization

Get a renormalized staple-shaped operator

 $\mathcal{O}_{\ell,\Gamma}^{\text{ren.}} = Z_{\mathcal{O}_{\ell}\Gamma\Gamma'}^{\text{ren.}}\mathcal{O}_{\ell,\Gamma}^{\text{bare}}$

By solving for Z_O in a renormalization scheme where it is given by matrix elements computed non-perturbatively, such as

 $\Lambda_{\ell,\Gamma}^{\text{bare}}(p,b) = \langle q(p) | \mathcal{O}_{\ell,\Gamma}^{\text{bare}}(b) | q(p) \rangle_{\text{gf,amp.}}$

renormalized as

 $\Lambda_{\ell,\Gamma}^{\mathrm{RI'-MOM}}(p,b) = [Z'_q(p)]^{-1} Z_{\mathcal{O}_\ell(b),\Gamma\Gamma'}^{\mathrm{RI'-MOM}}(p) \Lambda_{\ell,\Gamma}^{\mathrm{bare}}(p,b)$

Set to its tree-level value at $p = p_R$, together with some renormalization condition for Z_q. This is <u>RI'-MOM</u>, with a different Z_O for each staple configuration.

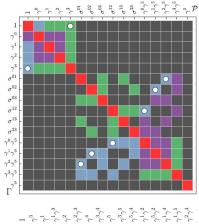
¹Green, Jansen, and Steffens, PRL 121 (2018) and PRD 101(2020). Artur Avkhadiev, MIT With the auxiliary-field approach, renormalization of extended staples is simplified to that of point-like objects: $\bar{q}(b) \Gamma W_{-z} W_{\mathrm{T}} W_{+z} q(0) = \langle \bar{q}(b) \underbrace{\Gamma \zeta_{-z}(b) \bar{\zeta}_{-z}(\eta + b_{\mathrm{T}})}_{W_{-z}} \underbrace{\zeta_{\mathrm{T}}(\eta + b_{\mathrm{T}}) \bar{\zeta}_{\mathrm{T}}(\eta)}_{W_{\mathrm{T}}} \underbrace{\zeta_{+z}(\eta) \bar{\zeta}_{+z}(0)}_{W_{+z}} q(0) \rangle_{\zeta} = \langle \underline{\bar{q}}(b) \underbrace{\zeta_{-z}(b)}_{\phi_{-z}(b)} \Gamma \underbrace{\bar{\zeta}_{-z}(\eta + b_{\mathrm{T}})}_{C_{-z,\mathrm{T}}(\eta + b_{\mathrm{T}})} \underbrace{\bar{\zeta}_{\mathrm{T}}(\eta) \zeta_{+z}(\eta)}_{C_{\mathrm{T},+z}(\eta)} \underbrace{\bar{\zeta}_{+z}(0) q(0)}_{\phi_{+z}(0)} \rangle_{\zeta}$

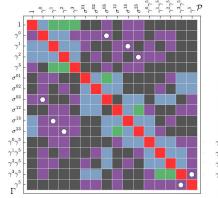
where Wilson lines are given by zeta propagators in the extended theory, and Z_0 is broken down as

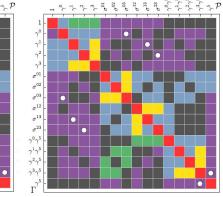
$$\mathcal{O}_{\ell,\Gamma}^{\text{ren.}} = e^{-\delta m (l+b_{\mathrm{T}})} (Z_{\phi_{-z}}^{\dagger} \Gamma Z_{\phi_{+z}}) \\ \times \langle \phi_{-z} (Z_{C_{-z,\mathrm{T}}} C_{-z,\mathrm{T}}) (Z_{C_{\mathrm{T}},+z} C_{\mathrm{T},+z}) \phi_{+z} \rangle_{\zeta}$$

with one renormalization condition for each Z, independent of staple configurations. This is $\underline{\text{RI-xMOM}}^1$.

New renormalization scheme leads to reduced mixing

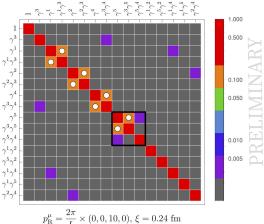






Figures from Shanahan, Wagman, and Zhao, PRD 101 (2020)

- Showing mixing patterns for RI'-MOM
- ¹⁰⁰ from left to right for:
- ostraight-line,
- symmetric, and asymmetric staples.

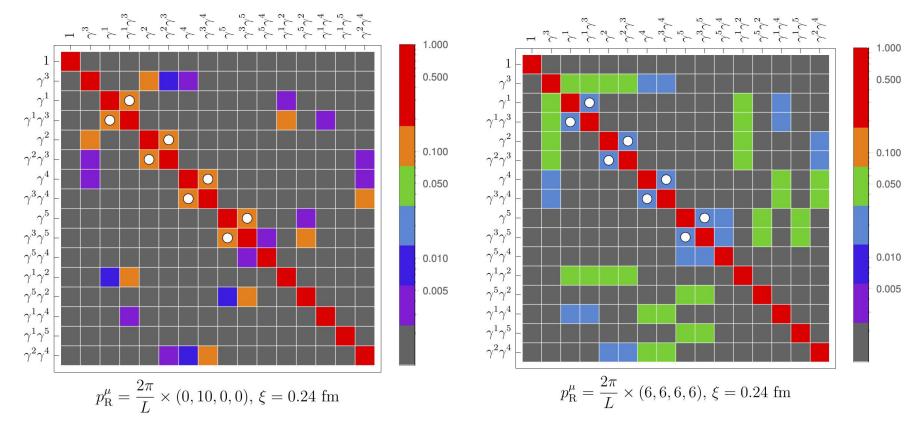


For short, straight-line configurations, mixing patterns in <u>RI'-MOM</u> agree with lattice perturbation theory at one-loop¹ (white circles), but deviations become large for staple-shaped Wilson lines; in comparison, mixing effects in <u>RI-xMOM</u> are well-controlled (for collinear momenta and Wilson lines)

¹Constantinou, Panagopoulos, and Spanoudes, PRD 99 (2019) and PRD 96 (2017).

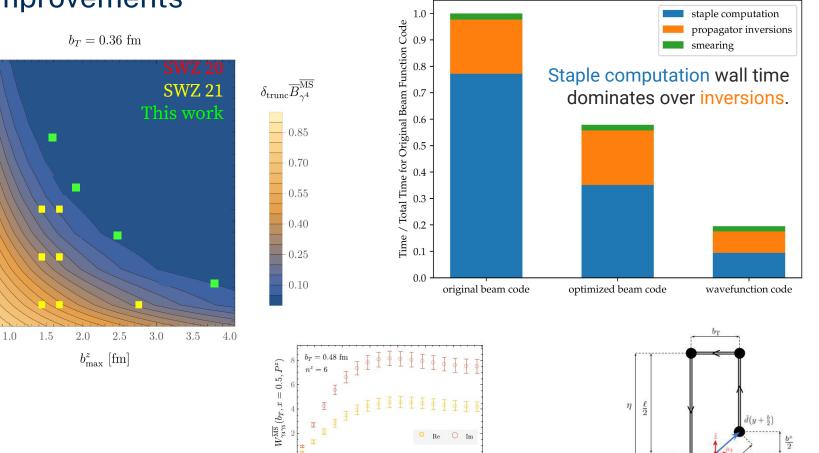
Artur Avkhadiev, MIT Preliminary figure from this work (different ensemble and renormalization scale)

Scheme dependence of mixing patterns



Code improvements

Timings for Beam and Wavefunctions



Artur Avkhadiev, MIT

2.5

2.0

1.5

1.0

0.5

 P^{z} [GeV]

30

 $\frac{b^z}{2}$

 $u(y-\frac{b}{2})$

8

10

12

14 16

6