Observing Axion Gegenschein with FAST

Wenxiu Yang NAOC Nov. 22, 2022

collaborators: Yougang Wang, Xuelei Chen, Yichao Li(NEU), Wenkai Hu(AMU), Kiyoshi Masui(MIT), Yitian Sun(MIT), Katelin Schutz(MIT, McGill), Shuanghao Shu

Outline

- 1. Axion gegenschein
- 2. Observation
- 3. Data processing
- 4. Results
- 5. Error estimation
- 6. Summary

1. Axion gegenschein theory

• axion gegenschein (Ghosh et al. 2020)

Buen-Abad et al. 2022

$$S_g = \frac{\hbar c^4 g_{a\gamma\gamma}^2}{16} \int_0^{\frac{t_0 c}{2}} S_\nu(\nu_a, x_d) \rho(x_d) \mathrm{d}x_d$$

- $g_{a\gamma\gamma}$: axion-photon coupling strength
- \bullet S_v: flux density of primary source
- ρ: dark matter density in Milky Way

NFW profile
$$\rho(r) = \frac{\rho_0}{\frac{r}{r_s} \cdot \left(1 + \frac{r}{r_s}\right)^2}$$

$$heta_i \sim heta_d rac{x_{ds}}{x_s}, \quad heta_i \ll 1$$

1. Axion gegenschein forecasts

- supernova remnants
- W50, Vela, W28
- 100h observation with FAST

1. Axion gegenschein Vela SNR

- Vela SNR gegenschein
- RA: 20h35m20.66s DEC: +45d10m35.20s
- FAST sky coverage: -15° ~ 65°

Parameters	Symbol	Fiducials	Error (or other model)
Position	(l, b)	$(263.55^{\circ}, -2.79^{\circ})$	<u>14</u> 11
Distance	x_s	287 pc	+19 / -17 pc
Age	t_0	1.2×10^4 years	$\pm 2 \times 10^3$ years
MFA time	$t_{\rm MFA}$	100 years	+200 / -70 years
Spectral index	α	0.74	± 0.04
Electron model	$S_{ u}$	$S_{\nu} \propto t^{-4p/5}$	$S_{\nu} \propto t^{-2(p+1)/5}$

1. Axion gegenschein forecasts

- FAST (single dish telescope)
- $D_{iIIu}=300m$, $A_{iIIu}=70700m^2$, $\eta_A=0.7$, $T_{sys}=20K$
- 70MHz 3GHz (19beams in 1-1.5GHz)
- CHORD (compact mapping interferometers)
- 24×22 rectangular array, D=6m, A_{illu}=14400m²
- $\eta_A = 0.5, T_{sys} = 30K$
- 300 MHz to 1500 MHz
- SKA1 (long-baseline interferometers)
- SKA1-low: 131000 antennas, 50-350 MHz
- SKA1-mid: 197 dishes, 350 MHz-15.3 GHz

100h observation of W50 (Sun et al. 2022)

2. Observation strategy

• ON-OFF

A: ~20h ON-source, ~100min OFF-source, 10 days

B: ~320min ON-source, ~320min OFF-source, switch in every 10 minutes, 5 days

• noise diode: ~1K

A: noise injected for 81.92µs in every 196.608µs

B: noise injected for ~1s in every ~8s

• sky calibrator: 3C409, MultiBeamCalibration mode,

~20min(~20s per beam) each day

2. Observation data

• A

- $\Delta t \approx 0.2$ s, $\Delta v \approx 7.6$ kHz (spec backend)
- $\Delta t \approx 98 \mu s$, $\Delta v \approx 122 kHz$ (pulsar backend)

• B

- $\Delta t \approx 1.0$ s, $\Delta v \approx 7.6$ kHz
- 19 beams, 4 polarizations (only 2 used)
- Frequency bands: 1050-1140MHz, 1140-1310MHz, 1310-1450MHz
- rebin: $\Delta v \approx 122 \text{kHz}$

B: ON - OFF - ON - OFF...

3. Data processing

• (1) temporal RFI flagging

• (2) bandpass and temporal fluctuation calibration

• bandpass
$$bp(\nu) = \frac{\langle V_{\text{on}}(\nu, t) - V_{\text{off}}(\nu, t) \rangle_t}{\frac{t_{\text{on}}}{t_{\text{samp}}} \cdot T_{\text{ND}}(\nu)}$$

• temporal fluctuation $g(t) = \left\langle \frac{V_{\text{spec,on}}(\nu, t) - V_{\text{spec,off}}(\nu, t)}{bp_{\text{spec}}(\nu)} \right\rangle$

• calibrated data
$$T_{\mathrm{cal}}(
u,t) = rac{V_{\mathrm{spec}}(
u,t)}{bp_{\mathrm{spec}}(
u)\cdot g(t)}$$

• (3) absolute flux calibration

• 3C409
$$S_{3C409}(\nu)B(r) = \frac{T_{3C409}(\nu)}{\eta(\nu, \theta_{ZA,0}) \cdot G_0}$$

• flux
$$S(\nu, t) = \frac{T_{cal}(\nu, t)}{\eta(\nu, t) \cdot G_0}$$

3. Data processing

- (4) baseline and standing waves removing
- weighted averaging data from different beams and OFF-source points →

delay spectrum

3. Data processing

- (5) signal searching
- Features of axion gegenschein signal:
- position: determined by axion mass, $h\nu_a = m_a c^2/2$
- shape: Gaussian
- width: related to Doppler broadening, $\Delta v / v \sim 2\sigma_d / c$, $\sigma_d \sim 116 km/s \Rightarrow \Delta v \sim 1MHz$
- detection: 2 polarization, 19 beams, all time
- Searching method
- matched-filtering and interation
- template: Gaussian, $0.3MHz < \sigma < 0.6MHz$

matched-filtering method: signal: s(x) template function: $\alpha t(x - \delta; \sigma)$ minimize $\chi^2 = \sum_{x=1}^{N} [\alpha t(x - \delta; \sigma) - s(x)]^2$ \Leftrightarrow maximize $c(\delta) = s(x) * t(x - \delta; \sigma)$

4. Results candidates

4. Results candidates

- candidates selection:
- (1) exclude too narrow/wide
- (2) divide data into 2 groups and compare S/N, shape and peak flux in each group
 - polarizations
 - beams
 - OFF-source points
 - time

4. Results constraint

$$S_{g} = \frac{\hbar c^{4} g_{a\gamma\gamma}^{2}}{16} S_{\nu,0}(\nu_{a}) \int_{0}^{\frac{(t_{0} - t_{MFA})c}{2}} \left(\frac{t_{0} - \frac{2x_{d}}{c}}{t_{0}}\right)^{-\frac{4p}{5}} \rho(x_{d}) dx_{d}$$
$$+ \frac{\hbar c^{4} g_{a\gamma\gamma}^{2}}{16} S_{\nu,0}(\nu_{a}) \int_{\frac{(t_{0} - t_{MFA})c}{2}}^{\frac{t_{0}c}{2}} \left(\frac{t_{MFA}}{t_{0}}\right)^{-\frac{4p}{5}} \rho(x_{d}) dx_{d}$$
$$S_{obs} = f_{\Delta} \int I_{g}(\hat{n}) b(\hat{n}) d\Omega$$
$$S/N < 1, 2, 3$$

5. Error estimation

6. Summary

- a constraint of axion-photon coupling strength $g_{a\gamma\gamma}$ at $m_a \sim 10 \mu eV$
- other experiments/approaches
- future improvements:
 - long integral time
 - better sources
 - accurate model of primary sources
 - more effective data processing methods for weak signals detection
 - better performance of telescopes

Thanks!

5. Error estimation Vela SNR model

Sun et al. 2022

5. Error estimation pointing error

 $\delta RA = -1$ ', $\delta DEC = -0.5$ '

5. Error estimation calibration process

- noise diode
 - bandpass stability
- sky calibrator
 - flux
 - η(v,za)
 - beam pattern

roughly assume a 7% error

5. Error estimation residual components

