# Solutions for Past Atmospherics Simulations

November 21<sup>st</sup>, 2022 DUNE HEP Working Group Meeting

by J. L. Barrow

**Zuckerman Postdoctoral Scholar** 

MIT & TAU

## **Collaborators** See Pedro and Ivan's <u>atm. v PRL</u>



#### Pedro Machado

#### **Ivan Martinez-Soler**

Viktor Pěč

Worked together to calculate oscillated atmospheric neutrino fluxes in a DUNE 10 kt far detector module for all neutrino directions with  $E \in (0.1, 100)$  GeV from 15km utilizing Honda fluxes

### **The Need to Understand Simulation Systematics**

...in the context of automated reco. and analysis techniques (CNNs, BDTs)

- How do we understand the usefulness and stability of prospective, Monte Carlo-derived limits?
  - When we *simulate events*, how stable are signal efficiencies?
  - When we *simulate backgrounds*, how stable are rejection rates?
  - In some respect, these questions go beyond simple statistics...
- Do our final state signal and/or background topologies change depending on the underlying nuclear and intranuclear cascade models?
  - In <u>GENIE</u>v3.0.6, there are three main nuclear models currently available:
  - 1. Bodek-Ritchie (relativistic) nonlocal Fermi gas
  - 2. Local (nonrelativistic) Fermi Gas
  - 3. <u>Effective Spectral Function</u> (nonlocal)
  - There are two main intranuclear cascades *currently* available:
  - 1. hA2018 (single effective interaction)
  - 2. hN2018 (full intranuclear cascade model)

#### Some <u>GENIE</u>v3.0.6 Intranuclear $\overline{n}N$ Initial States Single Nucleon Momentum



GENIEv3.0.6 hA/hN2018 and Local Fermi Gas

GENIEv3.0.6 hA/hN2018 and Bodek-Ritchie

## Some <u>GENIE</u>v3.0.6 Intranuclear $\overline{n}N$ Initial States



GENIEv3.0.6 hA/hN2018 and Local Fermi Gas

#### GENIEv3.0.6 hA/hN2018 and Bodek-Ritchie

#### Some <u>GENIE</u>v3.0.6 Intranuclear $\overline{n}N$ Initial States Mesonic Parameter Space



GENIEv3.0.6 hA/hN2018 and Local Fermi Gas

#### GENIEv3.0.6 hA/hN2018 and Bodek-Ritchie

### Some <u>GENIEv3.0.6</u> Intranuclear $\overline{n}N$ Final States **<u>Pionic</u>** parameter space <u>only</u>



The intranuclear cascade kills most Total Momentum of Final State Mesons (GeV/c) of the original shape of the parameter space **Approximate** atmospheric v parameter space is overlayed



topologies?

**Final** 80 70 60 50 0.8 40 0.6 30 0.4 20 0.2 10 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 Total Invariant Mass of Final State Mesons (GeV/c^2)

GENIEv3.0.6 hN2018 and Bodek-Ritchie

## Goals for the atmospheric samples

- Generate oscillated <u>Honda</u> atmospheric samples
  - Do so across nuclear model configurations
  - Serve as background for rare event searches
    - Oscillations provide a portal for  $v_{\tau}$  appearance, can give rise to **CC backgrounds** to  $n \to \overline{n}$  due to multipionic decays
  - Will use "nominal" oscillation parameters from world data best fits, but can be editable if you like
- $2 \times 6 \times 2,000,000$ + samples generated, reconstructed
  - Six nuclear model configurations: {hN2018, hA2018} & {BR, LFG, ESF}

## **Process for atmospheric oscillation calculations**





rovided to Joshua Barrow (UTK, FNAL) for use by the DUNE NDK HEP orking Group for atmospheric background studies using Honda flux iles. This code produces a new atmospheric flux file containing neutrino flavors/type (nu\_tau/nu\_taubar) of similar structure to he nominal 4-flavor/type files; it is intended that these files nterface with a new GENIE Honda flux driver to create a standard et of oscillated atmospheric neutrino background samples. In eneral, this code could also be used for more intense atmospheric tudies, but this is left to other future users.

his file requires a build of GNU GSL to run.

#### AtmFlxOsc.cpp

#### by Ivan Martinez-Soler

| é | average <del>t</del> iux | <pre>&lt; in [cosz =</pre> | = 0.90 1   | 1.00, pn1_Az | z = 0 - 30    |               |
|---|--------------------------|----------------------------|------------|--------------|---------------|---------------|
|   | Enu(GeV)                 | NuMu                       | NuMubar    | NuE          | NuEbar (m^2 s | ec sr GeV)^-: |
|   | 1.0000E-01               | 9.8672E+03                 | 1.0020E+04 | 4.8979E+03   | 4.5842E+03    |               |
|   | 1.1220E-01               | 8.8940E+03                 | 8.9868E+03 | 4.4193E+03   | 4.0866E+03    |               |
|   | 1.2589E-01               | 7.9442E+03                 | 8.0068E+03 | 3.9200E+03   | 3.5941E+03    |               |
|   | 1.4125E-01               | 7.0265E+03                 | 7.0725E+03 | 3.4317E+03   | 3.1152E+03    |               |
|   | 1.5849E-01               | 6.1272E+03                 | 6.1404E+03 | 2.9803E+03   | 2.6778E+03    |               |
|   | 1.7783E-01               | 5.2653E+03                 | 5.2489E+03 | 2.5622E+03   | 2.2779E+03    |               |
| I | 1 9953E-01               | 4 4671F+03                 | 4 4417F+03 | 2 1739E+03   | 1 9119F+03    |               |

hms-ally-20-12-solmax.d

See Honda group site and associated article

- After discussions, was given modified code by Ivan using GSL libraries
  - Calculates oscillation probabilities and total event numbers from given <u>Honda</u> flux file structures for any site in average  $v_{\ell}/yr$  from 0.1 10,000 GeV
    - Assumes the normal hierarchy using Super-Kamiokande fits from <u>NuFIT</u>
    - $\theta_{12} = 33.82^\circ, \theta_{13} = 8.6^\circ, \theta_{23} = 48.6^\circ, \Delta m^2_{21} = 7.39 \times 10^{-5} \ eV^2, \Delta m^2_{31} = 2.528 \times 10^{-3} \ eV^2, \delta_{CP} = 221^\circ$
    - Includes density changes in the earth's geological makeup (as concentric shells in PREM)
    - Averages over individual angular bins via throws
    - Treats atmosphere as vacuum,  $\nu$  production height set at 15 km (this is a parameter)
  - All parameters can be easily changed, and it is all scriptable

|                  | average flux | in [cosZ = 0 | .90 1.00,  | phi_Az =           | 0 30]               |                     |                              |
|------------------|--------------|--------------|------------|--------------------|---------------------|---------------------|------------------------------|
|                  | Enu(GeV)     | NuMu         | NuMubar    | NuE                | NuEbar              | NuTau               | NuTaubar (m^2 sec sr GeV)^-1 |
| •                | 1.0000e-01   | 3.2243e+03   | 2.5527e+03 | 4.3507e+03         | 5.5255e+03          | 7.1901e+03          | 6.5260e+03                   |
|                  | 1.1220e-01   | 4.6411e+03   | 4.2804e+03 | 4.0232e+03         | 4.5436e+03          | 4.6490e+03          | 4.2493e+03                   |
|                  | 1.2589e-01   | 3.5965e+03   | 3.8676e+03 | 4.2707e+03         | 3.4236e+03          | 3.9970e+03          | 4.3097e+03                   |
|                  | 1.4125e-01   | 2.3155e+03   | 2.5628e+03 | 3.8968e+03         | 3.0621e+03          | 4.2459e+03          | 4.5628e+03                   |
|                  | 1.5849e-01   | 5.5881e+03   | 5.6154e+03 | 3.0665e+03         | 2.7240e+03          | 4.5285e+02          | 4.7885e+02                   |
|                  | 1.7783e-01   | 3.1063e+03   | 3.1578e+03 | 2.6391e+03         | 2.2205e+03          | 2.0821e+03          | 2.1485e+03                   |
| -igsi –igsicblas | 1 9953e-01   | 1 6847e+03   | 1 83880+03 | 2 <u>4418e+</u> 03 | 1 8112 <u>0+</u> 03 | 2 51 <u>45e+</u> 03 | 2 7036e+03                   |

#### hms-ally-20-12-solmax\_3FlavOsc.d

## **GENIE changes and sample production**



| average flux | in $[\cos Z = 0$ | .90 1.00,  | phi_Az = 0 | 30]        |                     |                              |
|--------------|------------------|------------|------------|------------|---------------------|------------------------------|
| nu(GeV)      | NuMu             | NuMubar    | NuE        | NuEbar     | NuTau               | NuTaubar (m^2 sec sr GeV)^-1 |
| 1.0000e-01   | 3.2243e+03       | 2.5527e+03 | 4.3507e+03 | 5.5255e+03 | 7.1901e+03          | 6.5260e+03                   |
| 1.1220e-01   | 4.6411e+03       | 4.2804e+03 | 4.0232e+03 | 4.5436e+03 | 4.6490e+03          | 4.2493e+03                   |
| L.2589e-01   | 3.5965e+03       | 3.8676e+03 | 4.2707e+03 | 3.4236e+03 | 3.9970e+03          | 4.3097e+03                   |
| 1.4125e-01   | 2.3155e+03       | 2.5628e+03 | 3.8968e+03 | 3.0621e+03 | 4.2459e+03          | 4.5628e+03                   |
| L.5849e-01   | 5.5881e+03       | 5.6154e+03 | 3.0665e+03 | 2.7240e+03 | 4.5285e+02          | 4.7885e+02                   |
| 1.7783e-01   | 3.1063e+03       | 3.1578e+03 | 2.6391e+03 | 2.2205e+03 | 2.0821e+03          | 2.1485e+03                   |
| 9953e-01     | 1 6847e+03       | 1 83880+03 | 2 44180+03 | 1 81120+03 | 2 51 <u>45e+</u> 03 | 2 7036e+03                   |
|              |                  |            |            |            |                     |                              |

Atmospheric v CC and NC Cross Section Splines



- Quite simple changes were made to GENIE's <u>src/Tools/Flux/GAtmoFlux.cxx</u> and <u>GHAKKMAtmoFlux.cxx</u> flux drivers to allow for six v types to be read in from newly calculated oscillated Honda flux files
  - These are available in a personal git
- Six new nuclear model configuration tunes were constructed
  - {hN2018, hA2018}⊗{BR, LFG, ESF}
  - Tunes available, can be switched easily
  - Based on G18\_10a/b
- Splines are generated across all  $\nu$  types for all of these nuclear model configurations
  - Differences in cross sections are due to various momentum distributions
  - Cross sections available

### **Known Issue: Flux-Cross Section Convolution**



Energy of incoming neutrino [MeV]

- Previously unknown behavior
  - C. Marshall and I discovered this almost simultaneously and independently
- Results from convolution of logarithmically spaced bins of energy and an approximately linearly increasing cross section
- What to do?
  - Interpolate, find actual spectrum, and then cull/reweight events appropriately

## **Spectral Interpolation Expected count rates via integration**







### **Known Issue in GENIE 3.0.6: Detector Coordinates**



#### ARUP drawings "Long Baseline Neutrino Facility – Far Site Conventional Facilities – Excavation Design", page 6 – Nov-2015



### Topocentric Horizontal Coordinates vs. DUNE Coordinates

Rotations of right-handed coordinate systems must be performed within GENIE generation steps using two Euler angles: -R 0.125237636, -1.57079633,0.0 ~ - R 7.17°, -90°, 0°



### **Known Issue in GENIE 3.0.6: Detector Coordinates**



### **Known Issue in GENIE 3.0.6: Detector Coordinates**



# **Further Refinements Required**

- Allow for production height input (known to Honda)
- Allow reweighting of events to reshape spectra appropriately
  - Or fix GENIE directly (not sure how to do this given input flux's structure)
  - Need to add new weight tree branch/leaf to current ntuples
    - Normalize everything to NuFit 4.1 parameters
- Run same calculation for solar minimum (max.  $\nu$  counts)
- Use new oscillation software?
- Or use current software method and make scriptable?
  - Each oscillation point takes ~3-4 minutes to run and interpolate using GSL
  - Modify for the grid, get thousands of points? Develop ntuple structure?

# **Previous Slides**

# Systematics for Rare Processes and Their Backgrounds

November 18<sup>th</sup>, 2022 DUNE HEP Working Group Meeting

by J. L. Barrow

**Zuckerman Postdoctoral Scholar** 

MIT & TAU

# Atmospheric v Background Systematics

# **Varying Oscillation Parameters**

- Utilized <u>NuFit4.1</u> parameters
- Largest uncertainty expected to be caused by  $\theta_{23}$ 
  - Ran these ranges in an uncorrelated way to see approximate behavior
  - Does not account for particular degeneracies that are possible







## Varying Nuclear Model (Cross Section)

- Nuclear model of Fermi motion enters cross section calculation
  - Factorized generator model doesn't change cross section despite FSI effects
- Three were available at the time (more now)
  - Bodek-Ritchie (BR) nonlocal relativistic Fermi gas with pheno. SRC tail
  - Local Fermi gas (LFG) with nonrelativistic physics
  - Effective spectral function (ESF) with nonlocal, nonrelativistic physics









# How to handle model variations?

- Not all nuclear model configurations are reweightable
  - Theoretically motivated FSI's are stochastic (hN Intranuke)
- Only play with 3/6 versions?
  - Even here, LFG is likely "best"

| Bodek-Ritchie Nuclear Model                    | Total   | CC      | NC      |
|------------------------------------------------|---------|---------|---------|
| $\nu_e$                                        | 746.76  | 538.93  | 207.83  |
| $\bar{ u}_e$                                   | 188.833 | 113.893 | 74.9393 |
| $ u_{\mu} $                                    | 756.522 | 527.679 | 228.842 |
| $\bar{ u}_{\mu}$                               | 216.493 | 126.104 | 90.3886 |
| $ u_{	au} $                                    | 234.757 | 14.1756 | 220.581 |
| $\bar{ u}_{	au}$                               | 92.5186 | 5.14774 | 87.3709 |
| Totals per $10  \mathrm{kt} \cdot \mathrm{yr}$ | 2235.88 | 1325.93 | 909.953 |
| Local Fermi Gas Nuclear Model                  | Total   | CC      | NC      |
| $\nu_e$                                        | 782.185 | 578.756 | 203.43  |
| $\bar{ u}_e$                                   | 197.509 | 124.602 | 72.9071 |
| $ u_{\mu} $                                    | 788.383 | 564.348 | 224.036 |
| $\bar{ u}_{\mu}$                               | 224.443 | 136.450 | 87.9928 |
| $ u_{	au}$                                     | 230.162 | 14.2033 | 215.959 |
| $\bar{ u}_{	au}$                               | 90.2157 | 5.16265 | 85.053  |
| Totals per $10  \mathrm{kt} \cdot \mathrm{yr}$ | 2312.90 | 1423.52 | 889.377 |
| Effective Spectral Function Nuclear Model      | Total   | CC      | NC      |
| $\nu_e$                                        | 711.738 | 503.908 | 207.830 |
| $\bar{ u}_e$                                   | 182.029 | 107.089 | 74.9393 |
| $ u_{\mu} $                                    | 725.050 | 496.208 | 228.842 |
| $\bar{ u}_{\mu}$                               | 209.751 | 119.362 | 90.3886 |
| $ u_{	au}$                                     | 234.699 | 14.1175 | 220.581 |
| $\bar{ u}_{	au}$                               | 92.5227 | 5.15187 | 87.3709 |
| Totals per $10  \mathrm{kt} \cdot \mathrm{yr}$ | 2155.79 | 1245.84 | 909.953 |

# **Missing Systematics?**

- Beyond  $\theta_{23}$  and other smaller oscillation effects, we have...
- Must study  $E^{-\gamma}$  spectral dependence  $\gamma \neq 3$  on expected counts
  - Should probably source directly from Honda?
- Confidence in logarithmic interpolation scheme?
- Must vary between solar minimum and maximum (over a cycle?)
- Small changes to PREM model densities are allowed
- Iterations on FSI parameters? Make things softer/harder?
- Effects of reconstruction via slight misalignments of the detector?
- How to study all these in a correlated fashion?
- How does ML factor into all of this???

# $n \rightarrow \overline{n}$ Systematics

## What is being done now in MicroBooNE?

Uncertainty due to GENIE modeling is accessed by producing different samples from different models (hN-LFG, hA-BR and hN-BR) and passed them through the analysis framework (BDT and CNN) to find the uncertainty w.r.t nominal model (hA-LFG)



## What is being done now in MicroBooNE?

| Systematic uncertainties on signal selection efficiency |       |
|---------------------------------------------------------|-------|
| GENIE - hN-LFG                                          | 1.14% |
| GENIE - hA-BR                                           | 1.17% |
| GENIE - hN-BR                                           | 4.57% |
| Total GENIE (adding in quadrature )                     | 4.85% |
| Detector                                                | 6.73% |
| GEANT4                                                  | 2.32% |
| Total systematic uncertainty on signal                  | 8.61% |

Similar procedure as followed for GENIE

Used re-weighting scheme

Can we ignore the ML-aspects of this selection on our systematic effects?

# **A Grand Scheme?**

## or

# **A Terrifying Prospect?**

Model Configuration **Flows for** Signal and Background Sample Comparisons to Better Determine Model **Systematics** 

The best way to understand modeling systematics of an unknown process is to comparatively iterate

| S:S    | hA_BR                                      | hA_LFG                                     | hA_E<br>SF | hN_BR | hN_LFG | hN_ESF |
|--------|--------------------------------------------|--------------------------------------------|------------|-------|--------|--------|
| hA_BR  |                                            | Kinematic<br>Distributions<br>(BDT inputs) |            |       |        |        |
| hA_LFG | Kinematic<br>Distributions<br>(BDT inputs) |                                            | N          |       |        |        |
| hA_ESF | :                                          | N                                          |            |       |        |        |
| hN_BR  |                                            |                                            |            |       |        |        |
| hN_LFG |                                            |                                            |            |       |        |        |
| hN_ESF |                                            |                                            |            |       |        |        |

| S:B    | hA_BR              | hA_LFG | hA_ESF | hN_BR | hN_LFG | hN_ESF |
|--------|--------------------|--------|--------|-------|--------|--------|
| hA_BR  | $\tau_{n \bar{n}}$ |        |        |       |        |        |
| hA_LFG | :                  | N      |        |       |        |        |
| hA_ESF |                    |        |        |       |        |        |
| hN_BR  |                    |        |        |       |        |        |
| hN_LFG |                    |        |        |       |        |        |
| hN_ESF |                    |        |        |       |        |        |

| B:B    | hA_BR                                      | hA_LFG                                     | hA_E<br>SF | hN_BR | hN_LFG | hN_ESF |
|--------|--------------------------------------------|--------------------------------------------|------------|-------|--------|--------|
| hA_BR  |                                            | Kinematic<br>Distributions<br>(BDT inputs) |            |       |        |        |
| hA_LFG | Kinematic<br>Distributions<br>(BDT inputs) |                                            | Ν.         |       |        |        |
| hA_ESF | :                                          | N                                          |            |       |        |        |
| hN_BR  |                                            |                                            |            |       |        |        |
| hN_LFG |                                            |                                            |            |       |        |        |
| hN_ESF |                                            |                                            |            |       |        |        |



Effectively a "universe" approach

#### $n \rightarrow \overline{n}$ Accepted Background Counts



## Background Count Ideogram

- We can compare counts model-bymodel
  - Ideogram supposes gaussian distributed errors for these samples
  - Error is estimated as

 $\frac{\sqrt{\text{Res. Bkgr. Cnts. per 400kt} \cdot \text{yr}}}{\left(\frac{\text{MC Exposure in kt} \cdot \text{yr}}{400 \text{ kt} \cdot \text{yr}}\right)}$ 

| Model Analyzed | MC Exposure (kt·yr) | Counts/10 kt·yr | Tot. $\nu_{atm}$ Counts | Bkgr. Acc. Rate | Res. Bkgr. Counts/400 kt·yr | Est. Bkgr. Count Error |
|----------------|---------------------|-----------------|-------------------------|-----------------|-----------------------------|------------------------|
| hA_BR          | 200                 | 2014            | 40280                   | 0.02%           | 16.11                       | 8.03                   |
| hA_LFG         | 400                 | 2312.9          | 92516                   | 0.06%           | 58.29                       | 7.63                   |