

Accelerator Capabilities Enhancement (ACE) Workshop

Main Injector Controls and Instrumentation

Kyle J. Hazelwood January 30, 2023

Outline

Criteria

- Upgrades and Enhancements
- Summary

Criteria

- 2 MW MI Fast Ramp Proposal 2MW
 - Is enhancement or upgrade necessary or desirable for proposal
- PIP-II PIPII
 - Is enhancement or upgrade necessary or desirable for PIP-II era
- Reliability R
 - Would enhancement or upgrade significantly increase uptime or lower maintenance and upkeep
- Sustainability S
 - Would enhancement or upgrade make operations more sustainable (less energy, less waste, smaller environmental impact)
- Performance P
 - Would enhancement or upgrade increase operations performance (more beam, more efficiently)
- Criticality C[0-3]
 - How critical is this item to present or future operations
- Cost **\$[1-3]**
 - Relative estimate of cost
- Labor L[1-3]

3

Relative estimate of labor

Main Injector Power Supply Controls

Most of the Main Injector main power supply controls are original to 1990's construction

- PS PLCs (2MW, R, C3, \$2, L2)
 - 50 (24 just for MI quad and bend supplies)
 - \$150k, 800 hrs
- PS PLC Control Power (2MW, R, C3, \$1, L2)
 - 10 (8 remaining)
 - \$56k, 320 hrs
- DC PS Control Communications (2MW, R, C3, \$1, L2)
 - ~\$50k, ~100's hrs
- Bus DCCTs (2MW, R, C3, \$2, L?)
 - 7
 - ~\$112k
- PS Data Link (2MW, R, C3, \$1, L?)
 - CAMAC based
- MECAR (2MW, R, S, P, C3, \$1, L2)
 - VME based
 - Sustainability opportunity

Water Cooling Controls

Main Injector water cooling controls needs to be replaced

- House PLCs (2MW, R, C3 , \$2, L2)
 - Magnet, RF, Cavity systems
 - SixTrack system obsolete
- House VMEs (2MW, R, C3 , \$1, L1)
- Advantage Starter Cards (2MW, R, S, C3, \$2, L2)
 - ~50 between LCW and pond pumps
 - Obsolete

- Some pond have been replaced with Variable Frequency Drives (VFD)
 - VFD offer new way to regulate LCW temperature while lowering energy use

Vacuum Controls

All Main Injector, 8 GeV and 1/3 of Recycler running on obsolete CIA system

- Ion Pump PS (**PIPII**, **R**, **S**, **P**, **C3**, **\$3**, **L3**)
 - ~500

- ~\$500-750k, 1000 hrs
- Networked Ethernet IPs in use in Recycler
- Beam Valve Control (**PIPII**, **R**, **C3**, **\$1**, **L2**)
 - ~1-2 per house
 - ~\$100k, ~250 hrs
 - Need to replicate CIA crate beam valve control, sector permit
 - Could be used to increase IP vacuum readback frequency

Field Bus

Much of the PS ramp waveforms, timing, clock, signals, ADC, machine protection is handled via CAMAC, a 1970's tech

- CAMAC Cards (**R**, **P**, **C3**, **\$3**, **L3**)
 - ~603,
 - ~\$2M+, 1000's hrs
- CAMAC Crates (**R**, **P**, **C3**, **\$3**, **L3**)
 - `~88
 - ~\$1M
- CAMAC VME Front Ends (R, P, C2, \$1, L1)
 - 4

- ~\$50k
- CAMAC ADC (**R**, **P**, **C1**, **\$2**, **L2**)
 - Need more channels, less multiplexed
 - We can't currently read adjacent corrector currents in Recycler
 - Greater resolution

Software

Many client applications were originally written 25+ years ago

- Client Applications (R, P, C2, \$1, L3)
 - Console Programs, Comfort Displays
 - ~100 for Main Injector, Recycler, 8 GeV
 - 1000's hrs
- More Data (**P**, **S**, **C1**, **\$?**, **L2**)
 - More resolution
 - Better timestamp synchronization
 - More waveform data
- Data Logging (**R**, **P**, **S**, **C2**, **\$2**, **L2**)
 - · We save a very small fraction of our machine data
 - ~5 TB per day to save all existing readbacks
- Issue tracking (**R**, **P**, **S**, **C1**, **\$1**, **L1**)
 - Elog is great ☺, but does a poor job of tracking resolution of issues that take longer than a few shifts
- APIs (R, P, S, C1, \$1, L1)

8

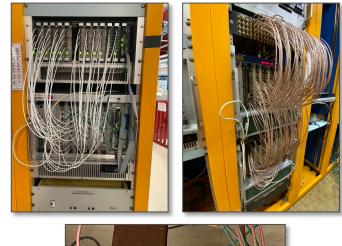
Convenient, intuitive, flexible access to machine data and machine settings



RF Controls

Most RF controls are in need of replacement

- LLRF VXI Crates (2MW, PIPII, R, P, C3 , \$2, L2)
 - Needed for Main Injector and Recycler
- HLRF IRM Nodes (2MW, PIPII, R, P, C3 , \$2, L2)
 - 44
 - Proposed PiRM nodes
- Anode Controls (2MW, PIPII, R, P, C3, \$1, L2)
- Damper Controls (PIPII, R, P, C3, \$2, L2)



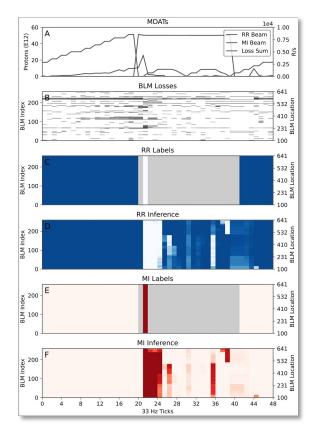
Beam Instrumentation

Much of our beam instrumentation is EOL. Most systems were designed for manual tuning and studies

- Beam Position Monitors (**PIPII**, **R**, **P**, **C3**, **\$3**, **L2**)
 - 8 GeV, Recycler, MI
 - Digitizers obsolete, few spares
 - VME based
- Beam Loss Monitors (PIPII, R, P, C3, \$3, L2)
 - Ionization chambers need refurbishment
 - VME based
- Wire Profile Monitors (PIPII, R, P, C3, \$2, L2)
 - Motion controls need refurbishment
 - Better wire frame, can designs desired
 - Bias planes, dual planes, C-channels
 - SWIC scanner + VME FE scheme dated
- Ion Profile Monitors (PIPII, R, P, C1, \$2, L2)
 - Fast HV switch to preserve Micro channel plate lifetime

Beam Instrumentation (Continued)

- Toroids (**PIPII**, **R**, **P**, **C2**, **\$2**, **L2**)
 - VME/NIM based
- Beam Intensity DCCT (PIPII, R, P, C3, \$2, L2)
 - VME based
 - Hardware is approaching beam intensity limits for PIP-II
- More Non-invasive Measurements (PIPII, R, P, C2, \$3, L2)
 - Electron beam profile monitor?
 - Halo profile monitors?
 - Tune measurement?



Automation

The vast majority of Main Injector, Recycler and 8 GeV are tuned manually.

- Orbit Control (2MW, PIPII, R, P, C3, \$1, L2)
 - More autotunes
- Tune Control (2MW, PIPII, R, P, C3, \$2, L2)
 - Need active tune readback (Dampers?)
- Artificial Intelligence, Machine Learning (2MW, PIPII, R, P, S, C3, \$2, L2)
 - Anomaly Detection
 - Tuning, studies are often hampered by broke instrumentation only discovered in post
 - Multi-objective Optimization
 - · Optimize the machine using multiple sub-systems for multiple objectives
 - Better regulation schemes
 - · Slow spill duty factor
 - Main Injector ramp regulation
 - Energy savings
 - Inference, realtime diagnostics
 - Digital Twins (better machine models)
 - Natural Language Processing (Elog searches?)
- Automated Tunnel Surveys, Robotics (2MW, PIPII, R, P, S, C3, \$2, L2)

Miscellaneous

Not every needed upgrade fits into a neat category

- Computer Room (2MW, PIPII, R, P, C3, \$3, L2)
 - Limited cooling
 - At max capacity
 - Generator needed
- Kautz Road Sub-station (KRS) Controls (2MW, R, P, C3, \$2, L2)
- Building Monitoring/Metering (R, P, S, C3, \$2, L2)
 - Opportunity for sustainability
- Cabling Replacement (2MW, PIPII, R, P, S, C3, \$3, L3)
 - Radiation damaged cables, cable liftetimes
 - Investigate other insulation materials
- Motion Controls (**R**, **P**, **C3**, **\$2**, **L2**)
 - Main Injector, Recycler, 8 GeV Collimators
 - Wire Profile Monitors
 - Ion Profile Monitors
 - Septa tanks
 - Crawling Wire
- Total Loss Monitors (2MW, PIPII, R, S, C2, \$2, L2)

Summary

- There are no obvious Controls or Instrumentation technological obstacles that would prevent the 2 MW Fast Ramp Upgrade
 - Just a matter of resources and support
- Increasing reliability should be prioritized the same as any increase in Main Injector duty factor or beam intensity
- Majority of Main Injector controls is EOL, there is much that should be replaced/upgraded
- Much of our instrumentation is oriented towards manual tuning and studies
 - Need more focus on providing streaming readings for future automation
- While both Main Injector and Recycler currently have beam transmission efficiencies of ~98%, this may be insufficient for future machine operations
 - Tunnel activation, personnel exposure
 - Component lifetimes
- More effort and support should be given to machine automation to help improve overall machine efficiencies
 - AI/ML has great promise

- Opportunities exist, and should be explored to increase Main Injector sustainability
- Need to actively rotate out aged systems
 - Attracting and retaining talent is already hard, few want to work on dated systems
- More investigation is needed to adequately scope costs and labor
 - ACORN is doing some of this investigation already
- This amount of work will require significant increases in personnel and funds

