ACE workshop: LBNF PB

Schlabach

Summary

- Doable with relatively modest \$\$, will require more real estate volume within buildings, try to build taller rather than wider in the 3 relevant buildings: LBNF5, MI10, MI14
- If we absolutely can't make things fit and need to "enlarge" a building, it's going to be immodest \$\$ very quickly, this is unlikely (IMHO)
- Note:
 - PB and NB talk about power differently
 - I try not to hit anything until I hit the target (dead on every time ^(C)) so power for me is how much heat I need to pull out and exhaust
 - Downstream it's beam power deposited in various things which again has some aspect of pulling it out and exhausting it but it's different
 - Optics for me is quad focusing (spot size on target); downstream, horn focusing

Outline

- I'll cover everything from the kicker to the primary beam window
- I'll throw in my opinions on the PB window (kicker and horn power supply similar)
- I'll discuss things by "thing"
 - Power supplies
 - LCW (heat load)
 - Cables (heat load)
 - PB window
 - Kicker and Horn PS
 - Anything not mentioned did not rise to the level of concern that would warrant consideration here (assuming I've forgotten nothing)

Notes

Parameter	Protons per cycle	Cycle Time (sec)	Beam Power (MW)
≤ 1.2 MW Operation - Current Maximum Value for LBNF			
Proton Beam Energy (GeV):			
60	7.5E+13	0.7	1.03
80	7.5E+13	0.9	1.07
120	7.5E+13	1.2	1.20

Note

- LBNF PB is spec-d for (per previous slide: DUNE-doc-21582-v6)
 - 60 GeV, 0.7s rep rate
 - 120 GeV, 1.2s rep rate
- This exercise requires 0.6s, 120 GeV
 - I'll assert the difference between 0.6 and 0.7s isn't so different, the beam energy is
 - P=I^2 R so the power generated and removed is x4

Power supplies

- While they are designed for 0.7s rep rate at 60 GeV, we are requesting twice the energy (120 GeV), thus twice the current at 0.6s
 - We need to slew ~twice as fast to flat top
 - We need twice the voltage
 - That requires larger power supplies
 - It implies they are physically bigger in some dimension
 - The footprint of the building is fixed
 - We can try to build taller but will quickly get in trouble if we build wider
 - Some of the supplies have a "hard" connection to the transformer yard outside
 - We can try to not disturb those
 - This will require design
- I wag the cost at 3-5 million to replace the supplies
- No estimate for design effort (comment later on retrofit)
- I assume what I say about LBNF5 space applies to MI10 and MI14: space is limited

LCW

- Needs to remove and exhaust 4x the heat
 - It is not obvious to me whether or not it can do that
 - I think it highly likely that the piping and bus work are adequate at least from LBNF5 to the PBE
 - Let's say we rebuild the pump room at LBNF5
- I wag the cost at 1-2 million to replace pumps and other parts (skids)
- No estimate for design effort (comment later on retrofit)

Cables

- 4x the heat
 - It is not obvious to me where that ends up, but it's more likely that they are adequate than that the LCW doesn't need changes
 - We already went from 2s to 1s ish in NUMI
 - At 1.2s with switchyard running, the LAM61 cables cool off during the SY cycle resulting in a slightly different current at flat top and a noticeable difference in position at the targeting positions
 - We have compensated with the BuLB regulation
 - I can conceive of some slightly more complicated ways
 - Cables will get hotter
 - I deem this unlikely to be necessary
 - To rebuild or replace or upgrade or increase the cable plant only concerns me at MI10 and MI14 (lams, c-magnet, kicker) due to limited penetration space

PB window

- The heat generated where the beam passes through doesn't get to the perimeter so one is dependent on ambient cooling to the surrounding gas (N2 in this case)
- My opinion is even with the reduced rep rate this is fine
- Theoretically, fatigue lifetime is halved (I'm not particularly concerned)
 - See downstream talk

Kicker (Horn) PS

- Both have to charge faster
- Both charge capacitors ahead of time and then discharge "instantaneously" into the kicker (stripline)
- Meredith has a wag for replacement of the horn charging supply
- Should be similar for kicker

Retrofitting

- Retrofitting bus or piping in LBNF5 is going to cost \$\$
 - It's not nearly as easy as a green field install; it takes a shoehorn sometimes
 - The pipefitter meter runs whether the taxi is moving or not
- My guess is if either or both are required it's \$1-2 million
- Conduit replacement or modification between the outside transformer yard and the LBNF5 power supplies may be in the same range (if necessary)
- Cost:
 - Summing up everything I guess something more than 5 and less than 10 million \$\$
 - I do not include design or technician labor
 - If the pond doesn't support exhausting our extra heat
 - pond study from early days
 - Adding a coiling tower is ~5 million additional \$

What you do next (ordered list)

- Get a concept of what the new power supply packages would look like (electrical engineer)
- Evaluate whether LCW needs any changes
 - If so, get a concept of what they are (fluids engineer)
- Think at least a bit more about the kicker (electrical engineer/physicist)
- Once you've gotten the first two you can proceed to think about cost and schedule; you'll also know more about the buildings
- Time scale is up to you as to when "next" begins but remember the old adage about robbing Peter to pay Paul...

Backups