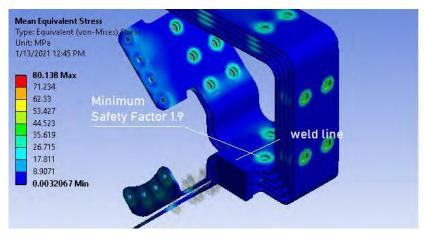

LBNF Horn Requirements for Option Zero

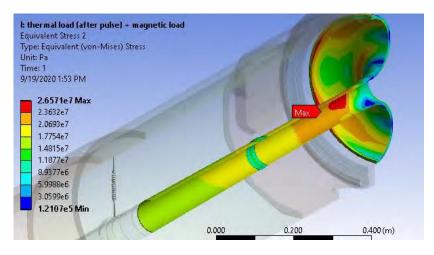
Meredith Lee Accelerators Capabilities Enhancement Workshop

1/31/2023

Agenda

- Horn A
 - Challenges at 2.4 MW
 - Capabilities of 1.2 MW Design
 - NuMI Stripline Experience
- Horns B & C
 - Challenges at 2.4 MW
 - Capabilities of 1.2 MW Design
- Option Zero R&D Estimates
- Summary




Horn A – 2.4 MW Challenges

- For Option Zero, horns must pulse at 1.8x frequency of current design
- FEA was analyzed at 1.2 MW
 - 120 GeV, 1.2 s rep rate, 7.5x10¹³ protons/cycle
- Weakest areas at 1.2 MW require redesign for 2.4 MW

Difference at 2.4 MW	Physical Effect	Affected Major Component
Higher thermal load from beam	Higher temperaturesHigher stresses	Inner conductor
Increased pulse rate	Increased Joule heatingMore cyclesFatigue lifetime reached sooner	Stripline

Location of lowest SF on stripline

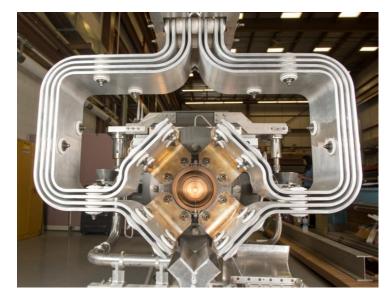
Equivalent stress in inner conductor

Horn A – Capabilities of 1.2 MW Design

- Stripline and inner conductor are limiting factors in how far Horn A can be pushed past 1.2 MW
- Rough scaling:
 - Stripline
 - Current design cannot exceed 1.2 MW
 - Inner conductor
 - Remove 15% EDEP uncertainty, SF=2:
 - Very roughly: 1.8 MW

Lowest Fatigue Safety Factors for Horn A

Region	Safety Factor	
Inner conductor weld 2a	2.5	
Inner conductor DS	4.4	
Stripline weld 2a	1.9	



NuMI Stripline Experience

- NuMI Horn 1 (1 MW) stripline has low SFs in some regions
 - Has not failed
 - Much higher SFs in other areas than LBNF
- Previous Horn 1 & Horn 2 striplines have failed
 - Stripline failure also influenced by vibration

SF (min)	Stripline (away from bolt hole)	Bolt hole	Connection area with horn
Al 6101-T6	SF>5	SF=1.64 (based on the peak number)	N/A
Al6013-T6	SF>4	SF=2.5 (based on the peak number)	SF=2 (based on the peak
			number)

1 MW Horn 1 stripline safety factors

1 MW Horn 1 stripline

Horns B & C – 2.4 MW Challenges

- All FEA analyzed at 1.2 MW
 - 120 GeV, 1.2 s rep rate, 7.5x10¹³ protons/cycle
- Higher safety factors than Horn A at 1.2 MW

Difference at 2.4 MW	Physical Effect	Affected Major Component
Higher thermal load from beam	Higher temperaturesHigher stresses	Inner conductor
Increased pulse rate	 Increased Joule heating More cycles Fatigue lifetime reached sooner 	Stripline

Equivalent stress in Horn B inner conductor

Horns B & C – Capabilities of 1.2 MW Design

- Rough scaling:
 - Stripline
 - Current design cannot exceed 1.2 MW
 - SF of 1.53 < 2
 - Horn B inner conductor
 - Remove 15% uncertainty in EDEP data, SF=2:
 - Very roughly: 2 MW
 - Horn C inner conductor
 - High fatigue safety factor suggests no issues at 2.4 MW

Lowest Fatigue Safety Factors for Horns B & C

Region	Safety Factor	
Horn B inner conductor	3.6	
Horn B/C stripline	1.53	
Horn C inner conductor	8	

Option Zero R&D Estimates

- New EDEP needed for Option Zero
 - FEA to be re-run using Option Zero
 EDEP
- Power supply would require
 ~\$200k M&S upgrade from current
 design

Horn	Task	Labor (0.3 FTE)	Duration
Α	Option Zero Mars EDEP	1 scientist	2 months
	 FEA Conductors Stripline thermal + structural Spider supports Water tank Hangers 	2 engineers	4-6 months
В	Option Zero Mars EDEP	1 scientist	2 months
	 FEA Horn B conductors Stripline thermal+ structural Stripline CFD Water tank Hangers Crosshairs 	2 engineers	4-6 months
С	Option Zero Mars EDEP	1 scientist	2 months
	FEAHorn C conductors	2 engineers	2 months

Summary

- FEA must be re-done using Option Zero EDEP data
- Modifications needed are driven by FEA results
 - Horn A
 - Re-designed inner conductor and stripline
 - Horns B & C
 - Stripline redesign
 - Inner conductors could be pushed further past 1.2 MW than Horn A

1/31/2023