

LBNF Beamline Instrumentation and Alignment

Sudeshna Ganguly Accelerators Capabilities Enhancement Workshop January 31, 2023

Overview

- Neutrino Beam Instrumentation (NBI) and where it sits in LBNF
- Requirements & alignment tolerances
- Required instrumentation
- Tolerance upgrade needs for 2.0+ MW operation
- Instrumentation upgrade needs for 2.0+ MW operation
- Considerations for option 0
- Schedule
- Summary planning table

LBNF Beamline & Locations of NBI

Consists of following systems

- Target complex: Crosshairs/BLMs/TPT, HLS
- Absorber complex: HADeS/MuMS

Upstream of target, not under purview of NBI

- Beam Position Monitors (BPMs) \bigcirc
- Secondary Emission Monitors (SEMs)

Sudeshna Ganguly

Requirements & Tolerances

- Require well controlled neutrino beam with minimal systematic errors
- Some requirements come from radiation considerations
- All instruments designed for 1.2 MW operation & should work at 2.4 MW, easily upgradable
- Tolerances:
 - Proton beam angle: 70 µrad
 - \blacktriangleright Proton beam position: 0.5 mm, profile: 10%
 - Baffle beam scraping: 1%
 - Target and Horn A/B/C displacement (transverse/tilt): 0.5 mm

Required Instrumentation: HADeS, Cross-Hair, BLM

- Systems designed to meet requirements
- Align beamline elements within tolerance with low intensity beam, 1mm RMS spot size
- Needed for Beam-Based Alignment:
 - Beam Position Monitors (BPMs, upstream of target, not under purview of NBI)
 - Hadron Alignment Detector System (HADeS), in front of absorber, at end of decay pipe)
 - Horn cross-hairs and beam-loss monitors (BLMs) \bigcirc
 - Heavily rely on abundant experience with NuMI

HADeS Conceptual Design

Cross-Hair & BLM Conceptual Design

Required Instrumentation: TPT, MuMS, HLS

- TPT, MuMS, HLS used during high intensity run
- Systems designed to meet requirements
- Needed for Monitoring of neutrino beam intensity and direction during operation:
 - Target position thermometer (TPT): if position \bigcirc of beam on target changes w/ no corresponding change in position on BPMs, could be an indication that target itself moved
 - Muon monitor system (MuMS): tracks intensity, beam center and width of the tertiary muon beam on a spill-by-spill basis
 - Horn-leveling system (HLS): independent \bigcirc measurement of positions of focusing horns

Sudeshna Ganguly

TPT design based on NuMI experience

MuMS conceptual design: NuMI approach

HLS conceptual design: inspired by similar CERN system

6

HLS monitors vertical shifts of beamline components (pre-target BPMs, Baffle, Horns)

Simultaneously compares multiple interferometers to same reference

 \succ Can sustain radiation on top of LBNF module (5 – 50 kilo-rad/year)

BPMs steer beam on target

Beam-based alignment finds target & other elements within BPM coordinates Sudeshna Ganguly

- Uses water level to transfer height between sensors, system based on Frequency Scanning interferometry (FSI)

- **TPT** measures beam on target with full intensity
 - LBNF modifications on TPT:

For 1.2 MW beam – 7.5 X 10¹³ ppp, 2.7 mm RMS beam

Change from 3 to 5 strips

Heat sink with cooling fins

- Cross Hairs/ BLMs
 - Horn B & C aligned as part of BBA
 - Scan beam across known physical features to locate each element
 - Use Cross Hairs at upstream & downstream ends of Horns B & C
 - Beam loss monitors to detect beam scatter from Cross Hairs

Sudeshna Ganguly

HADes – array of ionization chambers

Measure centroid position, integrated intensity, RMS change

Inserted only for alignment, retracted during normal operation

Sudeshna Ganguly

- LBNF modifications on HADeS:
- Optimize pixel size, # of channels

MuMS

Sensitive to beam focusing problems, measure beam centroid

> 3 Stations with muon thresholds at 5, 11, and 15 GeV

Sudeshna Ganguly

LBNF modifications on MuMS:

Improved gas system to maintain 1% spill- \bigcirc to-spill integrated flux normalization

Tolerance Upgrade Needs for 2.0+ MW Operation

- BIWG specific question (tolerance studies were al with full DUNE exposure)
- **Tolerances likely to not change**
 - Proton beam angle: 70 μrad Proton beam position: 0.5 mm, profile: 10% ► Baffle beam scraping: 1% > Target and Horn A/B/C displacement (transverse/tilt): 0.5 mm
- Radiation on top of LBNF module for 2.4 MW operation with 2.4 m target expected to be 500 – 5000 kilo-rad/year
- HLS can stand up to 10,000 kilo-rad/year

Idone	Pa	arameter	Protons per cycle	Cycle Time (sec)	Beam P (MV						
	≤ 1.2 MW Operation - Current Maximum Value for LBNF										
	Proton Bear	n Energy (GeV):									
(1.1 – 1.9 POT/		60	7.5E+13	0.7	1.0						
)x10 ²¹ /yr	80	7.5E+13	0.9	1.0						
		120	7.5E+13	1.2	1.2						
	≤ 2.4 MW 0	peration - Planned	Maximum Value	or LBNF 2nd Phas	e						
	Proton Bear	n Energy (GeV):									
2.2 – 3.8) POT/	v1021	60	1.5E+14	0.7	2.0						
	xiu-'	80	1.5E+14	0.9	2.1						
		120	1.5E+14	1.2	2.4						

- **Higher Average Power impacts**
- Shielding
- Cooling
- **Higher Beam Pulse Intensity impacts**
- Thermal Shock
- Radiation Damage

Likelihood and Impact of Changes to Alignment Scheme

- Horn B&C alignment with cross-hairs and BLM, Hades should be fine for any target horns upgrade
- Baffle alignment steps are also likely to remain unchanged in future upgrades
- Beam spot size at target is tunable: 1-4 mm
- Target & horn A alignment depends on actual target & Bafflette geometry, which is driven by spot size and intensity - could be problematic in an upgrade if spot size and target diameter are significantly increased
- TPT provides some redundancy to the bafflette measurement, giving target angle, but not in same scan
- An additional BLM for Baffle can provide redundancy & cross-checks recommended by Jim Hylen

LBNF/DUNE

Instrumentation Upgrade Needs for 2.0+ MW Operation HADeS, Cross-Hair, BLM

- retracted during normal operation - No design change required
- Impact of higher radiation on BLM:
- \succ Holes on BLMS need to be plugged adequately
- > Carrier tube for BLMs needs to have adequate shielding on top to allow technicians to come and connect/disconnect
- Cross Hairs and support brackets currently designed for 1.2 MW engineering studies will have to be redone for 2.0+ MW operation

HADeS, BLMs : being designed to be used for low intensity beam during beam-based alignment - will be

(similar to: https://docs.dunescience.org/cgi-bin/sso/ShowDocument?docid=23108)

LBNF/DUNE

Instrumentation Upgrade Needs for 2.0+ MW Operation TPT, MuMS, HLS

- If beam spot size needs to be adjusted, TPT spacing may need adjusting
- Studies for TPT heat sink design required for 2.0+ MW operation
- No impact on HLS design expected
- With increased intensity per spill, need to make sure MuMS system is not saturated
- MuMS in beam permit system by evaluating muons/POT (to protect absorber/beam intercepting devices) Requires readjustment depending on how linear the response is - Scan over beam intensity and check the MuMS response (tune ionization gap etc.) - Identify a threshold where muons/pot can be ruled out as simply statistical fluctuations

LBNF/DUNE

Changes to Beam Accident Conditions to Development of 2.4 MW components/systems

- Document (Anomaly-conditions-NBI) available with known sources of anomaly conditions, i.e., horn displacements/tilts etc.
- Anomaly events also include potential accident conditions, i.e., delivering full beam power directly onto absorber
- Will be combined into a single document
- If beam spot size change is needed for 2.4 MW target operation, will require reexamination of accident conditions/anomaly events because of possible changes in Baffle and Bafflette due to possible beam spot size change

Consideration for Option 0

Option 0: Achieve 2.4 MW beam power

Utilizing Fermilab Accelerator Complex with PIP-II but without major replacements > Shortening MI cycle would allow increasing LBNF proton flux without raising MI intensity

- Accident conditions/anomaly events definition remains unchanged with **Higher rep rate rather than** increased intensity per spill may help
- **intensity increase** – needs front ends to work faster
- Main impact of higher repetition rate is on target and horn heating need feedback from horn and target engineering groups
 - TPT : if the same power is being deposited, no change expected from power
 - : lower instantaneous stress & heat on all items

MuMS/Toroid beam-permit system more obviously works for increasing rep rate rather than per pulse

Schedule

Decay Pipe & Absorber Complex Summary Schedule

Catagony	2020	0 2021				2022			2023			2024			2025				2026				20		0			
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q	3 Q4	Q1	Qź	2	Q3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	
Beamline - DPA - Design											De	cay P	ipe ar	nd Ab	sorbe	er Co	omplex	Prelir	nin	ary I	Design							
														Dino	and A	\hco	orbor Co	mnlo		inal	Docian							
													Jecay	ripe		1020		inhie	:X FI	IIai	Design							
								De	ecay P	Pipe Fi	nal D	esign	Comp	olete														
									Be	am W	/indov	ws Fin	al De	sign (omp	lete	5											
														51511 0	, emp													
											◆ <i>F</i>	Absor	ber Fi	inal D	esign	Cor	mplete											
										Γ			Hadr	on M	onito	or Fir	nal Desi	gn Co	omp	olete	2				1			
Beamline - DPA - Procure											Doca	Ding	and	Abcor	bor (om	ploy Fal	bricat	ion	Dro	curom	nt			_			+
and Assembly											Deca	y Pipe	anu	ADSOI	bert	2011	іріех гаі	Unca	lion	PIO	curem							
																	F	Prima	ry B	lean	n Wind	ow As	semb	ly Cor	nplet	e		
																							Deca	ay Pipe	e Ups [.]	tream	n Win	d
																										Dec	ay Pi	þ
Beamline - DPA -																						Do		lino II	nctro		indo	_
Installation																						De	сау г	ihe o	pstrea		muo	/
																										Auth	oriza	ti
																										Dec	ay Pi	p
																											Г	
																												-
																												_

Critical Path runs through Absorber installation – Funding availability for NSCF

Sudeshna Ganguly

- On track to have NBI installed and commissioned by 2031, in line with rest of the project
- **Upgrades to 2.0+ MW operation** are doable

Summary

- Tolerance, Alignment: Likely to not change
- Instrumentation upgrade needs:
 - BLM Engineering study, MARS simulation
 - Cross Hairs & Support Brackets Engineering study, simulation
 - TPT design, heat sink Reoptimizing heat sink design, heat transfer study, simulation
 - MuMS Beam intensity scan, impact on MuMS response
- Option-0 possibly helpful for accident condition definition, MuMS in beam permit system
- All upgrades should be achievable between late 2024 and 2025

System	Limits	R&D Description Level/Risk Time	External Dependencies	Start/Duration To achieve 2032 To achieve 2035 Independent	R&D Labor	R&D M&S Cost	Component Delivery	Duration Estimate Total Estimate	Estimate Start Ready Date	Cost M&S	Labor FTE total	0
BLM	Radiation: 500- 5000 kilo- rad/year	 Engineering studies MARS simulations 	N/A	Later half of 2024-2025	1 month	10k	 Engineering study result MARS simulation result 	2 months	Later half of 2024-2025	\$18000	200 hours	
Cross Hairs, Support Brackets	Increased Fatigue, Temperature, Radiation: 500-5000 kilo- rad/year	 New engineering studies for 2.4 MW operations needed Simulations 	Horn design	Later half of 2024-2025	1 month	10k	 Engineering study result Simulation result 	2 months	Later half of 2024-2025	\$18000	200 hours	
TPT	Increased Beam Power, temperature	 Heat transfer study Reoptimize heat sink design for 2.4 MW operation Simulations 	Target design	Later half of 2024-2025	1 month	10k	 Result of Heat transfer study, Engineering study Simulation study 	2 months	Later half of 2024-2025	\$18000	200 hours	
MuMS a. Validating as part of machine protection b. Do it as a NuMI study	Increased intensity per spill: 1.5E14	 Beam intensity scan and check MuMS responses Validation study 	N/A	N/A	N/A	N/A	Test result	N/A	N/A	N/A	N/A	

Based on 50% of current schedule & assuming beam spot size remains the same

Sudeshna Ganguly

20

Quantity	1-sigma Shift	Notes	In TDR	
Horn A Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shifted separately,	Y	
		added in quadrature		Monitored by
Horn A Transverse Tilt	$0.5 \mathrm{~mm}$	X and Y shifted separately,	Ν	
		added in quadrature; upstream		HLS. TPT. MuMS
		and downstream ends shifted in		
		different directions		
Horn B Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shifted separately,	Y	
	Ν	added in quadrature		
Horn B Transverse Tilt	$0.5 \mathrm{~mm}$	X and Y shifted separately,	N	
		added in quadrature; upstream		
		and downstream ends shifted in		
	X	different directions		Alignment using
Horn C Transverse Displacement	$0.5 \mathrm{~mm}$	X and Y shifted separately,	Ν	
		added in quadrature		HADeS, XHairs
Horn C Transverse Tilt	$0.5 \mathrm{~mm}$	X and Y shifted separately,	N	
		added in quadrature; upstream		
		and downstream ends shifted in		
		different directions		
Target Transverse Displacement	$0.5 \mathrm{mm}$	X and Y shifted separately,	N	
		added in quadrature	1000	
Target Transverse Tilt	$0.5 \mathrm{mm}$	X and Y shifted separately,	N	
		added in quadrature; upstream		
		and downstream ends shifted in		
		different directions		

- -

.

-

_

......

Horn A Longitudinal Displacement	$2 \mathrm{mm}$	
Horn B Longitudinal Displacement	$3 \mathrm{mm}$	
Horn C Longitudinal Displacement	$3 \mathrm{mm}$	
Proton Beam Transverse Position	$0.5 \mathrm{mm}$	X and Y shift
		added in q
Proton Beam Radius	10%	Updated from 0 .
Proton angle on target	70μ rad	X and Y shift
		added in q
Decay Pipe Radius	$0.1 \mathrm{m}$	
Horn Currents	1%	Changed in a
		simulta
Baffle Scraping	0.25%	To Be U
Bafflet Scraping	0.25%	To Be U
Target Density	2%	
Horn Water Layer Thickness	$0.5\mathrm{mm}$	Changed in a
		simulta
Upstream Target Degradation		
# Protons on Target	2%	
Near Detector Position		
Far Detector Position		
Field in Horn Necks		
Decay Pipe Position	$20 \mathrm{~mm}$	
	Horn A Longitudinal Displacement Horn B Longitudinal Displacement Norn C Longitudinal Displacement Proton Beam Transverse Position Proton Beam Radius Proton angle on target Decay Pipe Radius Horn Currents Baffle Scraping Bafflet Scraping Target Density Horn Water Layer Thickness Upstream Target Degradation # Protons on Target Near Detector Position Far Detector Position Field in Horn Necks Decay Pipe Position	Horn A Longitudinal Displacement2 mmHorn B Longitudinal Displacement3 mmHorn C Longitudinal Displacement3 mmProton Beam Transverse Position0.5 mmProton Beam Radius10%Proton angle on target70µ radDecay Pipe Radius0.1 mHorn Currents1%Baffle Scraping0.25%Bafflet Scraping0.25%Target Density2%Horn Water Layer Thickness0.5 mmUpstream Target Degradation# Protons on Target# Protons on Target2%Near Detector Position20 mm

Table 1: Sources of alignment and focusing uncertainties in the neutrino fluxes at DUNE. Sources that were considered in physics studies in the TDR are marked with a 'Y' in the 'In TDR' column.

