
Kyle J. Knoepfel
LArSoft coordination meeting
29 November 2022

Status of Geometry service changes to accommodate pixel readouts
Part 2 of N

• LArSoft intends to support pixel geometries
- To do this, some adjustments to the Geometry service/system are required.

- Will likely be separating readout-specific concepts from those of geometry.
- A few of us are meeting weekly to determine how best to proceed.
- While analyzing geometry code, it became apparent that much of the interface serves as

“legacy” code to support older coding patterns

Motivation

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting2

• LArSoft intends to support pixel geometries
- To do this, some adjustments to the Geometry service/system are required.

- Will likely be separating readout-specific concepts from those of geometry.
- A few of us are meeting weekly to determine how best to proceed.
- While analyzing geometry code, it became apparent that much of the interface serves as

“legacy” code to support older coding patterns

• Maintenance issues
- We will need to rearrange some parts of the code to support pixel geometries—it’s less

work to adjust only the code that’s required.
- Recently we removed a lot of “deprecated” code.
- I’d now like to address the large number of overloads (+ some missed deprecations),

and the geometry iteration patterns.

Motivation

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting3

• The larcorealg repository provides
an inheritance-based system for
identifying elements of a LArTPC
geometry.

• Any ID object can access the ID
properties of its base class.

• Provides degree of extensibility.
• Used consistently, this type of system

lends itself to simple APIs.
• It is also the basis for smart iteration

through geometry elements.

Geometry IDs

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting4

geo::CryostatID

geo::TPCID

geo::PlaneID

geo::WireID

readout::TPCsetID

readout::ROPID

• Much of the geometry interface has supported both the geometry ID system and
simple unsigned integer arguments.
This can lead to confusion.

Geometry IDs

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting5

• Much of the geometry interface has supported both the geometry ID system and
simple unsigned integer arguments.
This can lead to confusion.

Geometry IDs

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting6

geom->GetLArTPCVolumeName(TPCID{1, 2}); // or
geom->GetLArTPCVolumeName(2, 1);Use:

• Much of the geometry interface has supported both the geometry ID system and
simple unsigned integer arguments.
This can lead to confusion.

Geometry IDs

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting7

geom->GetLArTPCVolumeName(TPCID{1, 2}); // or
geom->GetLArTPCVolumeName(2, 1);

geom->PlaneWireToChannel(WireID{1, 2, 3, 4}); // or
geom->PlaneWireToChannel(3, 4, 2, 1);

Use:

Use:

Change 1: Only Geometry IDs will be used for geometry interface

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting8

Change 1: Only Geometry IDs will be used for geometry interface

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting9

Change 1: Only Geometry IDs will be used for geometry interface

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting10

Change 1: Only Geometry IDs will be used for geometry interface

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting11

• There are many point or vector geometry functions with overloads that support:
• double const*/double[3]
• TVector3 const&
• geo::Point_t const&
• geo::Vector_t const&

• Change 2: Only geo::Point_t and geo::Vector_t function arguments will be
supported.

Vector overloads

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting12

• The GeometryCore.h file contains many lines of code to support smart iteration
through geometry elements (e.g.):

geometry->begin_wire_id(); // Get iterator to first wire ID
for (geo::TPCGeo const& tpc : geometry->IterateTPCs())

• Very useful, but it hard-codes geometry element names into the interface.

Geometry iterators and iteration patterns

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting13

• The GeometryCore.h file contains many lines of code to support smart iteration
through geometry elements (e.g.):

geometry->begin_wire_id(); // Get iterator to first wire ID
for (geo::TPCGeo const& tpc : geometry->IterateTPCs())

• Very useful, but it hard-codes geometry element names into the interface.

• This code can be rearranged to use templates so that iterating through elements
does not require a member function with element names hard-coded into the
function name.

• This is a step toward factorizing geometry and readout constructs.

Geometry iterators and iteration patterns

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting14

• Change 3: Geometry iterators will become largely internal and you will specify the
type of object you want to iterate through via template argument:

Geometry iterators and iteration patterns

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting15

• Change 3: Geometry iterators will become largely internal and you will specify the
type of object you want to iterate through via template argument:

Geometry iterators and iteration patterns

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting16

• Change 3: Geometry iterators will become largely internal and you will specify the
type of object you want to iterate through via template argument:

• The API for iterating through ID objects and Geo objects is the same.
• Specific iterator names (e.g. geo::wire_iterator) will be removed.

Geometry iterators and iteration patterns

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting17

• Change 3: Geometry iterators will become largely internal and you will specify the
type of object you want to iterate through via template argument:

• The API for iterating through ID objects and Geo objects is the same.
• Specific iterator names (e.g. geo::wire_iterator) will be removed.
• Removes 1-2k LOC from larcorealg.

Geometry iterators and iteration patterns

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting18

• We are continuing the effort to clean up/pare down the geometry interface.
• The next raft of PRs will remove remaining obsolete interface and will introduce a

slightly different iteration pattern that is more conducive to a factorized
geometry/readout system.

• Status
I have LArSoft feature branches ready, where almost all of the deprecated functionality has
been removed and is no longer used.

I have started feature branches for the experiments.

Conclusion

11/29/22 Kyle J. Knoepfel | LArSoft coordination meeting19

