Intro to Phenomenology with Massive Neutrinos

Concha Gonzalez-Garcia

(YITP-Stony Brook & ICREA-University of Barcelona)

14th International Neutrino Summer School (INSS)

Fermilab, August 6-18, 2023

Intro to Phenomenology with Massive Neutrinos: Lecture I

Concha Gonzalez-Garcia

(ICREA-University of Barcelona & YITP-Stony Brook)

OUTLINE

- Historic Introduction to the SM of Massless Neutrinos
- Neutrino Properties relevant to ν mass:: Helicity versus Chirality, Majorana versus Dirac, Leptonic Mixing
- Probes of Neutrino Mass Scale

- At end of 1800's radioactivity was discovered and three types identified: α , β , γ β : an electron comes out of the radioactive nucleus.
- Energy conservation $\Rightarrow e^-$ should have had a fixed energy

$$(A,Z) \to (A,Z+1) + e^{-} \Rightarrow E_{e} = M(A,Z+1) - M(A,Z)$$

- At end of 1800's radioactivity was discovered and three types identified: α , β , γ β : an electron comes out of the radioactive nucleus.
- Energy conservation $\Rightarrow e^-$ should have had a fixed energy

But 1914 James Chadwick showed that the electron energy spectrum is continuous

- At end of 1800's radioactivity was discovered and three types identified: α , β , γ β : an electron comes out of the radioactive nucleus.
- Energy conservation $\Rightarrow e^-$ should have had a fixed energy

But 1914 James Chadwick showed that the electron energy spectrum is continuous

Do we throw away the energy conservation?

Bohr: we have no argument, either empirical or theoretical, for upholding the energy principle in the case of β ray disintegrations

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the *Liebe Radioaktive Damen und Her*ren (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as *constituent of nuclei*, the neutron ν , able to explain the continuous spectrum of nuclear beta decay

$$(A,Z) \rightarrow (A,Z+1)+e^-+\nu$$

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the *Liebe Radioaktive Damen und Her*ren (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as *constituent of nuclei*, the neutron ν , able to explain the continuous spectrum of nuclear beta decay

$$(A,Z) \rightarrow (A,Z+1)+e^-+\nu$$

• The ν is light (in Pauli's words:

 m_{ν} should be of the same order as the m_e), neutral and has spin 1/2

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the *Liebe Radioaktive Damen und Her*ren (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as *constituent of nuclei*, the neutron ν , able to explain the continuous spectrum of nuclear beta decay

$$(A,Z) \rightarrow (A,Z+1)+e^-+\nu$$

• The ν is light (in Pauli's words: m_{ν} should be of the same order as the m_e), neutral and has spin 1/2

• In order to distinguish them from heavy neutrons, Fermi proposed to name them neutrinos.

Fighting Pauli's "Curse":

I have done a terrible thing, I have postulated a particle that cannot be detected.

Sources of ν 's

 $\frac{\text{ExtraGalactic}}{E_{\nu} \gtrsim 30 \text{ TeV}}$

p

The Sun

 ν_e

$$\Phi_{\nu}^{Earth} = 6 \times 10^{10} \nu / \mathrm{cm}^2 \mathrm{s}$$
 $E_{\nu} \sim 0.1\text{--}20 \ \mathrm{MeV}$

 $\Phi_{\nu} = \frac{\text{Human Body}}{= 340 \times 10^6 \nu / \text{day}}$

 $\frac{\text{Atmospheric }\nu's}{\nu_e,\nu_\mu,\overline{\nu}_e,\overline{\nu}_\mu}$ $\Phi_\nu \sim 1\nu/\text{cm}^2\text{s}$

Nuclear Reactors

を宇宙と物質の 起源と構造を探るへ OAK RIDGE
National Laboratory NSS $E_{
u} \sim \text{MeV}$

Earth's radioactivity $\Phi_{\nu} \sim 6 \times 10^{6} \nu/\text{cm}^{2}\text{s}$

 $\frac{\text{Accelerators}}{E_{\nu} \simeq 0.3\text{--}30 \text{ GeV}}$

But in principle seems easy!: If β decay $n \rightarrow p + e^- + \nu$

Then
$$\nu + p \rightarrow e^+ + n$$

But in principle seems easy!: If β decay $n \rightarrow p + e^- + \nu$

Then
$$\nu + p \rightarrow e^+ + n$$

Problem: Already in 1934, Hans Bethe showed that the probability of this interaction was so small that a solar ν could cross the whole Earth without ever interacting with it

But in principle seems easy!: If β decay $n \rightarrow p + e^- + \nu$

Then
$$\nu + p \rightarrow e^+ + n$$

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

But in principle seems easy!: If β decay $n \rightarrow p + e^- + \nu$

Then
$$\nu + p \rightarrow e^+ + n$$

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \text{cm}^2 \frac{E_{\nu}}{\text{GeV}}$$

• So let's consider the atmospheric ν 's:

$$\Phi_{\nu}^{\text{ATM}} = 1 \nu / (\text{cm}^2 \text{ second}) \text{ y } \langle E_{\nu} \rangle = 1 \text{ GeV}$$

• How many interact?

But in principle seems easy!: If β decay $n \rightarrow p + e^- + \nu$

Then
$$\nu + p \rightarrow e^+ + n$$

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \text{cm}^2 \frac{E_{\nu}}{\text{GeV}}$$

• So let's consider the atmospheric ν 's:

$$\Phi_{\nu}^{\text{ATM}} = 1 \nu / (\text{cm}^2 \text{ second}) \text{ y } \langle E_{\nu} \rangle = 1 \text{ GeV}$$

• How many interact? In a human body

many interact? In a human body
$$N_{\rm int} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\rm prot}^{\rm human} \times T_{\rm life}^{\rm human}$$

$$N_{\rm protons}^{\rm human} = \frac{M^{\rm human}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$

$$T^{\rm human} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$M \times T \equiv \text{Exposure}$$

$$Exposure_{\rm human}$$

$$\sim \text{Ton} \times \text{year}$$

But in principle seems easy!: If β decay $n \rightarrow p + e^- + \nu$

Then
$$\nu + p \rightarrow e^+ + n$$

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• So let's consider the atmospheric ν 's:

$$\Phi_{\nu}^{\text{ATM}} = 1 \nu / (\text{cm}^2 \text{ second}) \text{ y } \langle E_{\nu} \rangle = 1 \text{ GeV}$$

• How many interact? In a human body

many interact? In a human body
$$N_{\rm int} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\rm prot}^{\rm human} \times T_{\rm life}^{\rm human}$$

$$N_{\rm protons}^{\rm human} = \frac{M^{\rm human}}{gr} \times N_A = 80 {\rm kg} \times N_A \sim 5 \times 10^{28} {\rm protons}$$

$$T^{\rm human} = 80 \, {\rm years} = 2 \times 10^9 \, {\rm sec}$$

$$M \times T \equiv {\rm Exposure}_{\rm human}$$

$$Exposure_{\rm human}$$

$$\sim {\rm Ton} \times {\rm year}$$

$$N_{\rm int} = (5 \times 10^{28}) (2 \times 10^9) \times 10^{-38} \sim 1 \, \rm interaction \, in \, life$$

But in principle seems easy!: If β decay $n \rightarrow p + e^- + \nu$

Then
$$\nu + p \rightarrow e^+ + n$$

Problem: Quantitatively: a ν sees a proton of area:

$$\sigma^{\nu p} \sim 10^{-38} \text{cm}^2 \frac{E_{\nu}}{\text{GeV}}$$

• So let's consider the atmospheric ν 's:

$$\Phi_{\nu}^{\text{ATM}} = 1 \nu / (\text{cm}^2 \text{ second}) \text{ y } \langle E_{\nu} \rangle = 1 \text{ GeV}$$

• How many interact? In a human body

many interact? In a human body
$$N_{\rm int} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\rm prot}^{\rm human} \times T_{\rm life}^{\rm human}$$

$$N_{\rm protons}^{\rm human} = \frac{M^{\rm human}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$

$$T^{\rm human} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$M \times T \equiv \text{Exposure}$$

$$Exposure_{\rm human}$$

$$\sim \text{Ton} \times \text{year}$$

$$N_{\rm int} = (5 \times 10^{28}) (2 \times 10^9) \times 10^{-38} \sim 1 \, \rm interaction \, in \, life$$

To detect neutrinos we need very intense source and/or a hugh detector with Exposure \sim KTon \times year

Massive Neutrinos Concha Gonzalez-Garcia

First Neutrino Detection

In 1953 Frederick Reines and Clyde Cowan put a detector near a nuclear reactor (the most intense source available)

First Neutrino Detection

In 1953 Frederick Reines and Clyde Cowan put a detector near a nuclear reactor (the most intense source available)

400 l of water and Cadmium Chloride.

 e^+ annihilates with e^- in the water and produces two γ 's simultaneouoly. neutron is captured by por the cadmium and a γ 's is emitted 15 msec latter

Reines y Clyde saw clearly this signature: the first neutrino had been detected

Massive Neutrinos Concha Gonzalez-Garcia

The Other Flavours

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) protons Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) and Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40 ν interactions: in 6 an e^- comes out and in 34 a μ^- comes out.

If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-} and e^{-}

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) PSchwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40 ν interactions: in 6 an e^- comes out and in 34 a μ^- comes out.

If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-} and $e^{-} \Rightarrow$ Conclusion: ν_{μ} is a different particle

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) PSchwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40 ν interactions: in 6 an e^- comes out and in 34 a μ^- comes out.

If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-} and $e^{-} \Rightarrow$ Conclusion: ν_{μ} is a different particle

In 1977 Martin Perl discovers the particle tau \equiv the third lepton family.

The ν_{τ} was observed by DONUT experiment at FNAL in 1998 (officially in Dec. 2000).

Neutrinos = "Left-handed"

Helicity of Neutrinos*

M. Goldhaber, L. Grodzins, and A. W. Sunyar Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

A COMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with Eu^{152m}, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, 1 0—, we find that the neutrino is "left-handed," i.e., $\sigma_{\nu} \cdot \hat{p}_{\nu} = -1$ (negative helicity).

Massive Neutrinos Concha Gonzalez-Garcia

Neutrino Helicity

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$e^- + ^{152}Eu \rightarrow \nu + ^{152}Sm^*$$
 $\rightarrow ^{152}Sm + \gamma$

with
$$J(^{152}Eu) = J(^{152}Sm) = 0$$
 and $L(e^{-}) = 0$

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$e^-+{}^{152}Eu o
u+{}^{152}Sm^* \ o^{152}Sm+\gamma$$
 with $J({}^{152}Eu)=J({}^{152}Sm)=0$ and $L(e^-)=0$

• Angular momentum conservation
$$\Rightarrow$$

$$\begin{cases} J_z(e^-) &= J_z(\nu) + J_z(Sm^*) \\ &= J_z(\nu) + J_z(\gamma) \\ \frac{\pm 1}{2} &= \frac{\pm 1}{2} & \pm 1 \Rightarrow J_z(\nu) = -\frac{1}{2}J_z(\gamma) \end{cases}$$

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$e^- + ^{152}Eu \rightarrow \nu + ^{152}Sm^*$$
 $\rightarrow ^{152}Sm + \gamma$ with $J(^{152}Eu) = J(^{152}Sm) = 0$ and $L(e^-) = 0$

• Angular momentum
$$\begin{cases} J_z(e^-) &= J_z(\nu) + J_z(Sm^*) \\ &= J_z(\nu) + J_z(\gamma) \\ &\pm \frac{1}{2} &= \mp \frac{1}{2} & \pm 1 \Rightarrow J_z(\nu) = -\frac{1}{2}J_z(\gamma) \end{cases}$$

• Nuclei are heavy $\Rightarrow \vec{p}(^{152}Eu) \simeq \vec{p}(^{152}Sm) \simeq \vec{p}(^{152}Sm^*) = 0$

So momentum conservation $\Rightarrow \vec{p}_{\nu} = -\vec{p}_{\gamma}$

$$\Rightarrow \vec{p}_{\nu}.\vec{J}_{\nu} = \frac{1}{2} \vec{p}_{\gamma}.\vec{J}_{\gamma} \Rightarrow \nu \text{ helicity} = \frac{1}{2} \gamma \text{ helicity}$$

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$e^-+\ ^{152}Eu o
u +\ ^{152}Sm^*$$

$$o^{152}Sm+\gamma$$
 with $J(^{152}Eu)=J(^{152}Sm)=0$ and $L(e^-)=0$

• Angular momentum
$$\begin{cases} J_z(e^-) &= J_z(\nu) + J_z(Sm^*) \\ &= J_z(\nu) + J_z(\gamma) \\ &\pm \frac{1}{2} &= \pm \frac{1}{2} &\pm 1 \Rightarrow J_z(\nu) = -\frac{1}{2}J_z(\gamma) \end{cases}$$

• Nuclei are heavy $\Rightarrow \vec{p}(^{152}Eu) \simeq \vec{p}(^{152}Sm) \simeq \vec{p}(^{152}Sm^*) = 0$

So momentum conservation $\Rightarrow \vec{p}_{\nu} = -\vec{p}_{\gamma}$

$$\Rightarrow \vec{p}_{\nu}.\vec{J}_{\nu} = \frac{1}{2} \vec{p}_{\gamma}.\vec{J}_{\gamma} \Rightarrow \quad \nu \text{ helicity} = \frac{1}{2} \gamma \text{ helicity}$$

• Goldhaber et al found γ had negative helicity $\Rightarrow \nu$ has negative helicity

ν in the SM

• The SM is a gauge theory based on the symmetry group

$$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$$

• 3 Generations of Fermions:

$\boxed{(1,2,-\frac{1}{2})}$	$(3, \frac{1}{6})$	(1, 1, -1)	$(3,1,\frac{2}{3})$	$(3,1,-\frac{1}{3})$
L_L	Q_L^i	E_R	U_R^i	D_R^i
$\begin{pmatrix} \mathbf{v_e} \\ e \end{pmatrix}_L$	$\begin{pmatrix} u^i \\ d^i \\ d^i \end{pmatrix}_L$	e_R	u_R^i	d_R^i
$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}^{2}$	$\begin{pmatrix} c^i \\ s^i \end{pmatrix}_{L}$	μ_R	c_R^i	s_R^i
$\begin{bmatrix} \nu_{\tau} \\ \tau \end{bmatrix}_{L}$	$\left(\begin{array}{c}t^i\\b^i\end{array}\right)_L^L$	$ au_R$	t_R^i	b_R^i

• Spin-0 particle ϕ : $(1, \frac{1}{2}, \frac{1}{2})$

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \stackrel{SSB}{\to} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$

ν in the SM

• The SM is a gauge theory based on the symmetry group

$$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$$

• 3 Generations of Fermions:

$\boxed{(1,2,-\frac{1}{2})}$	$(3, \frac{1}{6})$	(1, 1, -1)	$(3,1,\frac{2}{3})$	$(3,1,-\frac{1}{3})$
L_L	Q_L^i	E_R	U_R^i	D_R^i
$ \left(\begin{array}{c} \boldsymbol{\nu_e} \\ e \\ \boldsymbol{\nu_{\mu}} \end{array}\right)_L \left(\begin{array}{c} u^i \\ d^i \\ c^i \end{array}\right)_I $	e_R	u_R^i	d_R^i	
$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}$	$\left(\begin{array}{c}c\\s^i\end{array}\right)_L$	μ_R	c_R^i	s_R^i
$\left \left(\begin{array}{c} \boldsymbol{\nu_{\tau}} \\ \boldsymbol{\tau} \end{array} \right)_{L}^{L} \right $	$\left\langle \begin{array}{c} c \\ s^i \\ t^i \\ b^i \end{array} \right\rangle_L$	$ au_R$	t_R^i	b_R^i

$$Q_{EM} = T_{L3} + Y$$

- $Q_{EM} = T_{L3} + Y$ $\bullet \
 u$'s are $T_{L3} = \frac{1}{2}$ components of L_L
 - ν 's have no strong or EM interactions
 - No ν_R (\equiv singlets of gauge group)

• Spin-0 particle ϕ : $(1, 2, \frac{1}{2})$

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \stackrel{SSB}{\to} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$

ν in the SM

• The SM is a gauge theory based on the symmetry group

$$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$$

• 3 Generations of Fermions:

$(1, 2, -\frac{1}{2})$	$(3, \frac{1}{6})$	(1, 1, -1)	$(3,1,\frac{2}{3})$	$(3,1,-\frac{1}{3})$
L_L	Q_L^i	E_R	U_R^i	D_R^i
$ \left(\begin{array}{c} \boldsymbol{\nu_e} \\ e \\ \boldsymbol{\nu_{\mu}} \end{array}\right)_L \left(\begin{array}{c} u^i \\ d^i \\ c^i \end{array}\right)_L $	e_R	u_R^i	d_R^i	
1	i	μ_R	c_R^i	s_R^i
$ \begin{pmatrix} \mathbf{v}_{\tau} \\ \mathbf{\tau} \end{pmatrix}_{L}^{L} $	$\left(\begin{array}{c} s^i \\ t^i \\ b^i \end{array}\right)_L^L$	$ au_R$	t_R^i	b_R^i

• Spin-0 particle ϕ : $(1, \frac{1}{2}, \frac{1}{2})$

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \stackrel{SSB}{\to} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$

$$Q_{EM} = T_{L3} + Y$$

- $Q_{EM} = T_{L3} + Y$ \bullet u's are $T_{L3} = \frac{1}{2}$ components of L_L
 - ν 's have no strong or EM interactions
 - No ν_R (\equiv singlets of gauge group)

However what Goldhaber measured was the helicity not the chirality of ν

Helicity versus Chirality

• We define the chiral projections
$$\mathcal{P}_{R,L} = \frac{1 \pm \gamma_5}{2}$$
 \Rightarrow $\psi_L = \frac{1 - \gamma_5}{2} \psi$ $\psi_R = \frac{1 + \gamma_5}{2} \psi$

$$\psi_L = \frac{1-\gamma_5}{2} \psi$$
 ψ

$$\psi_R = \frac{1+\gamma_5}{2} \psi$$

Helicity versus Chirality

• We define the chiral projections
$$\mathcal{P}_{R,L} = \frac{1 \pm \gamma_5}{2}$$
 \Rightarrow $\psi_L = \frac{1 - \gamma_5}{2} \psi$ $\psi_R = \frac{1 + \gamma_5}{2} \psi$

• The Hamiltonian for a massive fermion
$$\psi$$
 is $H = \overline{\psi}(x)(-i\sum_j \gamma^j \partial_j + m)\psi(x)$

• 4 states with $(E = \sqrt{|\vec{p}|^2 + m^2}, \vec{p})$

$$(\gamma^{\mu}p_{\mu} - m)u_s(\vec{p}) = 0$$

$$(\gamma^{\mu}p_{\mu} - m)u_s(\vec{p}) = 0$$
 $(\gamma^{\mu}p_{\mu} + m)v_s(\vec{p}) = 0$ $s = 1, 2$

Helicity versus Chirality

• We define the chiral projections
$$\mathcal{P}_{R,L} = \frac{1 \pm \gamma_5}{2}$$
 \Rightarrow $\psi_L = \frac{1 - \gamma_5}{2} \psi$ $\psi_R = \frac{1 + \gamma_5}{2} \psi$

• The Hamiltonian for a massive fermion
$$\psi$$
 is $H = \overline{\psi}(x)(-i\sum_j \gamma^j \partial_j + m)\psi(x)$

• 4 states with $(E = \sqrt{|\vec{p}|^2 + m^2}, \vec{p})$

$$(\gamma^{\mu}p_{\mu} - m)u_{s}(\vec{p}) = 0$$
 $(\gamma^{\mu}p_{\mu} + m)v_{s}(\vec{p}) = 0$ $s = 1, 2$

• Since $[H, \gamma_5] \neq 0$ and $[\vec{P}, \vec{J}] \neq 0$

$$[\vec{J} = \vec{L} + \frac{\vec{\Sigma}}{2} \qquad (\Sigma^i = -\gamma^0 \gamma^5 \gamma^i)]$$

 \Rightarrow Neither Chirality nor J_i can characterize the fermion simultaneously with E, \vec{p}

Helicity versus Chirality

- We define the chiral projections $\mathcal{P}_{R,L} = \frac{1 \pm \gamma_5}{2}$ $\Rightarrow \psi_L = \frac{1 \gamma_5}{2} \psi$ $\psi_R = \frac{1 + \gamma_5}{2} \psi$
- The Hamiltonian for a massive fermion ψ is $H = \overline{\psi}(x)(-i\sum_{j}\gamma^{j}\partial_{j} + m)\psi(x)$
- 4 states with $(E = \sqrt{|\vec{p}|^2 + m^2}, \vec{p})$

$$(\gamma^{\mu}p_{\mu} - m)u_{s}(\vec{p}) = 0$$
 $(\gamma^{\mu}p_{\mu} + m)v_{s}(\vec{p}) = 0$ $s = 1, 2$

- Since $[H, \gamma_5] \neq 0$ and $[\vec{P}, \vec{J}] \neq 0$ $[\vec{J} = \vec{L} + \frac{\vec{\Sigma}}{2} \qquad (\Sigma^i = -\gamma^0 \gamma^5 \gamma^i)]$
 - \Rightarrow Neither Chirality nor J_i can characterize the fermion simultaneously with E, \vec{p}
- But $[H, \vec{J}.\vec{P}] = [\vec{P}, \vec{J}.\vec{P}] = 0$ \Rightarrow we can chose $u_1(\vec{p}) \equiv u_+(\vec{p})$ and $u_2(\vec{p}) \equiv u_-(\vec{p})$ (same for $v_{1,2}$) to be eigenstates of the helicity projector

$$\mathcal{P}_{\pm} = \frac{1}{2} \left(1 \pm 2\vec{J} \frac{\vec{P}}{|\vec{P}|} \right) = \frac{1}{2} \left(1 \pm \vec{\Sigma} \frac{\vec{P}}{|\vec{P}|} \right)$$

Helicity versus Chirality

- We define the chiral projections $\mathcal{P}_{R,L} = \frac{1 \pm \gamma_5}{2}$ \Rightarrow $\psi_L = \frac{1 \gamma_5}{2} \psi$ $\psi_R = \frac{1 + \gamma_5}{2} \psi$
- The Hamiltonian for a massive fermion ψ is $H = \overline{\psi}(x)(-i\sum_j \gamma^j \partial_j + m)\psi(x)$
- 4 states with $(E = \sqrt{|\vec{p}|^2 + m^2}, \vec{p})$

$$(\gamma^{\mu}p_{\mu} - m)u_{s}(\vec{p}) = 0$$
 $(\gamma^{\mu}p_{\mu} + m)v_{s}(\vec{p}) = 0$ $s = 1, 2$

- Since $[H, \gamma_5] \neq 0$ and $[\vec{P}, \vec{J}] \neq 0$ $[\vec{J} = \vec{L} + \frac{\vec{\Sigma}}{2} \qquad (\Sigma^i = -\gamma^0 \gamma^5 \gamma^i)]$
 - \Rightarrow Neither Chirality nor J_i can characterize the fermion simultaneously with E, \vec{p}
- But $[H, \vec{J}.\vec{P}] = [\vec{P}, \vec{J}.\vec{P}] = 0$ \Rightarrow we can chose $u_1(\vec{p}) \equiv u_+(\vec{p})$ and $u_2(\vec{p}) \equiv u_-(\vec{p})$ (same for $v_{1,2}$) to be eigenstates of the helicity projector

$$\mathcal{P}_{\pm} = \frac{1}{2} \left(1 \pm 2\vec{J} \frac{\vec{P}}{|\vec{P}|} \right) = \frac{1}{2} \left(1 \pm \vec{\Sigma} \frac{\vec{P}}{|\vec{P}|} \right)$$

• For massless fermions using the Dirac equation:

$$\vec{\Sigma} \, \vec{P} \, \psi = -\gamma^0 \gamma^5 \vec{\gamma} \, \vec{p} \, \psi = -\gamma^0 \gamma^5 \gamma^0 E \, \psi = \gamma^5 E \psi \Rightarrow \text{ For } m = 0 \, \mathcal{P}_{\pm} = \mathcal{P}_{R,L}$$

Helicity versus Chirality

- We define the chiral projections $\mathcal{P}_{R,L} = \frac{1 \pm \gamma_5}{2}$ $\Rightarrow \psi_L = \frac{1 \gamma_5}{2} \psi$ $\psi_R = \frac{1 + \gamma_5}{2} \psi$
- The Hamiltonian for a massive fermion ψ is $H = \overline{\psi}(x)(-i\sum_j \gamma^j \partial_j + m)\psi(x)$
- 4 states with $(E = \sqrt{|\vec{p}|^2 + m^2}, \vec{p})$

$$(\gamma^{\mu}p_{\mu} - m)u_{s}(\vec{p}) = 0$$
 $(\gamma^{\mu}p_{\mu} + m)v_{s}(\vec{p}) = 0$ $s = 1, 2$

- Since $[H, \gamma_5] \neq 0$ and $[\vec{P}, \vec{J}] \neq 0$ $[\vec{J} = \vec{L} + \frac{\vec{\Sigma}}{2} \qquad (\Sigma^i = -\gamma^0 \gamma^5 \gamma^i)]$
 - \Rightarrow Neither Chirality nor J_i can characterize the fermion simultaneously with E, \vec{p}
- But $[H, \vec{J}.\vec{P}] = [\vec{P}, \vec{J}.\vec{P}] = 0$ \Rightarrow we can chose $u_1(\vec{p}) \equiv u_+(\vec{p})$ and $u_2(\vec{p}) \equiv u_-(\vec{p})$ (same for $v_{1,2}$) to be eigenstates of the helicity projector

$$\mathcal{P}_{\pm} = \frac{1}{2} \left(1 \pm 2\vec{J} \frac{\vec{P}}{|\vec{P}|} \right) = \frac{1}{2} \left(1 \pm \vec{\Sigma} \frac{\vec{P}}{|\vec{P}|} \right) = \mathcal{P}_{L,R} + \mathcal{O}(\frac{m}{p})$$

- For massless fermions using the Dirac equation: \Rightarrow For m=0 $\mathcal{P}_{\pm}=\mathcal{P}_{R,L}$
 - Only for massless fermions Helicity and chirality states are the same.

SM Fermion Lagrangian

$$\mathcal{L} = \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{Q_{L,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g \frac{\tau_{a}}{2} \delta_{ij} W_{\mu}^{a} - g' \frac{1}{6} \delta_{ij} B_{\mu} \right) Q_{L,k}^{j} \\
+ \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{U_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{2}{3} \delta_{ij} B_{\mu} \right) U_{R,k}^{j} \\
+ \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{D_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} + g' \frac{1}{3} \delta_{ij} B_{\mu} \right) D_{R,k}^{j} \\
+ \sum_{k=1}^{3} \overline{L_{L,k}} \gamma^{\mu} \left(i\partial_{\mu} - g \frac{\tau_{i}}{2} W_{\mu}^{i} + g' \frac{1}{2} B_{\mu} \right) L_{L,k} + \overline{E_{R,k}} \gamma^{\mu} \left(i\partial_{\mu} + g' B_{\mu} \right) E_{R,k} \\
- \sum_{k} \sum_{i=1}^{3} \left[\sum_{j=1}^{3} \left(\lambda_{kk'}^{u} \overline{Q_{L,k}^{i}} (i\tau_{2}) \phi^{*} U_{R,k'}^{i} + \lambda_{kk'}^{d} \overline{Q}_{L,k}^{i} \phi D_{R,k'}^{i} \right) + \lambda_{kk'}^{l} \overline{L}_{L,k} \phi E_{R,k'} + h.c. \right]$$

SM Fermion Lagrangian

$$\mathcal{L} = \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{Q_{L,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g \frac{\tau_{a}}{2} \delta_{ij} W_{\mu}^{a} - g' \frac{1}{6} \delta_{ij} B_{\mu} \right) Q_{L,k}^{j}$$

$$+ \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{U_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{2}{3} \delta_{ij} B_{\mu} \right) U_{R,k}^{j}$$

$$+ \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{D_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} + g' \frac{1}{3} \delta_{ij} B_{\mu} \right) D_{R,k}^{j}$$

$$+ \sum_{k=1}^{3} \overline{L_{L,k}} \gamma^{\mu} \left(i\partial_{\mu} - g \frac{\tau_{i}}{2} W_{\mu}^{i} + g' \frac{1}{2} B_{\mu} \right) L_{L,k} + \overline{E_{R,k}} \gamma^{\mu} \left(i\partial_{\mu} + g' B_{\mu} \right) E_{R,k}$$

$$- \sum_{k,k'=1}^{3} \left[\sum_{i=1}^{3} \left(\lambda_{kk'}^{u} \overline{Q_{L,k}^{i}} (i\tau_{2}) \phi^{*} U_{R,k'}^{i} + \lambda_{kk'}^{d} \overline{Q_{L,k}^{i}} \phi D_{R,k'}^{i} \right) + \lambda_{kk'}^{l} \overline{L_{L,k}} \phi E_{R,k'} + h.c. \right]$$

• Invariant under global rotations

$$Q_{L,k}^{i} \to e^{i\alpha_{B}/3}Q_{L,k}^{i} \qquad U_{R,k}^{i} \to e^{i\alpha_{B}/3}U_{R,k}^{i} \qquad D_{R,k}^{i} \to e^{i\alpha_{B}/3}D_{R,k}^{i} \qquad \mathbf{L}_{L,k} \to e^{i\alpha_{L_{k}}/3}\mathbf{L}_{L,k} \qquad \mathbf{E}_{R,k} \to e^{i\alpha_{L_{k}}/3}\mathbf{E}_{R,k}$$

SM Fermion Lagrangian

$$\mathcal{L} = \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{Q_{L,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g \frac{\tau_{a}}{2} \delta_{ij} W_{\mu}^{a} - g' \frac{1}{6} \delta_{ij} B_{\mu} \right) Q_{L,k}^{j}$$

$$+ \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{U_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{2}{3} \delta_{ij} B_{\mu} \right) U_{R,k}^{j}$$

$$+ \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{D_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} + g' \frac{1}{3} \delta_{ij} B_{\mu} \right) D_{R,k}^{j}$$

$$+ \sum_{k=1}^{3} \overline{L_{L,k}} \gamma^{\mu} \left(i\partial_{\mu} - g \frac{\tau_{i}}{2} W_{\mu}^{i} + g' \frac{1}{2} B_{\mu} \right) L_{L,k} + \overline{E_{R,k}} \gamma^{\mu} \left(i\partial_{\mu} + g' B_{\mu} \right) E_{R,k}$$

$$- \sum_{k,k'=1}^{3} \left[\sum_{i=1}^{3} \left(\lambda_{kk'}^{u} \overline{Q_{L,k}^{i}} (i\tau_{2}) \phi^{*} U_{R,k'}^{i} + \lambda_{kk'}^{d} \overline{Q_{L,k}^{i}} \phi D_{R,k'}^{i} \right) + \lambda_{kk'}^{l} \overline{L_{L,k}} \phi E_{R,k'} + h.c. \right]$$

• Invariant under global rotations

$$Q_{L,k}^{i} \rightarrow e^{i\alpha_{B}/3}Q_{L,k}^{i} \qquad U_{R,k}^{i} \rightarrow e^{i\alpha_{B}/3}U_{R,k}^{i} \qquad D_{R,k}^{i} \rightarrow e^{i\alpha_{B}/3}D_{R,k}^{i} \qquad L_{L,k} \rightarrow e^{i\alpha_{L_{k}}/3}L_{L,k} \qquad E_{R,k} \rightarrow e^{i\alpha_{L_{k}}/3}E_{R,k}$$

$$\Rightarrow Accidental \; (\equiv not \; imposed) \; \text{global symmetry:} \; U(1)_{B} \times U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$$

- \Rightarrow Each lepton flavour, L_i , is conserved
- \Rightarrow Total lepton number $L = L_e + L_\mu + L_\tau$ is conserved

$$m_f \overline{\psi} \psi = m_f \overline{\psi_L} \psi_R + h.c.$$
 (this is not $SU(2)_L$ gauge invariant)

$$m_f \overline{\psi} \psi = m_f \overline{\psi}_L \psi_R + h.c.$$
 (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

$$\mathcal{L}_{Y}^{l} = -\lambda_{ij}^{l} \overline{L}_{Li} E_{Rj} \phi + \text{h.c.} \quad \phi = \text{the scalar doublet}$$

$$m_f \overline{\psi} \psi = m_f \overline{\psi_L} \psi_R + h.c.$$
 (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

$$\mathcal{L}_{Y}^{l} = -\lambda_{ij}^{l} \overline{L}_{Li} E_{Rj} \phi + \text{h.c.} \quad \phi = \text{the scalar doublet}$$

After spontaneous symmetry breaking

$$\phi \stackrel{SSB}{\to} \left\{ \begin{array}{c} 0 \\ \frac{v+h}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\mathrm{mass}}^l = -\bar{E}_L M^\ell E_R + \mathrm{h.c. \ with} \quad M^\ell = \frac{1}{\sqrt{2}} \lambda^l \ v$$

$$m_f \overline{\psi} \psi = m_f \overline{\psi}_L \psi_R + h.c.$$
 (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

$$\mathcal{L}_{Y}^{l} = -\lambda_{ij}^{l} \overline{L}_{Li} E_{Rj} \phi + \text{h.c.} \quad \phi = \text{the scalar doublet}$$

• After spontaneous symmetry breaking

$$\phi \stackrel{SSB}{\to} \left\{ \begin{array}{c} 0 \\ \frac{v+h}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\mathrm{mass}}^l = -\bar{E}_L M^\ell E_R + \mathrm{h.c.} \text{ with } M^\ell = \frac{1}{\sqrt{2}} \lambda^l v$$

In the SM:

- There are no right-handed neutrinos
 - \Rightarrow No renormalizable (ie dim \le 4) gauge-invariant operator for tree level ν mass
- SM gauge invariance \Rightarrow accidental symmetry $U(1)_{\rm B} \times U(1)_{L_e} \times U(1)_{L_\mu} \times U(1)_{L_\tau}$
 - ⇒ Not possible to generate such term at any order perturbatively

$$m_f \overline{\psi} \psi = m_f \overline{\psi_L} \psi_R + h.c.$$
 (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

$$\mathcal{L}_{Y}^{l} = -\lambda_{ij}^{l} \overline{L}_{Li} E_{Rj} \phi + \text{h.c.} \quad \phi = \text{the scalar doublet}$$

• After spontaneous symmetry breaking

$$\phi \stackrel{SSB}{\to} \left\{ \begin{array}{c} 0 \\ \frac{v+h}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\mathrm{mass}}^l = -\bar{E}_L M^\ell E_R + \mathrm{h.c.} \text{ with } M^\ell = \frac{1}{\sqrt{2}} \lambda^l v$$

In the SM:

- There are no right-handed neutrinos
 - \Rightarrow No renormalizable (ie dim \le 4) gauge-invariant operator for tree level ν mass
- SM gauge invariance \Rightarrow accidental symmetry $U(1)_{\rm B} \times U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$
 - ⇒ Not possible to generate such term at any order perturbatively

In SM ν 's are Strictly Massless & Lepton Flavours are Strictly Conserved

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K, MINOS, NO** ν **A**)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (T2K, MINOS,NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200 \; \mathrm{Km} \; (\mathrm{KamLAND})$
 - * Reactor $\overline{\nu_e}$ disappear at $L\sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K, MINOS, NO** ν A)
 - * Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300/800$ Km (T2K, MINOS,NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L\sim 200~{\rm Km}~({\bf KamLAND})$
 - * Reactor $\overline{\nu_e}$ disappear at $L\sim 1$ Km (D-Chooz, **Daya Bay, Reno**)

All this implies that L_{α} are violated and There is Physics Beyond SM

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \bar{K}^0 ...
- In the SM ν are the only neutral fermions

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \bar{K}^0 ...
- In the SM ν are the only neutral fermions
- ⇒ OPEN QUESTION: are neutrino and antineutrino the same or different particles?

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \bar{K}^0 ...
- In the SM ν are the only neutral fermions
- ⇒ OPEN QUESTION: are neutrino and antineutrino the same or different particles?
 - * ANSWER 1: ν different from anti- ν $\Rightarrow \nu$ is a Dirac fermion (like e)

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \bar{K}^0 ...
- In the SM ν are the only neutral fermions
- ⇒ OPEN QUESTION: are neutrino and antineutrino the same or different particles?
 - * ANSWER 1: ν different from anti- ν $\Rightarrow \nu$ is a Dirac fermion (like e)
 - \Rightarrow It is described by a *Dirac* field $\nu(x) = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \bar{K}^0 ...
- In the SM ν are the only neutral fermions
- ⇒ OPEN QUESTION: are neutrino and antineutrino the same or different particles?
 - * ANSWER 1: ν different from anti- ν $\Rightarrow \nu$ is a *Dirac* fermion (like e)
 - \Rightarrow It is described by a *Dirac* field $\nu(x) = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$
 - \Rightarrow And the charged conjugate neutrino field \equiv the antineutrino field

$$\nu^{C} = \mathcal{C} \, \nu \, \mathcal{C}^{-1} = \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = -C \, \overline{\nu}^{T}$$

$$(C = i\gamma^2 \gamma^0)$$

which contain two sets of creation-annihilation operators

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \bar{K}^0 ...
- In the SM ν are the only neutral fermions
- ⇒ OPEN QUESTION: are neutrino and antineutrino the same or different particles?
 - * ANSWER 1: ν different from anti- ν $\Rightarrow \nu$ is a Dirac fermion (like e)
 - \Rightarrow It is described by a *Dirac* field $\nu(x) = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$
 - \Rightarrow And the charged conjugate neutrino field \equiv the antineutrino field

$$\nu^{C} = \mathcal{C} \, \nu \, \mathcal{C}^{-1} = \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = -C \, \overline{\nu}^{T}$$

$$(C = i\gamma^2 \gamma^0)$$

which contain two sets of creation—annihilation operators

 \Rightarrow 4 chiral fields

$$\nu_L \ , \ \nu_R \ , \ (\nu_L)^C \ , \ (\nu_R)^C \ \text{ with } \ \mathbf{v} = \nu_L + \nu_R \ \text{ and } \ \mathbf{v}^C = (\nu_L)^C + (\nu_R)^C$$

* ANSWER 2: ν same as anti- ν

 $\Rightarrow \nu$ is a *Majorana* fermion : $\nu_M = \nu_M^C$

* ANSWER 2: ν same as anti- ν $\Rightarrow \nu$ is a Majorana fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^C = \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

* ANSWER 2: ν same as anti- ν $\Rightarrow \nu$ is a Majorana fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^C = \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

$$\Rightarrow$$
 So we can rewrite the field $\nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

which contains only one set of creation-annihilation operators

* ANSWER 2: ν same as anti- ν $\Rightarrow \nu$ is a Majorana fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^C = \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

$$\Rightarrow$$
 So we can rewrite the field $\nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

which contains only one set of creation—annihilation operators

⇒ A Majorana particle can be described with only 2 independent chiral fields:

$$\nu_L$$
 and $(\nu_L)^C$ and the other two are $\nu_R = (\nu_L)^C$ $(\nu_R)^C = \nu_L$

- * ANSWER 2: ν same as anti- ν $\Rightarrow \nu$ is a Majorana fermion : $\nu_M = \nu_M^C$
- $\Rightarrow \nu^C = \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$
 - \Rightarrow So we can rewrite the field $\nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

which contains only one set of creation-annihilation operators

⇒ A Majorana particle can be described with only 2 independent chiral fields:

$$\nu_L$$
 and $(\nu_L)^C$ and the other two are $\nu_R = (\nu_L)^C$ $(\nu_R)^C = \nu_L$

• In the SM the interaction term for neutrinos

$$\mathcal{L}_{int} = \frac{i g}{\sqrt{2}} \left[(\bar{l}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}) W_{\mu}^{-} + (\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} l_{\alpha}) W_{\mu}^{+} \right] + \frac{i g}{\sqrt{2} \cos \theta_{W}} (\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}) Z_{\mu}$$

Only involves two chiral fields $\mathcal{P}_L \mathbf{v} = \nu_L$ and $\overline{\mathbf{v}} \mathcal{P}_R = (\nu_L)^{C^T} \mathbf{C}^{\dagger}$

- * ANSWER 2: ν same as anti- ν $\Rightarrow \nu$ is a Majorana fermion : $\nu_M = \nu_M^C$
- $\Rightarrow \nu^C = \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$
 - \Rightarrow So we can rewrite the field $\nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

which contains only one set of creation-annihilation operators

 \Rightarrow A Majorana particle can be described with only 2 independent chiral fields:

$$\nu_L$$
 and $(\nu_L)^C$ and the other two are $\nu_R = (\nu_L)^C$ $(\nu_R)^C = \nu_L$

• In the SM the interaction term for neutrinos

$$\mathcal{L}_{int} = \frac{i g}{\sqrt{2}} \left[(\bar{l}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}) W_{\mu}^{-} + (\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} l_{\alpha}) W_{\mu}^{+} \right] + \frac{i g}{\sqrt{2} \cos \theta_{W}} (\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}) Z_{\mu}$$

Only involves two chiral fields $\mathcal{P}_L \mathbf{v} = \nu_L$ and $\overline{\mathbf{v}} \mathcal{P}_R = (\nu_L)^{C^T} \mathbf{C}^{\dagger}$

⇒ Weak interaction cannot distinguish if neutrinos are Dirac or Majorana

* ANSWER 2: ν same as anti- ν $\Rightarrow \nu$ is a Majorana fermion : $\nu_M = \nu_M^C$

$$\Rightarrow \nu^C = \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \nu = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

 \Rightarrow So we can rewrite the field $\nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

which contains only one set of creation-annihilation operators

 \Rightarrow A Majorana particle can be described with only 2 independent chiral fields:

$$\nu_L$$
 and $(\nu_L)^C$ and the other two are $\nu_R = (\nu_L)^C$ $(\nu_R)^C = \nu_L$

• In the SM the interaction term for neutrinos

$$\mathcal{L}_{int} = \frac{i g}{\sqrt{2}} [(\bar{l}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}) W_{\mu}^{-} + (\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} l_{\alpha}) W_{\mu}^{+}] + \frac{i g}{\sqrt{2} \cos \theta_{W}} (\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}) Z_{\mu}$$

Only involves two chiral fields $\mathcal{P}_L \mathbf{v} = \nu_L$ and $\overline{\mathbf{v}} \mathcal{P}_R = (\nu_L)^{C^T} \mathbf{C}^{\dagger}$

⇒ Weak interaction cannot distinguish if neutrinos are Dirac or Majorana

The difference arises when including a neutrino mass

• A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\lambda_{ij}^{\nu} \overline{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_{2}\phi^{*})$$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\lambda_{ij}^{\nu} \overline{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_{2}\phi^{*})$$

• Under spontaneous symmetry-breaking $\mathcal{L}_{V}^{(\nu)} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$

$$\mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \mathrm{h.c.} \equiv -\frac{1}{2} (\overline{\nu}_R M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu T} (\nu_R)^c) + \mathrm{h.c.} \equiv -\sum_k m_k \overline{\nu}_k^D \nu_k^D$$

$$M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$$
 =Dirac mass for neutrinos $V_R^{\nu\dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

$$V_R^{\nu\dagger} M_D V^{\nu} = \operatorname{diag}(m_1, m_2, m_3)$$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\lambda_{ij}^{\nu} \overline{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_{2}\phi^{*})$$

• Under spontaneous symmetry-breaking $\mathcal{L}_{V}^{(\nu)} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$

$$\mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \mathrm{h.c.} \equiv -\frac{1}{2} (\overline{\nu}_R M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}{}^T (\nu_R)^c) + \mathrm{h.c.} \equiv -\sum_k m_k \overline{\nu}_k^D \nu_k^D$$

$$M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$$
 =Dirac mass for neutrinos $V_R^{\nu\dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

$$V_R^{\nu\dagger} M_D V^{\nu} = \operatorname{diag}(m_1, m_2, m_3)$$

 \Rightarrow The eigenstates of M_D^{ν} are Dirac fermions (same as quarks and charged leptons)

$$\nu^D = V^{\nu\dagger} \nu_L + V_R^{\nu\dagger} \nu_R$$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\lambda_{ij}^{\nu} \overline{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_{2}\phi^{*})$$

• Under spontaneous symmetry-breaking $\mathcal{L}_{V}^{(\nu)} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$

$$\mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \mathrm{h.c.} \equiv -\frac{1}{2} (\overline{\nu}_R M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}{}^T (\nu_R)^c) + \mathrm{h.c.} \equiv -\sum_k m_k \overline{\nu}_k^D \nu_k^D$$

$$M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$$
 =Dirac mass for neutrinos $V_R^{\nu\dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

$$V_R^{\nu\dagger} M_D V^{\nu} = \operatorname{diag}(m_1, m_2, m_3)$$

 \Rightarrow The eigenstates of M_D^{ν} are Dirac fermions (same as quarks and charged leptons)

$$\nu^D = V^{\nu\dagger} \nu_L + V_R^{\nu\dagger} \nu_R$$

 $ullet \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$ involves the four chiral fields u_L , u_R , $(
u_L)^C$, $(
u_R)^C$

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_f} = -m_f \overline{\psi_L} \psi_R + h.c.$
- One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\lambda_{ij}^{\nu} \overline{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_{2}\phi^{*})$$

• Under spontaneous symmetry-breaking $\mathcal{L}_{V}^{(\nu)} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$

$$\mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \mathrm{h.c.} \equiv -\frac{1}{2} (\overline{\nu}_R M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}{}^T (\nu_R)^c) + \mathrm{h.c.} \equiv -\sum_k m_k \overline{\nu}_k^D \nu_k^D$$

$$M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$$
 =Dirac mass for neutrinos $V_R^{\nu \dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

$$V_R^{\nu\dagger} M_D V^{\nu} = \operatorname{diag}(m_1, m_2, m_3)$$

 \Rightarrow The eigenstates of M_D^{ν} are Dirac fermions (same as quarks and charged leptons)

$$\nu^D = V^{\nu\dagger} \nu_L + V_R^{\nu\dagger} \nu_R$$

- $\mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$ involves the four chiral fields ν_L , ν_R , $(\nu_L)^C$, $(\nu_R)^C$
- ⇒ Total Lepton number is conserved by construction (not accidentally):

$$\begin{array}{cccc}
U(1)_L : & \nu \to e^{i\alpha} \nu & \text{and} & \overline{\nu} \to e^{-i\alpha} \overline{\nu} \\
U(1)_L : & \nu^C \to e^{-i\alpha} \nu^C & \text{and} & \overline{\nu^C} \to e^{i\alpha} \overline{\nu^C}
\end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{\text{(Dirac)}} \to \mathcal{L}_{\text{mass}}^{\text{(Dirac)}}$$

Adding ν Mass: Majorana Mass

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for ν 's is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

$$V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$$

 \Rightarrow The eigenstates of M_M^{ν} are Majorana particles

$$\nu^{M} = V^{\nu\dagger}\nu_{L} + (V^{\nu\dagger}\nu_{L})^{c} \text{ (verify } \nu^{M}{}_{i}^{c} = \nu^{M}_{i} \text{)}$$

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for ν 's is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

$$V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$$

 \Rightarrow The eigenstates of M_M^{ν} are Majorana particles

$$\nu^{M} = V^{\nu\dagger}\nu_{L} + (V^{\nu\dagger}\nu_{L})^{c} \text{ (verify } \nu^{M}{}_{i}^{c} = \nu^{M}_{i} \text{)}$$

 \Rightarrow But $SU(2)_L$ gauge inv is broken $\Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Maj})}$ not possible at tree-level in the SM

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for ν 's is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

$$V^{\nu T} M_M V^{\nu} = \operatorname{diag}(m_1, m_2, m_3)$$

 \Rightarrow The eigenstates of M_M^{ν} are Majorana particles

$$\nu^{M} = V^{\nu\dagger}\nu_{L} + (V^{\nu\dagger}\nu_{L})^{c} \text{ (verify } \nu^{M}{}_{i}^{c} = \nu^{M}_{i} \text{)}$$

- \Rightarrow But $SU(2)_L$ gauge inv is broken $\Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Maj})}$ not possible at tree-level in the SM
- Moreover under any U(1) symmetry with $U(1): \nu \to e^{i\alpha} \nu$

$$\Rightarrow \nu^c \to e^{-i\alpha} \nu^c$$
 and $\overline{\nu} \to e^{-i\alpha} \overline{\nu}$ so $\overline{\nu^c} \to e^{i\alpha} \overline{\nu^c} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Maj})} \to e^{2i\alpha} \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Maj})}$

 $\mathcal{L}_{\text{mass}}^{(\text{Maj})}$ breaks $U(1) \Rightarrow$ only possible for particles without electric charge

Adding ν Mass: Majorana Mass

oncha Gonzalez-Garcia

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for ν 's is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

$$V^{\nu T} M_M V^{\nu} = \operatorname{diag}(m_1, m_2, m_3)$$

 \Rightarrow The eigenstates of M_M^{ν} are Majorana particles

$$\nu^{M} = V^{\nu\dagger}\nu_{L} + (V^{\nu\dagger}\nu_{L})^{c} \text{ (verify } \nu^{M}{}_{i}^{c} = \nu^{M}_{i} \text{)}$$

- \Rightarrow But $SU(2)_L$ gauge inv is broken $\Rightarrow \mathcal{L}_{\text{mass}}^{(\text{Maj})}$ not possible at tree-level in the SM
- Moreover under any U(1) symmetry with $U(1): \nu \to e^{i\alpha} \nu$

$$\Rightarrow \nu^c \to e^{-i\alpha} \nu^c$$
 and $\overline{\nu} \to e^{-i\alpha} \overline{\nu}$ so $\overline{\nu^c} \to e^{i\alpha} \overline{\nu^c} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Maj})} \to e^{2i\alpha} \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Maj})}$

 $\mathcal{L}_{\text{mass}}^{(\text{Maj})}$ breaks $U(1) \Rightarrow$ only possible for particles without electric charge

 \Rightarrow Breaks Total Lepton Number $\Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Maj})}$ not generated at any order in the SM

ν Mass \Rightarrow Lepton Mixing

• CC and mass for 3 charged leptons ℓ_i and N neutrinos in weak basis $\nu^W \equiv \begin{pmatrix} \nu_{L,e} \\ \nu_{L,\mu} \\ \nu_{L,\tau} \\ (\nu_{R,1})^C \\ \vdots \\ . \end{pmatrix}$

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

ν Mass \Rightarrow Lepton Mixing

• CC and mass for 3 charged leptons ℓ_i and N neutrinos in weak basis $\nu^W \equiv \begin{pmatrix} \nu_{L,e} \\ \nu_{L,\mu} \\ \nu_{L,\tau} \\ (\nu_{R,1})^C \\ \vdots \end{pmatrix}$

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• Change to mass basis: $\ell_{L,i}^W = V_{Lij}^\ell \ell_{L,j}$ $\ell_{R,i}^W = V_{Rij}^\ell \ell_{R,j}$ $\nu_i^W = V_{ij}^\nu \nu_j$

$$\ell_{L,i}^W = V_{L\,ij}^\ell \ell_{L,j}$$

$$\ell_{R,i}^W = V_{Rij}^\ell \ell_{R,j}$$

$$\nu_i^W = V_{ij}^{\nu} \nu_j$$

$$V_L^{\ell^{\dagger}} M_{\ell} V_R^{\ell} = \operatorname{diag}(m_e, m_{\mu}, m_{\tau})$$

$$V_{L,R}^{\ell} \equiv \text{Unitary } 3 \times 3 \text{ matrices}$$

$$V^{\nu T} M_{\nu} V^{\nu} = \operatorname{diag}(m_1^2, m_2^2, m_3^2, \dots, m_N^2)$$

 $V^{\nu} \equiv \text{Unitary } N \times N \text{ matrix.}$

ν Mass \Rightarrow Lepton Mixing

• CC and mass for 3 charged leptons ℓ_i and N neutrinos in weak basis $\nu^W \equiv \begin{pmatrix} \nu_{L,e} \\ \nu_{L,\mu} \\ \nu_{L,\tau} \\ (\nu_{R,1})^C \\ \vdots \\ N \end{pmatrix}$

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• Change to mass basis: $\ell_{L,i}^W = V_{Lij}^\ell \ell_{L,j}$ $\ell_{R,i}^W = V_{Rij}^\ell \ell_{R,j}$ $\nu_i^W = V_{ij}^\nu \nu_j$

$$\ell_{L,i}^W = V_{L\,i\,j}^\ell \ell_{L,j}$$

$$\ell_{R,i}^W = V_{Rij}^\ell \ell_{R,j}$$

$$\nu_i^W = V_{ij}^{\nu} \nu_j$$

$$V_L^{\ell^{\dagger}} M_{\ell} V_R^{\ell} = \operatorname{diag}(m_e, m_{\mu}, m_{\tau})$$

$$V_{L,R}^{\ell} \equiv \text{Unitary } 3 \times 3 \text{ matrices}$$

$$V^{\nu T} M_{\nu} V^{\nu} = \operatorname{diag}(m_1^2, m_2^2, m_3^2, \dots, m_N^2)$$

 $V^{\nu} \equiv \text{Unitary } N \times N \text{ matrix.}$

• The charged current in the mass basis: $\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} \overline{\ell_L^i} \gamma^\mu U_{\text{LEP}}^{ij} \nu_j W_\mu^+$

• CC and mass for 3 charged leptons ℓ_i and N neutrinos in weak basis $\nu^W \equiv \begin{pmatrix} \nu_{L,e} \\ \nu_{L,\mu} \\ \nu_{L,\tau} \\ (\nu_{R,1})^C \\ \vdots \\ \vdots \end{pmatrix}$

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• Change to mass basis: $\ell_{L,i}^W = V_{L,i}^\ell \ell_{L,j}$ $\ell_{R,i}^W = V_{R,i}^\ell \ell_{R,j}$ $\nu_i^W = V_{ij}^\nu \nu_j$

$$\ell_{L,i}^W = V_{L\,ij}^\ell \ell_{L,j}$$

$$\ell_{R,i}^W = V_{Rij}^\ell \ell_{R,j}$$

$$\nu_i^W = V_{ij}^{\nu} \nu_j$$

$$V_L^{\ell\dagger} M_\ell V_R^\ell = \operatorname{diag}(m_e, m_\mu, m_\tau)$$

$$V_{L,R}^{\ell} \equiv \text{Unitary } 3 \times 3 \text{ matrices}$$

$$V^{\nu T} M_{\nu} V^{\nu} = \operatorname{diag}(m_1^2, m_2^2, m_3^2, \dots, m_N^2)$$

 $V^{\nu} \equiv \text{Unitary } N \times N \text{ matrix.}$

- The charged current in the mass basis: $\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} \overline{\ell_L^i} \gamma^\mu U_{\text{LEP}}^{ij} \nu_j W_\mu^+$
- $U_{\text{LEP}} \equiv 3 \times N$ matrix $U_{\text{LEP}} U_{\text{LEP}}^{\dagger} = I_{3 \times 3}$ but in general $U_{\text{LEP}}^{\dagger} U_{\text{LEP}} \neq I_{N \times N}$

$$U_{\text{LEP}}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_L^{\ell^{\dagger}ik} V^{\nu kj} P_{jj}^{\nu}$$

$$U_{
m LEP}\equiv 3 imes N$$
 matrix

$$U_{\mathrm{LEP}}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu k j} P_{jj}^{\nu}$$

$$U_{
m LEP}\equiv 3 imes N$$
 matrix

$$U_{\mathrm{LEP}}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu k j} P_{jj}^{\nu}$$

- $P_{ii}^{\ell} \supset 3$ phases absorbed in l_i
- $P_{kk}^{\nu} \supset N-1$ phases absorbed in ν_i (only possible if ν_i is Dirac)

$$U_{
m LEP}\equiv 3 imes N$$
 matrix

$$U_{\text{LEP}}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_L^{\ell^{\dagger ik}} V^{\nu k j} P_{jj}^{\nu}$$

- $P_{ii}^{\ell} \supset 3$ phases absorbed in l_i
- $P_{kk}^{\nu} \supset \text{N-1}$ phases absorbed in ν_i (only possible if ν_i is Dirac)

$$\Rightarrow$$
 For $N=3+s$: $U_{\text{LEP}}\supset 3(1+s)$ angles + $(2s+1)$ Dirac phases + $(s+2)$ Maj phases

$$U_{
m LEP}\equiv 3 imes N$$
 matrix

$$U_{\mathrm{LEP}} \equiv 3 \times N \; \mathrm{matrix} \quad U_{\mathrm{LEP}}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} \, V^{\nu k j} P_{jj}^{\nu}$$

- $P_{ii}^{\ell} \supset 3$ phases absorbed in l_i
- $P_{kk}^{\nu} \supset N-1$ phases absorbed in ν_i (only possible if ν_i is Dirac)
- \Rightarrow For N = 3 + s: $U_{LEP} \supset 3(1+s)$ angles + (2s+1) Dirac phases + (s+2) Maj phases
- For example for 3 Dirac ν : 3 Mixing angles + 1 Dirac Phase

$$U_{
m LEP} = egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \ 0 & 1 & 0 \ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{21} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{pmatrix}$$

$$U_{
m LEP}\equiv 3 imes N$$
 matrix

$$U_{\mathrm{LEP}} \equiv 3 \times N \; \mathrm{matrix} \quad U_{\mathrm{LEP}}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} \, V^{\nu k j} P_{jj}^{\nu}$$

- $P_{ii}^{\ell} \supset 3$ phases absorbed in l_i
- $P_{kk}^{\nu} \supset N-1$ phases absorbed in ν_i (only possible if ν_i is Dirac)
 - \Rightarrow For N = 3 + s: $U_{LEP} \supset 3(1+s)$ angles + (2s+1) Dirac phases + (s+2) Maj phases
- For example for 3 Dirac ν : 3 Mixing angles + 1 Dirac Phase

$$U_{\mathrm{LEP}} = egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \ 0 & 1 & 0 \ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} egin{pmatrix} c_{21} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{pmatrix}$$

• For 3 Majorana ν : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & e^{i\phi_3} \end{pmatrix}$$

Massive Neutrinos Concha Gonzalez-Garcia

Effects of ν **Mass**

• Neutrino masses can have kinematic effects

- Neutrino masses can have kinematic effects
- Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W_{\mu}^{+}\sum_{ij}\left(U_{LEP}^{ij}\overline{\ell^{i}}\gamma^{\mu}L\nu^{j}+U_{CKM}^{ij}\overline{U^{i}}\gamma^{\mu}LD^{j}\right)+h.c.$$

- Neutrino masses can have kinematic effects
- Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W_{\mu}^{+}\sum_{ij}\left(U_{LEP}^{ij}\overline{\ell^{i}}\gamma^{\mu}L\nu^{j}+U_{CKM}^{ij}\overline{U^{i}}\gamma^{\mu}LD^{j}\right)+h.c.$$

• SM gauge invariance does not imply $U(1)_{L_e} \times U(1)_{L_\mu} \times U(1)_{L_\tau}$ symmetry

- Neutrino masses can have kinematic effects
- Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W_{\mu}^{+}\sum_{ij}\left(U_{LEP}^{ij}\overline{\ell^{i}}\gamma^{\mu}L\nu^{j}+U_{CKM}^{ij}\overline{U^{i}}\gamma^{\mu}LD^{j}\right)+h.c.$$

- SM gauge invariance does not imply $U(1)_{L_e} \times U(1)_{L_\mu} \times U(1)_{L_\tau}$ symmetry
- Total lepton number $U(1)_L = U(1)_{Le+L_{\mu}+L_{\tau}}$ can be or cannot be still a symmetry depending on whether neutrinos are Dirac or Majorana

Massive Neut Neutrino Mass Scale: Tritium β Decay

• Fermi proposed a kinematic search of ν_e mass from beta spectra in 3H beta decay

$$^{3}\mathrm{H} \rightarrow ^{3}\mathrm{He} + e + \overline{\nu}_{e}$$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{C_p E F(E)}} \propto \sqrt{(Q - T)\sqrt{(Q - T)^2 - m_{\nu_e}^2}}$$

 $T = E_e - m_e$, $Q = \text{maximum kinetic energy, (for } ^3H \text{ beta decay } Q = 18.6 \text{ KeV})$

Taking into account mixing $m_{\nu_e}^{\text{eff}} \equiv \sqrt{\sum m_{\nu_j}^2 |U_{ej}|^2}$

Massive Neut Neutrino Mass Scale: Tritium β Decay

• Fermi proposed a kinematic search of ν_e mass from beta spectra in 3H beta decay

$$^{3}\mathrm{H} \rightarrow ^{3}\mathrm{He} + e + \overline{\nu}_{e}$$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{C_p E F(E)}} \propto \sqrt{(Q - T)\sqrt{(Q - T)^2 - m_{\nu_e}^2}}$$

 $T = E_e - m_e$, $Q = \text{maximum kinetic energy, (for } ^3H \text{ beta decay } Q = 18.6 \text{ KeV})$

Taking into account mixing $m_{\nu_e}^{\text{eff}} \equiv \sqrt{\sum m_{\nu_j}^2 |U_{ej}|^2}$

$$m_{\nu_e}^{\text{eff}} \equiv \sqrt{\sum m_{\nu_j}^2 |U_{ej}|^2}$$

• $m_{\nu} \neq 0 \Rightarrow$ distortion from the straight-line at the end point of the spectrum

$$m_{\nu} = 0 \Rightarrow T_{\text{max}} = Q$$

 $m_{\nu} \neq 0 \Rightarrow T_{\text{max}} = Q - m_{\nu}$

Massive Neut Neutrino Mass Scale: Tritium β Decay

• Fermi proposed a kinematic search of ν_e mass from beta spectra in 3H beta decay

$$^{3}\mathrm{H} \rightarrow ^{3}\mathrm{He} + e + \overline{\nu}_{e}$$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{C_p E F(E)}} \propto \sqrt{(Q - T)\sqrt{(Q - T)^2 - m_{\nu_e}^2}}$$

 $T = E_e - m_e$, $Q = \text{maximum kinetic energy, (for } ^3H \text{ beta decay } Q = 18.6 \text{ KeV})$

Taking into account mixing $m_{\nu_e}^{\text{eff}} \equiv \sqrt{\sum_{\nu_i} |U_{ej}|^2}$

• $m_{\nu} \neq 0 \Rightarrow$ distortion from the straight-line at the end point of the spectrum

$$m_{\nu} = 0 \Rightarrow T_{\text{max}} = Q$$

 $m_{\nu} \neq 0 \Rightarrow T_{\text{max}} = Q - m_{\nu}$

- At present only a bound: $m_{\nu_e}^{\text{eff}} < 0.8 \text{ eV}$ (at 90 % CL) (Katrin)
- Katrin operating can improve present sensitivity to $m_{\nu_e}^{\rm eff} \sim 0.3\,{\rm eV}$

"Muon neutrino mass"

• From the two body decay at rest

$$\pi^- \to \mu^- + \overline{\nu}_{\mu}$$

• Energy momentum conservation:

$$\begin{split} m_{\pi} &= \sqrt{p_{\mu}^2 + m_{\mu}^2} + \sqrt{p_{\mu}^2 + m_{\nu}^2} \\ m_{\nu}^2 &= m_{\pi}^2 + m_{\mu}^2 - 2 + m_{\mu}\sqrt{p^2 + m_{\pi}^2} \end{split}$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

$$m_{\nu_{\mu}}^{eff} \equiv \sqrt{\sum m_j^2 |U_{\mu j}|^2} < 190 \text{ KeV}$$

"Muon neutrino mass"

• From the two body decay at rest

$$\pi^- \to \mu^- + \overline{\nu}_{\mu}$$

• Energy momentum conservation:

$$m_{\pi} = \sqrt{p_{\mu}^2 + m_{\mu}^2} + \sqrt{p_{\mu}^2 + m_{\nu}^2}$$

$$m_{\nu}^2 = m_{\pi}^2 + m_{\mu}^2 - 2 + m_{\mu}\sqrt{p^2 + m_{\pi}^2}$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

$$m_{\nu_{\mu}}^{eff} \equiv \sqrt{\sum m_j^2 |U_{\mu j}|^2} < 190 \text{ KeV}$$

"Tau neutrino mass"

- The τ is much heavier $m_{\tau} = 1.776$ GeV \Rightarrow Large phase space \Rightarrow difficult precision for m_{ν}
- The best precision is obtained from hadronic final states

$$\tau \to n\pi + \nu_{\tau}$$
 with $n \geq 3$

• Lep I experiments obtain:

$$m_{\nu_{\tau}}^{eff} \equiv \sqrt{\sum m_{j}^{2} |U_{\tau j}|^{2}} < 18.2 \text{ MeV}$$

"Muon neutrino mass"

• From the two body decay at rest

$$\pi^- \to \mu^- + \overline{\nu}_{\mu}$$

• Energy momentum conservation:

$$\begin{split} m_{\pi} &= \sqrt{p_{\mu}^2 + m_{\mu}^2} + \sqrt{p_{\mu}^2 + m_{\nu}^2} \\ m_{\nu}^2 &= m_{\pi}^2 + m_{\mu}^2 - 2 + m_{\mu}\sqrt{p^2 + m_{\pi}^2} \end{split}$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

$$m_{\nu_{\mu}}^{eff} \equiv \sqrt{\sum m_j^2 |U_{\mu j}|^2} < 190 \text{ KeV}$$

"Tau neutrino mass"

- The τ is much heavier $m_{\tau} = 1.776$ GeV \Rightarrow Large phase space \Rightarrow difficult precision for m_{ν}
- The best precision is obtained from hadronic final states

$$\tau \to n\pi + \nu_{\tau}$$
 with $n \ge 3$

• Lep I experiments obtain:

$$m_{\nu_{\tau}}^{eff} \equiv \sqrt{\sum_{j} m_{j}^{2} |U_{\tau j}|^{2}} < 18.2 \text{ MeV}$$

 \Rightarrow If mixing angles U_{ej} are not negligible

Dirac or Majorana? ν -less Double- β Decay

 $\bullet \text{ Amplitude includes } \left[\overline{e} \gamma^{\mu} L \nu_{e} \right] \left[\overline{e} \gamma^{\mu} L \nu_{e} \right] = \sum_{ij} U_{ei} U_{ej}^{p} \left[\overline{e} \gamma^{\mu} \nu_{i} \right] \left[\overline{e} \gamma^{\mu} \nu_{j} \right]$

Dirac or Majorana? ν -less Double- β Decay

- Amplitude includes $\left[\overline{e}\gamma^{\mu}L\nu_{e}\right]\left[\overline{e}\gamma^{\mu}L\nu_{e}\right] = \sum_{ij}U_{ei}U_{ej}^{p}\left[\overline{e}\gamma^{\mu}\nu_{i}\right]\left[\overline{e}\gamma^{\mu}\nu_{j}\right]$
 - If ν_i Dirac $\Rightarrow \nu_i$ annihilates a neutrino and creates an antineutrino \Rightarrow no same state \Rightarrow Amplitude = 0
 - If ν_i Majorana $\Rightarrow \nu_i = \nu_i^c$ annihilates and creates a neutrino=antineutrino \Rightarrow same state \Rightarrow Amplitude $\propto \nu_i (\nu_i)^T \neq 0$

Dirac or Majorana? ν -less Double- β Decay

- Amplitude includes $\left[\overline{e}\gamma^{\mu}L\nu_{e}\right]\left[\overline{e}\gamma^{\mu}L\nu_{e}\right] = \sum_{i,j} U_{ei}U_{ej}^{p}\left[\overline{e}\gamma^{\mu}\nu_{i}\right]\left[\overline{e}\gamma^{\mu}\nu_{j}\right]$
 - If ν_i Dirac $\Rightarrow \nu_i$ annihilates a neutrino and creates an antineutrino \Rightarrow no same state \Rightarrow Amplitude = 0
 - If ν_i Majorana $\Rightarrow \nu_i = \nu_i^c$ annihilates and creates a neutrino=antineutrino \Rightarrow same state \Rightarrow Amplitude $\propto \dot{\nu_i} (\dot{\nu_i})^T \neq 0$
- If Majorana m_{ν} only source of L-violation
- \Rightarrow Amplitude of ν -less- $\beta\beta$ decay is proportional to $\langle m_{\beta\beta} \rangle = \sum U_{ej}^2 m_j$

$$\langle m_{\beta\beta} \rangle = \sum_{j} U_{ej}^2 m_j$$

Massive Neutrinos Concha Gonzalez-Garcia

Summary I

• In the **SM**:

- Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_
 u \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu}=0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos

- In the **SM**:
 - Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
 - neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
 - No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow \text{Need to extend SM}$
 - \rightarrow different ways of adding m_{ν} to the SM
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu : \nu = \nu^C$
 - conserving total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$
 - \rightarrow Lepton Mixing \equiv breaking of $L_e \times L_\mu \times L_\tau$

- In the **SM**:
 - Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
 - neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
 - No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow \text{Need to extend SM}$
 - \rightarrow different ways of adding m_{ν} to the SM
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu : \nu = \nu^C$
 - conserving total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$
 - \rightarrow Lepton Mixing \equiv breaking of $L_e \times L_\mu \times L_\tau$
- From direct searches of ν -mass: $m_{\nu} \leq \mathcal{O}(eV)$

- In the **SM**:
 - Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
 - neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
 - No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow \text{Need to extend SM}$
 - \rightarrow different ways of adding m_{ν} to the SM
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu : \nu = \nu^C$
 - conserving total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$
 - \rightarrow Lepton Mixing \equiv breaking of $L_e \times L_\mu \times L_\tau$
- From direct searches of ν -mass: $m_{\nu} \leq \mathcal{O}(eV)$

Question: How to search for $m_{\nu} \ll \mathcal{O}(eV)$?

Answer: Neutrino Oscillations... Tomorrow

Light massive ν **in Cosmology**

Relic $\nu's$: Effects in several cosmological observations at several epochs

Mainly via two effects:
$$\rho_r = \left[1 + \frac{7}{8} \times \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right] \rho_{\gamma}$$
 and $\sum_i m_{\nu_i}$

BUT: Observables also depend on all other cosmo parameters (and assumptions)

Massive Neutrinos Concha Gonzalez-Garcia

Example: Cosmological Analysis by Planck

Range of Bounds in ΛCDM

Model	Observables	Σm_{ν} (eV) 95%
$\Lambda { m CDM} + m_{\nu}$	Planck TT + lowP	≤ 0.72
$\Lambda { m CDM} + m_{\nu}$	Planck TT + lowP + lensing	≤ 0.68
$\Lambda { m CDM} + m_{\nu}$	Planck TT,TE,EE + lowP+lensing	≤ 0.59
$\Lambda { m CDM} + m_{\nu}$	Planck TT,TE,EE + lowP	≤ 0.49
$\Lambda { m CDM} + m_{\nu}$	Planck TT + lowP + lensing + BAO + SN + H_0	≤ 0.23
$\Lambda {\rm CDM} + m_{\nu}$	Planck TT,TE,EE + lowP+ BAO	≤ 0.17

Concha Gonzalez-Garcia **Massive Neutrinos**

Example: Cosmological Analysis by Planck

Range of Bounds in Λ CDM

Model	Observables	Σm_{ν} (eV) 95%
$\Lambda { m CDM} + m_{\nu}$	Planck TT + lowP	≤ 0.72
$\Lambda { m CDM} + m_{\nu}$	Planck TT + lowP + lensing	≤ 0.68
$\Lambda { m CDM} + m_{\nu}$	Planck TT,TE,EE + lowP+lensing	≤ 0.59
$\Lambda { m CDM} + m_{\nu}$	Planck TT,TE,EE + lowP	≤ 0.49
$\Lambda { m CDM} + m_{\nu}$	Planck TT + lowP + lensing + BAO + SN + H_0	≤ 0.23
$\Lambda { m CDM} + m_{\nu}$	Planck TT,TE,EE + lowP+ BAO	≤ 0.17

Careful with what you call Cosmological bound on m_{ν}