Intro to Phenomenology with Massive NEUTRINOS

Concha Gonzalez-Garcia
(YITP-Stony Brook \& ICREA-University of Barcelona)
14th International Neutrino Summer School (INSS)
Fermilab, August 6-18, 2023

$V_{\text {fit }}$ Global fit to nelutrino oscillation data

HIDDe 1 :

Intro to Phenomenology with Massive

 Neutrinos: Lecture IConcha Gonzalez-Garcia
(ICREA-University of Barcelona \& YITP-Stony Brook)

OUTLINE

- Historic Introduction to the SM of Massless Neutrinos
- Neutrino Properties relevant to ν mass::

Helicity versus Chirality, Majorana versus Dirac, Leptonic Mixing

- Probes of Neutrino Mass Scale

Discovery of ν 's

- At end of 1800 's radioactivity was discovered and three types identified: α, β, γ β : an electron comes out of the radioactive nucleus.
- Energy conservation $\Rightarrow e^{-}$should have had a fixed energy

$$
(A, Z) \rightarrow(A, Z+1)+e^{-} \Rightarrow E_{e}=M(A, Z+1)-M(A, Z)
$$

Discovery of ν 's

- At end of 1800's radioactivity was discovered and three types identified: α, β, γ β : an electron comes out of the radioactive nucleus.
- Energy conservation $\Rightarrow e^{-}$should have had a fixed energy

Bu $1914, Z) \rightarrow(A, Z+1)+e^{-} \Rightarrow E_{e}=M(A, Z+1)-M(A, Z)$
But 1914 James Chadwick showed that the electron energy spectrum is continuous

Discovery of ν 's

- At end of 1800's radioactivity was discovered and three types identified: α, β, γ β : an electron comes out of the radioactive nucleus.
- Energy conservation $\Rightarrow e^{-}$should have had a fixed energy

But $1914(A, Z) \rightarrow(A, Z+1)+e^{-} \Rightarrow \underset{e}{ } \Rightarrow=M(A, Z+1)-M(A, Z)$
But 1914 James Chadwick showed that the electron energy spectrum is continuous

Do we throw away the energy conservation?
Bohr: we have no argument, either empirical or theoretical, for upholding the energy principle in the case of β ray disintegrations

Discovery of ν 's

- The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the Liebe Radioaktive Damen und Herren (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as constituent of nuclei, the neutron ν, able to explain the continuous spectrum of nuclear beta decay

$$
(A, Z) \rightarrow(A, Z+1)+e^{-}+\nu
$$

Discovery of ν 's

- The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the Liebe Radioaktive Damen und Herren (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as constituent of nuclei, the neutron ν, able to explain the continuous spectrum of nuclear beta decay

$$
(A, Z) \rightarrow(A, Z+1)+e^{-}+\nu
$$

- The ν is light (in Pauli's words:
m_{ν} should be of the same order as the m_{e}),
neutral and has spin 1/2

Discovery of ν 's

- The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the Liebe Radioaktive Damen und Herren (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as constituent of nuclei, the neutron ν, able to explain the continuous spectrum of nuclear beta decay

$$
(A, Z) \rightarrow(A, Z+1)+e^{-}+\nu
$$

- The ν is light (in Pauli's words: m_{ν} should be of the same order as the m_{e}), neutral and has spin 1/2
- In order to distinguish them from heavy neutrons, Fermi proposed to name them neutrinos.

Fighting Pauli's "Curse":
I have done a terrible thing, I have postulated a particle that cannot be detected.

The Big Bating

$$
\begin{aligned}
& \rho_{\nu}=330 / \mathrm{cm}^{3} \\
& p_{\nu}=0.0004 \mathrm{eV}
\end{aligned}
$$

The Sun

$$
\begin{aligned}
& \nu_{e} \\
& \Phi_{\nu}^{E a r t h}=6 \times 10^{10} \nu / \mathrm{cm}^{2} \mathrm{~s} \\
& E_{\nu} \sim 0.1-20 \mathrm{MeV}
\end{aligned}
$$

$\frac{\text { Nuclear Reactors }}{E_{\nu} \sim \text { few MeV }}$

Accelerators
$E_{\nu} \simeq 0.3-30 \mathrm{GeV}$

늘 Fermilab
Discovering the Nature of Nature

ExtraGalactic $E_{\nu} \gtrsim 30 \mathrm{TeV}$

Nuclear Reactors $E_{\nu} \sim$ few MeV

$$
\frac{\text { Earth's radioactivity }}{\Phi_{\nu} \sim 6 \times 10^{6} \nu / \mathrm{cm}^{2} \mathrm{~s}}
$$

Neutrino Detection

But in principle seems easy!: If β decay $n \rightarrow p+e^{-}+\nu$
Then $\nu+p \rightarrow e^{+}+n$

Neutrino Detection

But in principle seems easy!: If β decay $n \rightarrow p+e^{-}+\nu$

$$
\text { Then } \nu+p \rightarrow e^{+}+n
$$

Problem: Already in 1934, Hans Bethe showed that the probability of this interaction was so small that a solar ν could cross the whole Earth without ever interacting with it

But in principle seems easy!: If β decay $n \rightarrow p+e^{-}+\nu$
Then $\nu+p \rightarrow e^{+}+n$
Problem: Quantitatively: a ν sees a proton of area:

$$
\sigma^{\nu p} \sim 10^{-38} \mathrm{~cm}^{2} \frac{E_{\nu}}{\mathrm{GeV}}
$$

But in principle seems easy!: If β decay $n \rightarrow p+e^{-}+\nu$
Then $\nu+p \rightarrow e^{+}+n$
Problem: Quantitatively: a ν sees a proton of area:

$$
\sigma^{\nu p} \sim 10^{-38} \mathrm{~cm}^{2} \frac{E_{\nu}}{\mathrm{GeV}}
$$

- So let's consider the atmospheric ν 's:

$$
\Phi_{\nu}^{\mathrm{ATM}}=1 \nu /\left(\mathrm{cm}^{2} \text { second }\right) \text { y }\left\langle E_{\nu}\right\rangle=1 \mathrm{GeV}
$$

- How many interact?

But in principle seems easy!: If β decay $n \rightarrow p+e^{-}+\nu$
Then $\nu+p \rightarrow e^{+}+n$
Problem: Quantitatively: a ν sees a proton of area:

$$
\sigma^{\nu p} \sim 10^{-38} \mathrm{~cm}^{2} \frac{E_{\nu}}{\mathrm{GeV}}
$$

- So let's consider the atmospheric ν 's:

$$
\Phi_{\nu}^{\mathrm{ATM}}=1 \nu /\left(\mathrm{cm}^{2} \text { second }\right) \text { y }\left\langle E_{\nu}\right\rangle=1 \mathrm{GeV}
$$

- How many interact? In a human body

$$
\left.\begin{array}{l}
\quad N_{\text {int }}=\Phi_{\nu} \times \sigma^{\nu p} \times N_{\text {prot }}^{\text {human }} \times T_{\text {life }}^{\text {human }} \\
N_{\text {protons }}^{\text {human }}=\frac{M^{\text {human }}}{g r} \times N_{A}=80 \mathrm{~kg} \times N_{A} \sim 5 \times 10^{28} \text { protons } \\
T^{\text {human }}=80 \text { years }=2 \times 10^{9} \mathrm{sec}
\end{array}\right\} \begin{gathered}
(M \times T \equiv \text { Exposure }) \\
\text { Exposure }{ }_{\text {human }} \\
\sim \text { Ton } \times \text { year }
\end{gathered}
$$

But in principle seems easy!: If β decay $n \rightarrow p+e^{-}+\nu$
Then $\nu+p \rightarrow e^{+}+n$
Problem: Quantitatively: a ν sees a proton of area:

$$
\sigma^{\nu p} \sim 10^{-38} \mathrm{~cm}^{2} \frac{E_{\nu}}{\mathrm{GeV}}
$$

- So let's consider the atmospheric ν 's:

$$
\Phi_{\nu}^{\mathrm{ATM}}=1 \nu /\left(\mathrm{cm}^{2} \text { second }\right) \text { y }\left\langle E_{\nu}\right\rangle=1 \mathrm{GeV}
$$

- How many interact? In a human body

$$
\left.\begin{array}{l}
\quad N_{\text {int }}=\Phi_{\nu} \times \sigma^{\nu p} \times N_{\text {prot }}^{\text {human }} \times T_{\text {life }}^{\text {human }} \\
N_{\text {protons }}^{\text {human }}=\frac{M^{\text {human }}}{g r} \times N_{A}=80 \mathrm{~kg} \times N_{A} \sim 5 \times 10^{28} \text { protons } \\
T^{\text {human }}=80 \text { years }=2 \times 10^{9} \mathrm{sec}
\end{array}\right\} \begin{gathered}
(M \times T \equiv \text { Exposure }) \\
\text { Exposure }{ }_{\text {human }} \\
\sim \text { Ton } \times \text { year }
\end{gathered}
$$

$$
N_{\text {int }}=\left(5 \times 10^{28}\right)\left(2 \times 10^{9}\right) \times 10^{-38} \sim 1 \text { interaction in life }
$$

But in principle seems easy!: If β decay $n \rightarrow p+e^{-}+\nu$
Then $\nu+p \rightarrow e^{+}+n$
Problem: Quantitatively: a ν sees a proton of area:

$$
\sigma^{\nu p} \sim 10^{-38} \mathrm{~cm}^{2} \frac{E_{\nu}}{\mathrm{GeV}}
$$

- So let's consider the atmospheric ν 's:

$$
\Phi_{\nu}^{\mathrm{ATM}}=1 \nu /\left(\mathrm{cm}^{2} \text { second }\right) \text { y }\left\langle E_{\nu}\right\rangle=1 \mathrm{GeV}
$$

- How many interact? In a human body

$$
\begin{aligned}
& N_{\mathrm{int}}=\Phi_{\nu} \times \sigma^{\nu p} \times N_{\mathrm{prot}}^{\text {human }} \times T_{\mathrm{life}}^{\text {human }} \\
& N_{\text {protons }}^{\text {human }}=\frac{M^{\text {human }}}{g r} \times N_{A}=80 \mathrm{~kg} \times N_{A} \sim 5 \times 10^{28} \mathrm{protons} \\
& T^{\text {human }}=80 \text { years }=2 \times 10^{9} \mathrm{sec} \\
& (M \times T \equiv \text { Exposure }) \\
& N_{\text {int }}=\left(5 \times 10^{28}\right)\left(2 \times 10^{9}\right) \times 10^{-38} \sim 1 \text { interaction in life }
\end{aligned}
$$

To detect neutrinos we need very intense source and/or a hugh detector with Exposure \sim KTon \times year

First Neutrino Detection

In 1953 Frederick Reines and Clyde Cowan put a detector near a nuclear reactor (the most intense source available)

First Neutrino Detection

In 1953 Frederick Reines and Clyde Cowan put a detector near a nuclear reactor (the most intense source available)

e^{+}annihilates with e^{-}in the water and produces two γ 's simultaneouoly. neutron is captured by por the cadmium and a γ 's is emitted 15 msec latter

Reines y Clyde saw clearly this signature: the first neutrino had been detected

The Other Flavours

ν coming out of a nuclear reactor is $\bar{\nu}_{e}$ because it is emitted together with an e^{-}
Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

The Other Flavours

ν coming out of a nuclear reactor is $\bar{\nu}_{e}$ because it is emitted together with an e^{-}
Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

The Other Flavours

ν coming out of a nuclear reactor is $\bar{\nu}_{e}$ because it is emitted together with an e^{-}
Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40ν interactions: in 6 an e^{-}comes out and in 34 a μ^{-}comes out. If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-}and $e-$

The Other Flavours

ν coming out of a nuclear reactor is $\bar{\nu}_{e}$ because it is emitted together with an e^{-}
Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40ν interactions: in 6 an e^{-}comes out and in 34 a μ^{-}comes out. If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-}and $e-\Rightarrow$ Conclusion: ν_{μ} is a different particle

The Other Flavours

ν coming out of a nuclear reactor is $\bar{\nu}_{e}$ because it is emitted together with an e^{-}
Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40ν interactions: in 6 an e^{-}comes out and in 34 a μ^{-}comes out. If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-}and $e-\Rightarrow$ Conclusion: ν_{μ} is a different particle

In 1977 Martin Perl discovers the particle tau \equiv the third lepton family.
The ν_{τ} was observed by DONUT experiment at FNAL in 1998 (officially in Dec. 2000).

Neutrinos = "Left-handed"

Helicity of Neutrinos*

M. Goldhaber, L. Grodzins, and A. W. Sunyar Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

ACOMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with $\mathrm{Eu}^{152 m}$, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, ${ }^{1} 0-$, we find that the neutrino is "left-handed," i.e., $\boldsymbol{\sigma}_{\nu} \cdot \hat{p}_{\nu}=-1$ (negative helicity).

Neutrino Helicity

Neutrino Helicity

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$
\begin{aligned}
& e^{-}+{ }^{152} E u \rightarrow \nu+{ }^{152} S m^{*} \\
& \text { with } J\left({ }^{152} E u\right)=J\left({ }^{152} S m+\gamma\right. \\
& \text { 每 } S m \text { and } L\left(e^{-}\right)=0
\end{aligned}
$$

Neutrino Helicity

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$
e^{-}+{ }^{152} E u \rightarrow \nu+{ }^{152} S m^{*} \quad \rightarrow{ }^{152} S m+\gamma
$$

$$
\text { with } J\left({ }^{152} E u\right)=J\left({ }^{152} S m\right)=0 \text { and } L\left(e^{-}\right)=0
$$

- Angular momentum conservation \Rightarrow

$$
\left\{\begin{aligned}
J_{z}\left(e^{-}\right) & =J_{z}(\nu)+J_{z}\left(S m^{*}\right) \\
& =J_{z}(\nu)+J_{z}(\gamma) \\
\pm \frac{1}{2} & =-\frac{1}{2} \quad \pm 1 \Rightarrow J_{z}(\nu)=-\frac{1}{2} J_{z}(\gamma)
\end{aligned}\right.
$$

Neutrino Helicity

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$
e^{-}+{ }^{152} E u \rightarrow \nu+{ }^{152} S m^{*} \quad \rightarrow{ }^{152} S m+\gamma
$$

$$
\text { with } J\left({ }^{152} \mathrm{Eu}\right)=J\left({ }^{152} \mathrm{Sm}\right)=0 \text { and } L\left(e^{-}\right)=0
$$

- Angular momentum conservation \Rightarrow

$$
\left\{\begin{aligned}
J_{z}\left(e^{-}\right) & =J_{z}(\nu)+J_{z}\left(S m^{*}\right) \\
& =J_{z}(\nu)+J_{z}(\gamma) \\
\pm \frac{1}{2} & =-\frac{1}{2} \quad \pm 1 \Rightarrow J_{z}(\nu)=-\frac{1}{2} J_{z}(\gamma)
\end{aligned}\right.
$$

- Nuclei are heavy $\Rightarrow \vec{p}\left({ }^{152} \mathrm{Eu}\right) \simeq \vec{p}\left({ }^{152} \mathrm{Sm}\right) \simeq \vec{p}\left({ }^{152} S m^{*}\right)=0$

So momentum conservation $\Rightarrow \vec{p}_{\nu}=-\vec{p}_{\gamma}$

$$
\Rightarrow \vec{p}_{\nu} \cdot \vec{J}_{\nu}=\frac{1}{2} \vec{p}_{\gamma} \cdot \vec{J}_{\gamma} \Rightarrow \quad \nu \text { helicity }=\frac{1}{2} \gamma \text { helicity }
$$

Neutrino Helicity

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$
\begin{aligned}
& e^{-}+{ }^{152} E u \rightarrow \nu+{ }^{152} S m^{*} \\
& \text { with } J\left({ }^{152} E u\right)=J\left({ }^{152} S m+\gamma\right. \\
& \text { Sm })=0 \text { and } L\left(e^{-}\right)=0
\end{aligned}
$$

- Angular momentum

$$
\text { conservation } \Rightarrow
$$

$$
\left\{\begin{aligned}
J_{z}\left(e^{-}\right) & =J_{z}(\nu)+J_{z}\left(S m^{*}\right) \\
& =J_{z}(\nu)+J_{z}(\gamma) \\
\pm \frac{1}{2} & =-\frac{1}{2} \quad \pm 1 \Rightarrow J_{z}(\nu)=-\frac{1}{2} J_{z}(\gamma)
\end{aligned}\right.
$$

- Nuclei are heavy $\Rightarrow \vec{p}\left({ }^{152} E u\right) \simeq \vec{p}\left({ }^{152} S m\right) \simeq \vec{p}\left({ }^{152} S m^{*}\right)=0$

So momentum conservation $\Rightarrow \vec{p}_{\nu}=-\vec{p}_{\gamma}$

$$
\Rightarrow \vec{p}_{\nu} \cdot \vec{J}_{\nu}=\frac{1}{2} \vec{p}_{\gamma} \cdot \vec{J}_{\gamma} \Rightarrow \quad \nu \text { helicity }=\frac{1}{2} \gamma \text { helicity }
$$

- Goldhaber et al found γ had negative helicity $\Rightarrow \nu$ has negative helicity

ν in the SM

- The SM is a gauge theory based on the symmetry group

$$
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \Rightarrow S U(3)_{C} \times U(1)_{E M}
$$

- 3 Generations of Fermions:

$\left(1,2,-\frac{1}{2}\right)$	$\left(3,2, \frac{1}{6}\right)$	$(1,1,-1)$	$\left(3,1, \frac{2}{3}\right)$	$\left(3,1,-\frac{1}{3}\right)$
L_{L}	Q_{L}^{i}	E_{R}	U_{R}^{i}	D_{R}^{i}
$\left(\begin{array}{c}\nu_{e} \\ e \\ \nu_{\mu} \\ \mu \\ \nu_{\tau} \\ \tau\end{array}\right)_{L}\left(\begin{array}{c}u^{i} \\ d^{i} \\ c^{i}\end{array}\right)_{L}\left(\begin{array}{c}c^{i} \\ s^{i} \\ t^{i} \\ b^{i}\end{array}\right)_{L}$	e_{R}	u_{R}^{i}	d_{R}^{i}	
μ_{R}	c_{R}^{i}	s_{R}^{i}		
τ_{R}	t_{R}^{i}	b_{R}^{i}		

- Spin-0 particle $\phi:\left(1,2, \frac{1}{2}\right)$

$$
\phi=\binom{\phi^{+}}{\phi^{0}} \xrightarrow{S S B} \frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

ν in the SM

- The SM is a gauge theory based on the symmetry group

$$
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \Rightarrow S U(3)_{C} \times U(1)_{E M}
$$

- 3 Generations of Fermions:

$\left(1,2,-\frac{1}{2}\right)$	$\left(3,2, \frac{1}{6}\right)$	$(1,1,-1)$	$\left(3,1, \frac{2}{3}\right)$	$\left(3,1,-\frac{1}{3}\right)$
L_{L}	Q_{L}^{i}	E_{R}	U_{R}^{i}	D_{R}^{i}
$\left(\begin{array}{c}\nu_{e} \\ e \\ \nu_{\mu} \\ \mu \\ \nu_{\tau} \\ \tau\end{array}\right)_{L}\left(\begin{array}{c}u^{i} \\ d^{i} \\ c^{i} \\ s^{i} \\ t^{i} \\ b^{i}\end{array}\right)_{L}$	${ }_{L}$	e_{R}	u_{R}^{i}	d_{R}^{i}
μ_{R}	c_{R}^{i}	s_{R}^{i}		
τ_{R}	t_{R}^{i}	b_{R}^{i}		

- ν 's are $T_{L 3}=\frac{1}{2}$ components of L_{L}
- ν 's have no strong or EM interactions
- No ν_{R} (三 singlets of gauge group)
- Spin-0 particle $\phi:\left(1,2, \frac{1}{2}\right)$

$$
\phi=\binom{\phi^{+}}{\phi^{0}} \xrightarrow{S S B} \frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

ν in the SM

- The SM is a gauge theory based on the symmetry group

$$
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \Rightarrow S U(3)_{C} \times U(1)_{E M}
$$

- 3 Generations of Fermions:

$\left(1,2,-\frac{1}{2}\right)$	$\left(3,2, \frac{1}{6}\right)$	$(1,1,-1)$	$\left(3,1, \frac{2}{3}\right)$	$\left(3,1,-\frac{1}{3}\right)$
L_{L}	Q_{L}^{i}	E_{R}	U_{R}^{i}	D_{R}^{i}
$\left(\begin{array}{c}\nu_{e} \\ e \\ \nu_{\mu} \\ \mu \\ \nu_{\tau} \\ \tau\end{array}\right)_{L}{ }_{L}\left(\begin{array}{c}u^{i} \\ d^{i} \\ c^{i} \\ c^{i} \\ s^{i} \\ t_{i} \\ b^{i}\end{array}\right)_{L}$	${ }_{L}$	e_{R}	u_{R}^{i}	d_{R}^{i}
μ_{R}	c_{R}^{i}	s_{R}^{i}		
τ_{R}	t_{R}^{i}	b_{R}^{i}		

- Spin-0 particle $\phi:\left(1,2, \frac{1}{2}\right)$

$$
Q_{E M}=T_{L 3}+Y
$$

- ν 's are $T_{L 3}=\frac{1}{2}$ components of L_{L}
- ν 's have no strong or EM interactions
- No ν_{R} (三 singlets of gauge group)

However what Goldhaber measured was the helicity not the chirality of ν

$$
\phi=\binom{\phi^{+}}{\phi^{0}} \xrightarrow{S S B} \frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

- We define the chiral projections $\mathcal{P}_{R, L}=\frac{1 \pm \gamma_{5}}{2} \quad \Rightarrow \quad \psi_{L}=\frac{1-\gamma_{5}}{2} \psi \quad \psi_{R}=\frac{1+\gamma_{5}}{2} \psi$
- We define the chiral projections $\mathcal{P}_{R, L}=\frac{1 \pm \gamma_{5}}{2} \Rightarrow \psi_{L}=\frac{1-\gamma_{5}}{2} \psi \quad \psi_{R}=\frac{1+\gamma_{5}}{2} \psi$
- The Hamiltonian for a massive fermion ψ is $H=\bar{\psi}(x)\left(-i \sum_{j} \gamma^{j} \partial_{j}+m\right) \psi(x)$
- 4 states with $\left(E=\sqrt{|\vec{p}|^{2}+m^{2}}, \vec{p}\right)$

$$
\left(\gamma^{\mu} p_{\mu}-m\right) u_{s}(\vec{p})=0 \quad\left(\gamma^{\mu} p_{\mu}+m\right) v_{s}(\vec{p})=0 \quad s=1,2
$$

- We define the chiral projections $\mathcal{P}_{R, L}=\frac{1 \pm \gamma_{5}}{2} \Rightarrow \psi_{L}=\frac{1-\gamma_{5}}{2} \psi \quad \psi_{R}=\frac{1+\gamma_{5}}{2} \psi$
- The Hamiltonian for a massive fermion ψ is $H=\bar{\psi}(x)\left(-i \sum_{j} \gamma^{j} \partial_{j}+m\right) \psi(x)$
- 4 states with $\left(E=\sqrt{|\vec{p}|^{2}+m^{2}}, \vec{p}\right)$

$$
\left(\gamma^{\mu} p_{\mu}-m\right) u_{s}(\vec{p})=0 \quad\left(\gamma^{\mu} p_{\mu}+m\right) v_{s}(\vec{p})=0 \quad s=1,2
$$

- Since $\left[H, \gamma_{5}\right] \neq 0$ and $[\vec{P}, \vec{J}] \neq 0$

$$
\left[\vec{J}=\vec{L}+\frac{\vec{\Sigma}}{2} \quad\left(\Sigma^{i}=-\gamma^{0} \gamma^{5} \gamma^{i}\right)\right]
$$

\Rightarrow Neither Chirality nor J_{i} can characterize the fermion simultaneously with E, \vec{p}

- We define the chiral projections $\mathcal{P}_{R, L}=\frac{1 \pm \gamma_{5}}{2} \Rightarrow \psi_{L}=\frac{1-\gamma_{5}}{2} \psi \quad \psi_{R}=\frac{1+\gamma_{5}}{2} \psi$
- The Hamiltonian for a massive fermion ψ is $H=\bar{\psi}(x)\left(-i \sum_{j} \gamma^{j} \partial_{j}+m\right) \psi(x)$
- 4 states with $\left(E=\sqrt{|\vec{p}|^{2}+m^{2}}, \vec{p}\right)$

$$
\left(\gamma^{\mu} p_{\mu}-m\right) u_{s}(\vec{p})=0 \quad\left(\gamma^{\mu} p_{\mu}+m\right) v_{s}(\vec{p})=0 \quad s=1,2
$$

- Since $\left[H, \gamma_{5}\right] \neq 0$ and $[\vec{P}, \vec{J}] \neq 0$

$$
\left[\vec{J}=\vec{L}+\frac{\vec{\Sigma}}{2} \quad\left(\Sigma^{i}=-\gamma^{0} \gamma^{5} \gamma^{i}\right)\right]
$$

\Rightarrow Neither Chirality nor J_{i} can characterize the fermion simultaneously with E, \vec{p}

- But $[H, \vec{J} . \vec{P}]=[\vec{P}, \vec{J} . \vec{P}]=0 \Rightarrow$ we can chose $u_{1}(\vec{p}) \equiv u_{+}(\vec{p})$ and $u_{2}(\vec{p}) \equiv u_{-}(\vec{p})$ (same for $v_{1,2}$) to be eigenstates of the helicity projector

$$
\mathcal{P}_{ \pm}=\frac{1}{2}\left(1 \pm 2 \vec{J} \frac{\vec{P}}{|\vec{P}|}\right)=\frac{1}{2}\left(1 \pm \vec{\Sigma} \frac{\vec{P}}{|\vec{P}|}\right)
$$

- We define the chiral projections $\mathcal{P}_{R, L}=\frac{1 \pm \gamma_{5}}{2} \Rightarrow \psi_{L}=\frac{1-\gamma_{5}}{2} \psi \quad \psi_{R}=\frac{1+\gamma_{5}}{2} \psi$
- The Hamiltonian for a massive fermion ψ is $H=\bar{\psi}(x)\left(-i \sum_{j} \gamma^{j} \partial_{j}+m\right) \psi(x)$
- 4 states with $\left(E=\sqrt{|\vec{p}|^{2}+m^{2}}, \vec{p}\right)$

$$
\left(\gamma^{\mu} p_{\mu}-m\right) u_{s}(\vec{p})=0 \quad\left(\gamma^{\mu} p_{\mu}+m\right) v_{s}(\vec{p})=0 \quad s=1,2
$$

- Since $\left[H, \gamma_{5}\right] \neq 0$ and $[\vec{P}, \vec{J}] \neq 0$

$$
\left[\vec{J}=\vec{L}+\frac{\vec{\Sigma}}{2} \quad\left(\Sigma^{i}=-\gamma^{0} \gamma^{5} \gamma^{i}\right)\right]
$$

\Rightarrow Neither Chirality nor J_{i} can characterize the fermion simultaneously with E, \vec{p}

- But $[H, \vec{J} . \vec{P}]=[\vec{P}, \vec{J} . \vec{P}]=0 \Rightarrow$ we can chose $u_{1}(\vec{p}) \equiv u_{+}(\vec{p})$ and $u_{2}(\vec{p}) \equiv u_{-}(\vec{p})$ (same for $v_{1,2}$) to be eigenstates of the helicity projector

$$
\mathcal{P}_{ \pm}=\frac{1}{2}\left(1 \pm 2 \vec{J} \frac{\vec{P}}{|\vec{P}|}\right)=\frac{1}{2}\left(1 \pm \vec{\Sigma} \frac{\vec{P}}{|\vec{P}|}\right)
$$

- For massless fermions using the Dirac equation:

$$
\vec{\Sigma} \vec{P} \psi=-\gamma^{0} \gamma^{5} \vec{\gamma} \vec{p} \psi=-\gamma^{0} \gamma^{5} \gamma^{0} E \psi=\gamma^{5} E \psi \Rightarrow \text { For } m=0 \mathcal{P}_{ \pm}=\mathcal{P}_{R, L}
$$

- We define the chiral projections $\mathcal{P}_{R, L}=\frac{1 \pm \gamma_{5}}{2} \Rightarrow \psi_{L}=\frac{1-\gamma_{5}}{2} \psi \quad \psi_{R}=\frac{1+\gamma_{5}}{2} \psi$
- The Hamiltonian for a massive fermion ψ is $H=\bar{\psi}(x)\left(-i \sum_{j} \gamma^{j} \partial_{j}+m\right) \psi(x)$
- 4 states with $\left(E=\sqrt{|\vec{p}|^{2}+m^{2}}, \vec{p}\right)$

$$
\left(\gamma^{\mu} p_{\mu}-m\right) u_{s}(\vec{p})=0 \quad\left(\gamma^{\mu} p_{\mu}+m\right) v_{s}(\vec{p})=0 \quad s=1,2
$$

- Since $\left[H, \gamma_{5}\right] \neq 0$ and $[\vec{P}, \vec{J}] \neq 0$

$$
\left[\vec{J}=\vec{L}+\frac{\vec{\Sigma}}{2} \quad\left(\Sigma^{i}=-\gamma^{0} \gamma^{5} \gamma^{i}\right)\right]
$$

\Rightarrow Neither Chirality nor J_{i} can characterize the fermion simultaneously with E, \vec{p}

- But $[H, \vec{J} . \vec{P}]=[\vec{P}, \vec{J} . \vec{P}]=0 \Rightarrow$ we can chose $u_{1}(\vec{p}) \equiv u_{+}(\vec{p})$ and $u_{2}(\vec{p}) \equiv u_{-}(\vec{p})$ (same for $v_{1,2}$) to be eigenstates of the helicity projector

$$
\mathcal{P}_{ \pm}=\frac{1}{2}\left(1 \pm 2 \vec{J} \frac{\vec{P}}{|\vec{P}|}\right)=\frac{1}{2}\left(1 \pm \vec{\Sigma} \frac{\vec{P}}{|\vec{P}|}\right)=\mathcal{P}_{L, R}+\mathcal{O}\left(\frac{m}{p}\right)
$$

- For massless fermions using the Dirac equation: \Rightarrow For $m=0 \mathcal{P}_{ \pm}=\mathcal{P}_{R, L}$

Only for massless fermions Helicity and chirality states are the same.

$$
\begin{aligned}
\mathcal{L}= & \sum_{k=1}^{3} \sum_{i, j=1}^{3} \overline{Q_{L, k}^{i}} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} \frac{\lambda_{a, i j}}{2} G_{\mu}^{a}-g \frac{\tau_{a}}{2} \delta_{i j} W_{\mu}^{a}-g^{\prime} \frac{1}{6} \delta_{i j} B_{\mu}\right) Q_{L, k}^{j} \\
& +\sum_{k=1}^{3} \sum_{i, j=1}^{3} \overline{U_{R, k}^{i}} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} \frac{\lambda_{a, i j}}{2} G_{\mu}^{a}-g^{\prime} \frac{2}{3} \delta_{i j} B_{\mu}\right) U_{R, k}^{j} \\
& +\sum_{k=1}^{3} \sum_{i, j=1}^{3} \overline{D_{R, k}^{i}} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} \frac{\lambda_{a, i j}}{2} G_{\mu}^{a}+g^{\prime} \frac{1}{3} \delta_{i j} B_{\mu}\right) D_{R, k}^{j} \\
& +\sum_{k=1}^{3} \overline{L_{L, k}} \gamma^{\mu}\left(i \partial_{\mu}-g \frac{\tau_{i}}{2} W_{\mu}^{i}+g^{\prime} \frac{1}{2} B_{\mu}\right) L_{L, k}+\overline{E_{R, k}} \gamma^{\mu}\left(i \partial_{\mu}+g^{\prime} B_{\mu}\right) E_{R, k} \\
& -\sum_{k, k^{\prime}=1}^{3}\left[\sum_{i=1}^{3}\left(\lambda_{k k^{\prime}}^{u} \overline{Q_{L, k}^{i}}\left(i \tau_{2}\right) \phi^{*} U_{R, k^{\prime}}^{i}+\lambda_{k k^{\prime}}^{d} \bar{Q}_{L, k}^{i} \phi D_{R, k^{\prime}}^{i}\right)+\lambda_{k k^{\prime}}^{l} \bar{L}_{L, k} \phi E_{R, k^{\prime}}+h . c .\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}= & \sum_{k=1}^{3} \sum_{i, j=1}^{3} \overline{Q_{L, k}^{i}} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} \frac{\lambda_{a, i j}}{2} G_{\mu}^{a}-g \frac{\tau_{a}}{2} \delta_{i j} W_{\mu}^{a}-g^{\prime} \frac{1}{6} \delta_{i j} B_{\mu}\right) Q_{L, k}^{j} \\
& +\sum_{k=1}^{3} \sum_{i, j=1}^{3} \overline{U_{R, k}^{i}} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} \frac{\lambda_{a, i j}}{2} G_{\mu}^{a}-g^{\prime} \frac{2}{3} \delta_{i j} B_{\mu}\right) U_{R, k}^{j} \\
& +\sum_{k=1}^{3} \sum_{i, j=1}^{3} \overline{D_{R, k}^{i}} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} \frac{\lambda_{a, i j}}{2} G_{\mu}^{a}+g^{\prime} \frac{1}{3} \delta_{i j} B_{\mu}\right) D_{R, k}^{j} \\
& +\sum_{k=1}^{3} \overline{L_{L, k}} \gamma^{\mu}\left(i \partial_{\mu}-g \frac{\tau_{i}}{2} W_{\mu}^{i}+g^{\prime} \frac{1}{2} B_{\mu}\right) L_{L, k}+\overline{E_{R, k}} \gamma^{\mu}\left(i \partial_{\mu}+g^{\prime} B_{\mu}\right) E_{R, k} \\
& -\sum_{k, k^{\prime}=1}^{3}\left[\sum_{i=1}^{3}\left(\lambda_{k k^{\prime}}^{u} \overline{Q_{L, k}^{i}}\left(i \tau_{2}\right) \phi^{*} U_{R, k^{\prime}}^{i}+\lambda_{k k^{\prime}}^{d} \bar{Q}_{L, k}^{i} \phi D_{R, k^{\prime}}^{i}\right)+\lambda_{k k^{\prime}}^{l} \bar{L}_{L, k} \phi E_{R, k^{\prime}}+h . c .\right]
\end{aligned}
$$

- Invariant under global rotations
$Q_{L, k}^{i} \rightarrow e^{i \alpha_{B} / 3} Q_{L, k}^{i}$
$U_{R, k}^{i} \rightarrow e^{i \alpha_{B} / 3} U_{R, k}^{i}$
$D_{R, k}^{i} \rightarrow e^{i \alpha_{B} / 3} D_{R, k}^{i} \quad L_{L, k} \rightarrow e^{i \alpha_{L_{k}} / 3} L_{L, k}$
$E_{R, k} \rightarrow e^{i \alpha_{L_{k}} / 3} E_{R, k}$

SM Fermion Lagrangian

$$
\begin{aligned}
\mathcal{L}= & \sum_{k=1}^{3} \sum_{i, j=1}^{3} \overline{Q_{L, k}^{i}} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} \frac{\lambda_{a, i j}}{2} G_{\mu}^{a}-g \frac{\tau_{a}}{2} \delta_{i j} W_{\mu}^{a}-g^{\prime} \frac{1}{6} \delta_{i j} B_{\mu}\right) Q_{L, k}^{j} \\
& +\sum_{k=1}^{3} \sum_{i, j=1}^{3} \overline{U_{R, k}^{i}} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} \frac{\lambda_{a, i j}}{2} G_{\mu}^{a}-g^{\prime} \frac{2}{3} \delta_{i j} B_{\mu}\right) U_{R, k}^{j} \\
& +\sum_{k=1}^{3} \sum_{i, j=1}^{3} \overline{D_{R, k}^{i}} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} \frac{\lambda_{a, i j}}{2} G_{\mu}^{a}+g^{\prime} \frac{1}{3} \delta_{i j} B_{\mu}\right) D_{R, k}^{j} \\
& +\sum_{k=1}^{3} \overline{L_{L, k}} \gamma^{\mu}\left(i \partial_{\mu}-g \frac{\tau_{i}}{2} W_{\mu}^{i}+g^{\prime} \frac{1}{2} B_{\mu}\right) L_{L, k}+\overline{E_{R, k}} \gamma^{\mu}\left(i \partial_{\mu}+g^{\prime} B_{\mu}\right) E_{R, k} \\
& -\sum_{k, k^{\prime}=1}^{3}\left[\sum_{i=1}^{3}\left(\lambda_{k k^{\prime}}^{u} \overline{Q_{L, k}^{i}}\left(i \tau_{2}\right) \phi^{*} U_{R, k^{\prime}}^{i}+\lambda_{k k^{\prime}}^{d} \bar{Q}_{L, k}^{i} \phi D_{R, k^{\prime}}^{i}\right)+\lambda_{k k^{\prime}}^{l} \bar{L}_{L, k} \phi E_{R, k^{\prime}}+h . c .\right]
\end{aligned}
$$

- Invariant under global rotations

$$
Q_{L, k}^{i} \rightarrow e^{i \alpha_{B} / 3} Q_{L, k}^{i} \quad U_{R, k}^{i} \rightarrow e^{i \alpha_{B} / 3} U_{R, k}^{i} \quad D_{R, k}^{i} \rightarrow e^{i \alpha_{B} / 3} D_{R, k}^{i} \quad L_{L, k} \rightarrow e^{i \alpha_{L_{k}} / 3} L_{L, k} \quad E_{R, k} \rightarrow e^{i \alpha_{L_{k}} / 3} E_{R, k}
$$

\Rightarrow Accidental (\equiv not imposed) global symmetry: $U(1)_{B} \times U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$
\Rightarrow Each lepton flavour, L_{i}, is conserved
\Rightarrow Total lepton number $L=L_{e}+L_{\mu}+L_{\tau}$ is conserved

- A fermion mass can be seen as at a Left-Right transition

$$
m_{f} \bar{\psi} \psi=m_{f} \overline{\psi_{L}} \psi_{R}+\text { h.c. } \quad \text { (this is not } S U(2)_{L} \text { gauge invariant) }
$$

- A fermion mass can be seen as at a Left-Right transition

$$
m_{f} \bar{\psi} \psi=m_{f} \overline{\psi_{L}} \psi_{R}+\text { h.c. } \quad \text { (this is not } S U(2)_{L} \text { gauge invariant) }
$$

- In the Standard Model mass comes from spontaneous symmetry breaking via Yukawa interaction of the left-handed doublet L_{L} with the right-handed singlet E_{R} :

$$
\mathcal{L}_{Y}^{l}=-\lambda_{i j}^{l} \bar{L}_{L i} E_{R j} \phi+\text { h.c. } \quad \phi=\text { the scalar doublet }
$$

- A fermion mass can be seen as at a Left-Right transition

$$
m_{f} \bar{\psi} \psi=m_{f} \overline{\psi_{L}} \psi_{R}+\text { h.c. } \quad \text { (this is not } S U(2)_{L} \text { gauge invariant) }
$$

- In the Standard Model mass comes from spontaneous symmetry breaking via Yukawa interaction of the left-handed doublet L_{L} with the right-handed singlet E_{R} :

$$
\mathcal{L}_{Y}^{l}=-\lambda_{i j}^{l} \bar{L}_{L i} E_{R j} \phi+\text { h.c. } \quad \phi=\text { the scalar doublet }
$$

- After spontaneous symmetry breaking
$\phi \xrightarrow{S S B}\left\{\begin{array}{c}0 \\ \frac{v+h}{\sqrt{2}}\end{array}\right\} \Rightarrow \mathcal{L}_{\text {mass }}^{l}=-\bar{E}_{L} M^{\ell} E_{R}+$ h.c. with $M^{\ell}=\frac{1}{\sqrt{2}} \lambda^{l} v$
- A fermion mass can be seen as at a Left-Right transition

$$
m_{f} \bar{\psi} \psi=m_{f} \overline{\psi_{L}} \psi_{R}+\text { h.c. } \quad \text { (this is not } S U(2)_{L} \text { gauge invariant) }
$$

- In the Standard Model mass comes from spontaneous symmetry breaking via Yukawa interaction of the left-handed doublet L_{L} with the right-handed singlet E_{R} :

$$
\mathcal{L}_{Y}^{l}=-\lambda_{i j}^{l} \bar{L}_{L i} E_{R j} \phi+\text { h.c. } \quad \phi=\text { the scalar doublet }
$$

- After spontaneous symmetry breaking
$\phi \xrightarrow{S S B}\left\{\begin{array}{c}0 \\ \frac{v+h}{\sqrt{2}}\end{array}\right\} \Rightarrow \mathcal{L}_{\text {mass }}^{l}=-\bar{E}_{L} M^{\ell} E_{R}+$ h.c. with $M^{\ell}=\frac{1}{\sqrt{2}} \lambda^{l} v$
In the SM:
- There are no right-handed neutrinos
\Rightarrow No renormalizable (ie dim ≤ 4) gauge-invariant operator for tree level ν mass
- SM gauge invariance \Rightarrow accidental symmetry $U(1)_{\mathrm{B}} \times U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$
\Rightarrow Not possible to generate such term at any order perturbatively
- A fermion mass can be seen as at a Left-Right transition

$$
m_{f} \bar{\psi} \psi=m_{f} \overline{\psi_{L}} \psi_{R}+\text { h.c. } \quad \text { (this is not } S U(2)_{L} \text { gauge invariant) }
$$

- In the Standard Model mass comes from spontaneous symmetry breaking via

Yukawa interaction of the left-handed doublet L_{L} with the right-handed singlet E_{R} :

$$
\mathcal{L}_{Y}^{l}=-\lambda_{i j}^{l} \bar{L}_{L i} E_{R j} \phi+\text { h.c. } \quad \phi=\text { the scalar doublet }
$$

- After spontaneous symmetry breaking
$\phi \xrightarrow{S S B}\left\{\begin{array}{c}0 \\ \frac{v+h}{\sqrt{2}}\end{array}\right\} \Rightarrow \mathcal{L}_{\text {mass }}^{l}=-\bar{E}_{L} M^{\ell} E_{R}+$ h.c. with $M^{\ell}=\frac{1}{\sqrt{2}} \lambda^{l} v$
In the SM:
- There are no right-handed neutrinos
\Rightarrow No renormalizable (ie dim ≤ 4) gauge-invariant operator for tree level ν mass
- SM gauge invariance \Rightarrow accidental symmetry $U(1)_{\mathrm{B}} \times U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$
\Rightarrow Not possible to generate such term at any order perturbatively
In SM ν 's are Strictly Massless \& Lepton Flavours are Strictly Conserved
- We have observed with high (or good) precision:
* Atmospheric $\nu_{\mu} \& \bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
* Accel. $\nu_{\mu} \& \bar{\nu}_{\mu}$ disappear at $L \sim 300 / 800 \mathrm{Km}(\mathrm{K} 2 \mathrm{~K}, ~ T 2 K, ~ M I N O S, ~ N O \nu A)$
* Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300 / 800 \mathrm{Km}(\mathbf{T 2 K}$, MINOS,NO $\nu \mathrm{A})$
* Solar ν_{e} convert to $\nu_{\mu} / \nu_{\tau}(\mathrm{Cl}, \mathrm{Ga}, \mathbf{S K}, \mathbf{S N O}$, Borexino)
* Reactor $\overline{\nu_{e}}$ disappear at $L \sim 200 \mathrm{Km}$ (KamLAND)
* Reactor $\overline{\nu_{e}}$ disappear at $L \sim 1 \mathrm{Km}$ (D-Chooz, Daya Bay, Reno)
- We have observed with high (or good) precision:
* Atmospheric $\nu_{\mu} \& \bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
* Accel. $\nu_{\mu} \& \bar{\nu}_{\mu}$ disappear at $L \sim 300 / 800 \mathrm{Km}(\mathrm{K} 2 \mathrm{~K}, ~ T 2 K, ~ M I N O S, ~ N O \nu A)$
* Some accelerator ν_{μ} appear as ν_{e} at $L \sim 300 / 800 \mathrm{Km}(\mathbf{T 2 K}, \operatorname{MINOS}, \mathrm{NO} \nu \mathrm{A})$
* Solar ν_{e} convert to $\nu_{\mu} / \nu_{\tau}(\mathrm{Cl}, \mathrm{Ga}, \mathbf{S K}, \mathbf{S N O}$, Borexino)
* Reactor $\overline{\nu_{e}}$ disappear at $L \sim 200 \mathrm{Km}$ (KamLAND)
* Reactor $\overline{\nu_{e}}$ disappear at $L \sim 1 \mathrm{Km}$ (D-Chooz, Daya Bay, Reno)

All this implies that L_{α} are violated and There is Physics Beyond SM

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
- Their own antiparticle such as $\gamma, \pi^{0} \ldots$
- Different from their antiparticle such as $K^{0}, \bar{K}^{0} \ldots$
- In the $\mathrm{SM} \nu$ are the only neutral fermions

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
- Their own antiparticle such as $\gamma, \pi^{0} \ldots$
- Different from their antiparticle such as $K^{0}, \bar{K}^{0} \ldots$
- In the $\mathrm{SM} \nu$ are the only neutral fermions
\Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
- Their own antiparticle such as $\gamma, \pi^{0} \ldots$
- Different from their antiparticle such as $K^{0}, \bar{K}^{0} \ldots$
- In the $\mathrm{SM} \nu$ are the only neutral fermions
\Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?
$*$ ANSWER 1: ν different from anti $-\nu \quad \Rightarrow \nu$ is a Dirac fermion (like e)

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
- Their own antiparticle such as $\gamma, \pi^{0} \ldots$
- Different from their antiparticle such as $K^{0}, \bar{K}^{0} \ldots$
- In the $\mathrm{SM} \nu$ are the only neutral fermions
\Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?
* ANSWER 1: ν different from anti- $\nu \quad \Rightarrow \nu$ is a Dirac fermion (like e)
\Rightarrow It is described by a Dirac field $\nu(x)=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
- Their own antiparticle such as $\gamma, \pi^{0} \ldots$
- Different from their antiparticle such as $K^{0}, \bar{K}^{0} \ldots$
- In the $\mathrm{SM} \nu$ are the only neutral fermions
\Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?
* ANSWER 1: ν different from anti- $\nu \quad \Rightarrow \nu$ is a Dirac fermion (like e)
\Rightarrow It is described by a Dirac field $\nu(x)=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
\Rightarrow And the charged conjugate neutrino field \equiv the antineutrino field

$$
\begin{aligned}
\nu^{C}=\mathcal{C} \nu \mathcal{C}^{-1}=\sum_{s, \vec{p}}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]=-C \bar{\nu}^{T} \\
\left(C=i \gamma^{2} \gamma^{0}\right)
\end{aligned}
$$

which contain two sets of creation-annihilation operators

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
- Their own antiparticle such as $\gamma, \pi^{0} \ldots$
- Different from their antiparticle such as $K^{0}, \bar{K}^{0} \ldots$
- In the $\mathrm{SM} \nu$ are the only neutral fermions
\Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?
* ANSWER 1: ν different from anti- $\nu \quad \Rightarrow \nu$ is a Dirac fermion (like e)
\Rightarrow It is described by a Dirac field $\nu(x)=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
\Rightarrow And the charged conjugate neutrino field \equiv the antineutrino field

$$
\nu^{C}=\mathcal{C} \nu \mathcal{C}^{-1}=\sum_{s, \vec{p}}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]=\begin{gathered}
-C \bar{\nu}^{T} \\
\left(C=i \gamma^{2} \gamma^{0}\right)
\end{gathered}
$$

which contain two sets of creation-annihilation operators
$\Rightarrow 4$ chiral fields

$$
\nu_{L}, \nu_{R},\left(\nu_{L}\right)^{C},\left(\nu_{R}\right)^{C} \quad \text { with } \nu=\nu_{L}+\nu_{R} \text { and } \nu^{C}=\left(\nu_{L}\right)^{C}+\left(\nu_{R}\right)^{C}
$$

Dirac versus Majorana Neutrinos

* $\underline{\text { ANSWER 2: }} \nu$ same as anti- $\nu \quad \Rightarrow \nu$ is a Majorana fermion : $\nu_{M}=\nu_{M}^{C}$

Dirac versus Majorana Neutrinos

* $\underline{\text { ANSWER 2: }} \nu$ same as anti- $\nu \quad \Rightarrow \nu$ is a Majorana fermion : $\nu_{M}=\nu_{M}^{C}$

$$
\Rightarrow \nu^{C}=\sum_{s, \vec{p}}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]=\nu=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]
$$

Dirac versus Majorana Neutrinos

* ANSWER 2: ν same as anti $-\nu \quad \Rightarrow \nu$ is a Majorana fermion : $\nu_{M}=\nu_{M}^{C}$
$\Rightarrow \nu^{C}=\sum_{s, \vec{p}}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]=\nu=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
\Rightarrow So we can rewrite the field $\nu_{M}=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
which contains only one set of creation-annihilation operators

Dirac versus Majorana Neutrinos

* ANSWER 2: ν same as anti $-\nu \quad \Rightarrow \nu$ is a Majorana fermion : $\nu_{M}=\nu_{M}^{C}$
$\Rightarrow \nu^{C}=\sum_{s, \vec{p}}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]=\nu=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
\Rightarrow So we can rewrite the field $\nu_{M}=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
which contains only one set of creation-annihilation operators
\Rightarrow A Majorana particle can be described with only 2 independent chiral fields:
ν_{L} and $\left(\nu_{L}\right)^{C} \quad$ and the other two are $\quad \nu_{R}=\left(\nu_{L}\right)^{C} \quad\left(\nu_{R}\right)^{C}=\nu_{L}$

Dirac versus Majorana Neutrinos

* ANSWER 2: ν same as anti- $\nu \quad \Rightarrow \nu$ is a Majorana fermion : $\nu_{M}=\nu_{M}^{C}$
$\Rightarrow \nu^{C}=\sum_{s, \vec{p}}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]=\nu=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
\Rightarrow So we can rewrite the field $\nu_{M}=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
which contains only one set of creation-annihilation operators
\Rightarrow A Majorana particle can be described with only 2 independent chiral fields: ν_{L} and $\left(\nu_{L}\right)^{C} \quad$ and the other two are $\quad \nu_{R}=\left(\nu_{L}\right)^{C} \quad\left(\nu_{R}\right)^{C}=\nu_{L}$
- In the SM the interaction term for neutrinos

$$
\mathcal{L}_{i n t}=\frac{i g}{\sqrt{2}}\left[\left(\bar{l}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}\right) W_{\mu}^{-}+\left(\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} l_{\alpha}\right) W_{\mu}^{+}\right]+\frac{i g}{\sqrt{2} \cos \theta_{W}}\left(\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}\right) Z_{\mu}
$$

Only involves two chiral fields $\quad \mathcal{P}_{L} \nu=\nu_{L} \quad$ and $\quad \bar{\nu} \mathcal{P}_{R}=\left(\nu_{L}\right)^{C^{T}} C^{\dagger}$

Dirac versus Majorana Neutrinos

* $\underline{\text { ANSWER 2: }} \nu$ same as anti- $\nu \quad \Rightarrow \nu$ is a Majorana fermion : $\nu_{M}=\nu_{M}^{C}$
$\Rightarrow \nu^{C}=\sum_{s, \vec{p}}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]=\nu=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
\Rightarrow So we can rewrite the field $\nu_{M}=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
which contains only one set of creation-annihilation operators
\Rightarrow A Majorana particle can be described with only 2 independent chiral fields: ν_{L} and $\left(\nu_{L}\right)^{C} \quad$ and the other two are $\quad \nu_{R}=\left(\nu_{L}\right)^{C} \quad\left(\nu_{R}\right)^{C}=\nu_{L}$
- In the SM the interaction term for neutrinos

$$
\mathcal{L}_{i n t}=\frac{i g}{\sqrt{2}}\left[\left(\bar{l}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}\right) W_{\mu}^{-}+\left(\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} l_{\alpha}\right) W_{\mu}^{+}\right]+\frac{i g}{\sqrt{2} \cos \theta_{W}}\left(\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}\right) Z_{\mu}
$$

Only involves two chiral fields $\quad \mathcal{P}_{L} \nu=\nu_{L} \quad$ and $\quad \bar{\nu} \mathcal{P}_{R}=\left(\nu_{L}\right)^{C^{T}} C^{\dagger}$
\Rightarrow Weak interaction cannot distinguish if neutrinos are Dirac or Majorana

Dirac versus Majorana Neutrinos

* $\underline{\text { ANSWER 2: }} \nu$ same as anti- $\nu \quad \Rightarrow \nu$ is a Majorana fermion : $\nu_{M}=\nu_{M}^{C}$
$\Rightarrow \nu^{C}=\sum_{s, \vec{p}}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]=\nu=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+b_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
\Rightarrow So we can rewrite the field $\nu_{M}=\sum_{s, \vec{p}}\left[a_{s}(\vec{p}) u_{s}(\vec{p}) e^{-i p x}+a_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{i p x}\right]$
which contains only one set of creation-annihilation operators
\Rightarrow A Majorana particle can be described with only 2 independent chiral fields:
ν_{L} and $\left(\nu_{L}\right)^{C} \quad$ and the other two are $\quad \nu_{R}=\left(\nu_{L}\right)^{C} \quad\left(\nu_{R}\right)^{C}=\nu_{L}$
- In the SM the interaction term for neutrinos

$$
\mathcal{L}_{i n t}=\frac{i g}{\sqrt{2}}\left[\left(\bar{l}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}\right) W_{\mu}^{-}+\left(\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} l_{\alpha}\right) W_{\mu}^{+}\right]+\frac{i g}{\sqrt{2} \cos \theta_{W}}\left(\bar{\nu}_{\alpha} \gamma_{\mu} \mathcal{P}_{L} \nu_{\alpha}\right) Z_{\mu}
$$

Only involves two chiral fields $\quad \mathcal{P}_{L} \nu=\nu_{L} \quad$ and $\quad \bar{\nu} \mathcal{P}_{R}=\left(\nu_{L}\right)^{C^{T}} C^{\dagger}$
\Rightarrow Weak interaction cannot distinguish if neutrinos are Dirac or Majorana
The difference arises when including a neutrino mass

Massive Neutrinos

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_{f}}=-m_{f} \overline{\psi_{L}} \psi_{R}+$ h.c.

Adding ν Mass: Dirac Mass

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_{f}}=-m_{f} \overline{\psi_{L}} \psi_{R}+$ h.c.
- One introduces ν_{R} which can couple to the lepton doublet by Yukawa interaction

$$
\mathcal{L}_{Y}^{(\nu)}=-\lambda_{i j}^{\nu} \overline{\nu_{R i}} L_{L j} \tilde{\phi}^{\dagger}+\text { h.c. } \quad\left(\widetilde{\phi}=i \tau_{2} \phi^{*}\right)
$$

Adding ν Mass: Dirac Mass

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_{f}}=-m_{f} \overline{\psi_{L}} \psi_{R}+$ h.c.
- One introduces ν_{R} which can couple to the lepton doublet by Yukawa interaction

$$
\mathcal{L}_{Y}^{(\nu)}=-\lambda_{i j}^{\nu} \overline{\nu_{R i}} L_{L j} \widetilde{\phi}^{\dagger}+\text { h.c. } \quad\left(\widetilde{\phi}=i \tau_{2} \phi^{*}\right)
$$

- Under spontaneous symmetry-breaking $\mathcal{L}_{Y}^{(\nu)} \Rightarrow \mathcal{L}_{\text {mass }}^{(\text {Dirac })}$

$$
\mathcal{L}_{\text {mass }}^{(\text {Dirac) }}=-\overline{\nu_{R}} M_{D}^{\nu} \nu_{L}+\text { h.c. } \equiv-\frac{1}{2}\left(\bar{\nu}_{R} M_{D}^{\nu} \nu_{L}+\overline{\left(\nu_{L}\right)^{c}} M_{D}^{\nu T}\left(\nu_{R}\right)^{c}\right)+\text { h.c. } \equiv-\sum_{k} m_{k} \bar{\nu}_{k}^{D} \nu_{k}^{D}
$$

$$
M_{D}^{\nu}=\frac{1}{\sqrt{2}} \lambda^{\nu} v=\text { Dirac mass for neutrinos } \quad V_{R}^{\nu \dagger} M_{D} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)
$$

Adding ν Mass: Dirac Mass

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_{f}}=-m_{f} \overline{\psi_{L}} \psi_{R}+$ h.c.
- One introduces ν_{R} which can couple to the lepton doublet by Yukawa interaction

$$
\mathcal{L}_{Y}^{(\nu)}=-\lambda_{i j}^{\nu} \overline{\nu_{R i}} L_{L j} \widetilde{\phi}^{\dagger}+\text { h.c. } \quad\left(\widetilde{\phi}=i \tau_{2} \phi^{*}\right)
$$

- Under spontaneous symmetry-breaking $\mathcal{L}_{Y}^{(\nu)} \Rightarrow \mathcal{L}_{\text {mass }}^{(\text {Dirac })}$

$$
\mathcal{L}_{\text {mass }}^{(\text {Dirac })}=-\overline{\nu_{R}} M_{D}^{\nu} \nu_{L}+\text { h.c. } \equiv-\frac{1}{2}\left(\bar{\nu}_{R} M_{D}^{\nu} \nu_{L}+\overline{\left(\nu_{L}\right)^{c}} M_{D}^{\nu T}\left(\nu_{R}\right)^{c}\right)+\text { h.c. } \equiv-\sum_{k} m_{k} \bar{\nu}_{k}^{D} \nu_{k}^{D}
$$

$$
M_{D}^{\nu}=\frac{1}{\sqrt{2}} \lambda^{\nu} v=\text { Dirac mass for neutrinos } \quad V_{R}^{\nu \dagger} M_{D} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)
$$

\Rightarrow The eigenstates of M_{D}^{ν} are Dirac fermions (same as quarks and charged leptons)

$$
\nu^{D}=V^{\nu \dagger} \nu_{L}+V_{R}^{\nu^{\dagger}} \nu_{R}
$$

Adding ν Mass: Dirac Mass

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_{f}}=-m_{f} \overline{\psi_{L}} \psi_{R}+$ h.c.
- One introduces ν_{R} which can couple to the lepton doublet by Yukawa interaction

$$
\mathcal{L}_{Y}^{(\nu)}=-\lambda_{i j}^{\nu} \overline{\nu_{R i}} L_{L j} \widetilde{\phi}^{\dagger}+\text { h.c. } \quad\left(\widetilde{\phi}=i \tau_{2} \phi^{*}\right)
$$

- Under spontaneous symmetry-breaking $\mathcal{L}_{Y}^{(\nu)} \Rightarrow \mathcal{L}_{\text {mass }}^{(\text {Dirac })}$

$$
\mathcal{L}_{\text {mass }}^{(\text {Dirac })}=-\overline{\nu_{R}} M_{D}^{\nu} \nu_{L}+\text { h.c. } \equiv-\frac{1}{2}\left(\bar{\nu}_{R} M_{D}^{\nu} \nu_{L}+\overline{\left(\nu_{L}\right)^{c}} M_{D}^{\nu T}\left(\nu_{R}\right)^{c}\right)+\text { h.c. } \equiv-\sum_{k} m_{k} \bar{\nu}_{k}^{D} \nu_{k}^{D}
$$

$$
M_{D}^{\nu}=\frac{1}{\sqrt{2}} \lambda^{\nu} v=\text { Dirac mass for neutrinos } \quad V_{R}^{\nu \dagger} M_{D} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)
$$

\Rightarrow The eigenstates of M_{D}^{ν} are Dirac fermions (same as quarks and charged leptons)

$$
\nu^{D}=V^{\nu \dagger} \nu_{L}+V_{R}^{\nu^{\dagger}} \nu_{R}
$$

- $\mathcal{L}_{\text {mass }}^{(\text {Dirac })}$ involves the four chiral fields $\nu_{L}, \nu_{R},\left(\nu_{L}\right)^{C},\left(\nu_{R}\right)^{C}$

Adding ν Mass: Dirac Mass

- A fermion mass is a Left-Right operator : $\mathcal{L}_{m_{f}}=-m_{f} \overline{\psi_{L}} \psi_{R}+$ h.c.
- One introduces ν_{R} which can couple to the lepton doublet by Yukawa interaction

$$
\mathcal{L}_{Y}^{(\nu)}=-\lambda_{i j}^{\nu} \overline{\nu_{R i}} L_{L j} \widetilde{\phi}^{\dagger}+\text { h.c. } \quad\left(\widetilde{\phi}=i \tau_{2} \phi^{*}\right)
$$

- Under spontaneous symmetry-breaking $\mathcal{L}_{Y}^{(\nu)} \Rightarrow \mathcal{L}_{\text {mass }}^{(\text {Dirac })}$

$$
\mathcal{L}_{\text {mass }}^{(\text {Dirac })}=-\overline{\nu_{R}} M_{D}^{\nu} \nu_{L}+\text { h.c. } \equiv-\frac{1}{2}\left(\bar{\nu}_{R} M_{D}^{\nu} \nu_{L}+\overline{\left(\nu_{L}\right)^{c}} M_{D}^{\nu T}\left(\nu_{R}\right)^{c}\right)+\text { h.c. } \equiv-\sum_{k} m_{k} \bar{\nu}_{k}^{D} \nu_{k}^{D}
$$

$$
M_{D}^{\nu}=\frac{1}{\sqrt{2}} \lambda^{\nu} v=\text { Dirac mass for neutrinos } \quad V_{R}^{\nu \dagger} M_{D} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)
$$

\Rightarrow The eigenstates of M_{D}^{ν} are Dirac fermions (same as quarks and charged leptons)

$$
\nu^{D}=V^{\nu \dagger} \nu_{L}+V_{R}^{\nu^{\dagger}} \nu_{R}
$$

- $\mathcal{L}_{\text {mass }}^{(\text {Dirac })}$ involves the four chiral fields $\nu_{L}, \nu_{R},\left(\nu_{L}\right)^{C},\left(\nu_{R}\right)^{C}$
\Rightarrow Total Lepton number is conserved by construction (not accidentally):

$$
\left.\begin{array}{l}
U(1)_{L}: \quad \nu \rightarrow e^{i \alpha} \nu \quad \text { and } \quad \bar{\nu} \rightarrow e^{-i \alpha} \bar{\nu} \\
U(1)_{L}: \quad \nu^{C} \rightarrow e^{-i \alpha} \nu^{C} \quad \text { and } \overline{\nu^{C}} \rightarrow e^{i \alpha} \overline{\nu^{C}}
\end{array}\right\} \Rightarrow \mathcal{L}_{\text {mass }}^{(\text {Dirac })} \rightarrow \mathcal{L}_{\text {mass }}^{(\text {Dirac })}
$$

Adding ν Mass: Majorana Mass

- One does not introduce ν_{R} but uses that the field $\left(\nu_{L}\right)^{c}$ is right-handed, so that one can write a Lorentz-invariant mass term

$$
\mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}=-\frac{1}{2} \overline{\nu_{L}^{c}} M_{M}^{\nu} \nu_{L}+\text { h.c. } \equiv-\frac{1}{2} \sum_{k} m_{k} \bar{\nu}_{i}^{M} \nu_{i}^{M}
$$

Adding ν Mass: Majorana Mass

- One does not introduce ν_{R} but uses that the field $\left(\nu_{L}\right)^{c}$ is right-handed, so that one can write a Lorentz-invariant mass term

$$
\mathcal{L}_{\mathrm{mass}}^{(\mathrm{Maj})}=-\frac{1}{2} \overline{\nu_{L}^{c}} M_{M}^{\nu} \nu_{L}+\text { h.c. } \equiv-\frac{1}{2} \sum_{k} m_{k} \bar{\nu}_{i}^{M} \nu_{i}^{M}
$$

$M_{M}^{\nu}=$ Majorana mass for ν^{\prime} 's is symmetric $\quad V^{\nu T} M_{M} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$
\Rightarrow The eigenstates of M_{M}^{ν} are Majorana particles

$$
\nu^{M}=V^{\nu \dagger} \nu_{L}+\left(V^{\nu \dagger} \nu_{L}\right)^{c} \quad\left(\text { verify } \nu^{M^{c}}{ }_{i}^{c}=\nu_{i}^{M}\right)
$$

Adding ν Mass: Majorana Mass

- One does not introduce ν_{R} but uses that the field $\left(\nu_{L}\right)^{c}$ is right-handed, so that one can write a Lorentz-invariant mass term

$$
\mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}=-\frac{1}{2} \overline{\nu_{L}^{c}} M_{M}^{\nu} \nu_{L}+\text { h.c. } \equiv-\frac{1}{2} \sum_{k} m_{k} \bar{\nu}_{i}^{M} \nu_{i}^{M}
$$

$M_{M}^{\nu}=$ Majorana mass for ν^{\prime} 's is symmetric $\quad V^{\nu T} M_{M} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$
\Rightarrow The eigenstates of M_{M}^{ν} are Majorana particles

$$
\nu^{M}=V^{\nu \dagger} \nu_{L}+\left(V^{\nu \dagger} \nu_{L}\right)^{c} \quad\left(\text { verify } \nu^{M}{ }_{i}^{c}=\nu_{i}^{M}\right)
$$

\Rightarrow But $S U(2)_{L}$ gauge inv is broken $\Rightarrow \mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}$ not possible at tree-level in the SM

Adding ν Mass: Majorana Mass

- One does not introduce ν_{R} but uses that the field $\left(\nu_{L}\right)^{c}$ is right-handed, so that one can write a Lorentz-invariant mass term

$$
\mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}=-\frac{1}{2} \overline{\nu_{L}^{c}} M_{M}^{\nu} \nu_{L}+\text { h.c. } \equiv-\frac{1}{2} \sum_{k} m_{k} \bar{\nu}_{i}^{M} \nu_{i}^{M}
$$

$M_{M}^{\nu}=$ Majorana mass for ν^{\prime} s is symmetric $\quad V^{\nu T} M_{M} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$
\Rightarrow The eigenstates of M_{M}^{ν} are Majorana particles

$$
\nu^{M}=V^{\nu \dagger} \nu_{L}+\left(V^{\nu \dagger} \nu_{L}\right)^{c}\left(\text { verify } \nu_{i}^{M^{c}}=\nu_{i}^{M}\right)
$$

\Rightarrow But $S U(2)_{L}$ gauge inv is broken $\Rightarrow \mathcal{L}_{\text {mass }}^{(\text {Maj })}$ not possible at tree-level in the SM

- Moreover under any $U(1)$ symmetry with $U(1): \nu \rightarrow e^{i \alpha} \nu$
$\Rightarrow \nu^{c} \rightarrow e^{-i \alpha} \nu^{c} \quad$ and $\quad \bar{\nu} \rightarrow e^{-i \alpha} \bar{\nu} \quad$ so $\quad \overline{\nu^{c}} \rightarrow e^{i \alpha} \overline{\nu^{c}} \Rightarrow \mathcal{L}_{\text {mass }}^{(\mathrm{Maj})} \rightarrow e^{2 i \alpha} \mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}$
$\mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}$ breaks $U(1) \Rightarrow$ only possible for particles without electric charge

Adding ν Mass: Majorana Mass

- One does not introduce ν_{R} but uses that the field $\left(\nu_{L}\right)^{c}$ is right-handed, so that one can write a Lorentz-invariant mass term

$$
\mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}=-\frac{1}{2} \overline{\nu_{L}^{c}} M_{M}^{\nu} \nu_{L}+\text { h.c. } \equiv-\frac{1}{2} \sum_{k} m_{k} \bar{\nu}_{i}^{M} \nu_{i}^{M}
$$

$M_{M}^{\nu}=$ Majorana mass for ν^{\prime} 's is symmetric $\quad V^{\nu T} M_{M} V^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$
\Rightarrow The eigenstates of M_{M}^{ν} are Majorana particles

$$
\nu^{M}=V^{\nu \dagger} \nu_{L}+\left(V^{\nu \dagger} \nu_{L}\right)^{c} \quad\left(\text { verify } \nu_{i}^{M^{c}}=\nu_{i}^{M}\right)
$$

\Rightarrow But $S U(2)_{L}$ gauge inv is broken $\Rightarrow \mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}$ not possible at tree-level in the SM

- Moreover under any $U(1)$ symmetry with $U(1): \nu \rightarrow e^{i \alpha} \nu$
$\Rightarrow \nu^{c} \rightarrow e^{-i \alpha} \nu^{c} \quad$ and $\quad \bar{\nu} \rightarrow e^{-i \alpha} \bar{\nu} \quad$ so $\quad \overline{\nu^{c}} \rightarrow e^{i \alpha} \overline{\nu^{c}} \Rightarrow \mathcal{L}_{\text {mass }}^{(\mathrm{Maj})} \rightarrow e^{2 i \alpha} \mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}$
$\mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}$ breaks $U(1) \Rightarrow$ only possible for particles without electric charge
\Rightarrow Breaks Total Lepton Number $\Rightarrow \mathcal{L}_{\text {mass }}^{(\mathrm{Maj})}$ not generated at any order in the SM

ν Mass \Rightarrow Lepton Mixing

- CC and mass for 3 charged leptons ℓ_{i} and N neutrinos in weak basis $\nu^{W} \equiv$
$\mathcal{L}_{C C}+\mathcal{L}_{M}=-\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L, i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+}-\sum_{i, j=1}^{3} \overline{\ell_{L, i}^{W}} M_{\ell i j} \ell_{R, j}^{W}-\frac{1}{2} \sum_{i, j=1}^{N} \overline{\nu_{i}^{c W}} M_{\nu i j} \nu_{j}^{W}+$ h.c.

ν Mass \Rightarrow Lepton Mixing

- CC and mass for 3 charged leptons ℓ_{i} and N neutrinos in weak basis $\nu^{W} \equiv$ $\mathcal{L}_{C C}+\mathcal{L}_{M}=-\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L, i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+}-\sum_{i, j=1}^{3} \overline{\ell_{L, i}^{W}} M_{\ell i j} \ell_{R, j}^{W}-\frac{1}{2} \sum_{i, j=1}^{N} \overline{\nu_{i}^{c W}} M_{\nu i j} \nu_{j}^{W}+$ h.c.
- Change to mass basis: $\quad \ell_{L, i}^{W}=V_{L i j}^{\ell} \ell_{L, j} \quad \ell_{R, i}^{W}=V_{R i j}^{\ell} \ell_{R, j} \quad \nu_{i}^{W}=V_{i j}^{\nu} \nu_{j}$
$V_{L}^{\ell^{\dagger}} M_{\ell} V_{R}^{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)$
$V_{L, R}^{\ell} \equiv$ Unitary 3×3 matrices
$V^{\nu T} M_{\nu} V^{\nu}=\operatorname{diag}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, \ldots, m_{N}^{2}\right)$
$V^{\nu} \equiv$ Unitary $N \times N$ matrix.

ν Mass \Rightarrow Lepton Mixing

- CC and mass for 3 charged leptons ℓ_{i} and N neutrinos in weak basis $\nu^{W} \equiv$
$\nu_{L, \tau}$
$\left(\nu_{R, 1}\right)^{C}$ $\mathcal{L}_{C C}+\mathcal{L}_{M}=-\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L, i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+}-\sum_{i, j=1}^{3} \overline{\ell_{L, i}^{W}} M_{\ell i j} \ell_{R, j}^{W}-\frac{1}{2} \sum_{i, j=1}^{N} \overline{\nu_{i}^{c W}} M_{\nu i j} \nu_{j}^{W}+$ h.c.
- Change to mass basis : $\quad \ell_{L, i}^{W}=V_{L i j}^{\ell} \ell_{L, j} \quad \ell_{R, i}^{W}=V_{R i j}^{\ell} \ell_{R, j} \quad \nu_{i}^{W}=V_{i j}^{\nu} \nu_{j}$

$$
V_{L}^{\ell \dagger} M_{\ell} V_{R}^{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) \quad V^{\nu T} M_{\nu} V^{\nu}=\operatorname{diag}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, \ldots, m_{N}^{2}\right)
$$

$$
V_{L, R}^{\ell} \equiv \text { Unitary } 3 \times 3 \text { matrices } \quad V^{\nu} \equiv \text { Unitary } N \times N \text { matrix. }
$$

- The charged current in the mass basis: $\mathcal{L}_{C C}=-\frac{g}{\sqrt{2}} \overline{\ell_{L}^{i}} \gamma^{\mu} U_{\mathrm{LEP}}^{i j} \nu_{j} W_{\mu}^{+}$

ν Mass \Rightarrow Lepton Mixing

- CC and mass for 3 charged leptons ℓ_{i} and N neutrinos in weak basis $\nu^{W} \equiv$
$\nu_{L, \tau}$
$\left(\nu_{R, 1}\right) C$
$\left(\nu_{R, 1}\right)^{C}$ $\mathcal{L}_{C C}+\mathcal{L}_{M}=-\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L, i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+}-\sum_{i, j=1}^{3} \overline{\ell_{L, i}^{W}} M_{\ell i j} \ell_{R, j}^{W}-\frac{1}{2} \sum_{i, j=1}^{N} \overline{\nu_{i}^{c W}} M_{\nu i j} \nu_{j}^{W}+$ h.c.
- Change to mass basis : $\quad \ell_{L, i}^{W}=V_{L i j}^{\ell} \ell_{L, j} \quad \ell_{R, i}^{W}=V_{R i j}^{\ell} \ell_{R, j} \quad \nu_{i}^{W}=V_{i j}^{\nu} \nu_{j}$

$$
\begin{array}{ll}
V_{L}^{\ell^{\dagger}} M_{\ell} V_{R}^{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) & V^{\nu T} M_{\nu} V^{\nu}=\operatorname{diag}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, \ldots, m_{N}^{2}\right) \\
V_{L, R}^{\ell} \equiv \text { Unitary } 3 \times 3 \text { matrices } & V^{\nu} \equiv \text { Unitary } N \times N \text { matrix. }
\end{array}
$$

- The charged current in the mass basis: $\mathcal{L}_{C C}=-\frac{g}{\sqrt{2}} \overline{\ell_{L}^{i}} \gamma^{\mu} U_{\mathrm{LEP}}^{i j} \nu_{j} W_{\mu}^{+}$
- $U_{\mathrm{LEP}} \equiv 3 \times N$ matrix $U_{\mathrm{LEP}} U_{\mathrm{LEP}}^{\dagger}=I_{3 \times 3}$ but in general $U_{\mathrm{LEP}}^{\dagger} U_{\mathrm{LEP}} \neq I_{N \times N}$

$$
U_{\mathrm{LEP}}^{i j}=\sum_{k=1}^{3} P_{i i}^{\ell} V_{L}^{\ell^{\dagger} \dagger^{i k}} V^{\nu k j} P_{j j}^{\nu}
$$

Lepton Mixing

$U_{\mathrm{LEP}} \equiv 3 \times N$ matrix $\quad U_{\mathrm{LEP}}^{i j}=\sum_{k=1}^{3} P_{i i}^{\ell} V_{L}^{\ell^{\dagger}{ }^{i k}} V^{\nu k j} P_{j j}^{\nu}$

Lepton Mixing

$U_{\mathrm{LEP}} \equiv 3 \times N$ matrix $\quad U_{\mathrm{LEP}}^{i j}=\sum_{k=1}^{3} P_{i i}^{\ell} V_{L}^{\ell^{\dagger}{ }^{i k}} V^{\nu k j} P_{j j}^{\nu}$

- $P_{i i}^{\ell} \supset 3$ phases absorbed in l_{i}
- $P_{k k}^{\nu} \supset \mathrm{N}-1$ phases absorbed in ν_{i} (only possible if ν_{i} is Dirac)

Lepton Mixing

$U_{\mathrm{LEP}} \equiv 3 \times N$ matrix $\quad U_{\mathrm{LEP}}^{i j}=\sum_{k=1}^{3} P_{i i}^{\ell} V_{L}^{\ell \ell^{i i k}} V^{\nu k j} P_{j j}^{\nu}$

- $P_{i i}^{\ell} \supset 3$ phases absorbed in l_{i}
- $P_{k k}^{\nu} \supset \mathrm{N}-1$ phases absorbed in ν_{i} (only possible if ν_{i} is Dirac)
\Rightarrow For $N=3+s: \quad U_{\text {LEP }} \supset 3(1+s)$ angles $+(2 s+1)$ Dirac phases $+(s+2)$ Maj phases

Lepton Mixing

$U_{\mathrm{LEP}} \equiv 3 \times N$ matrix

$$
U_{\mathrm{LEP}}^{i j}=\sum_{k=1}^{3} P_{i i}^{\ell} V_{L}^{\ell \dagger^{\dagger i k}} V^{\nu k j} P_{j j}^{\nu}
$$

- $P_{i i}^{\ell} \supset 3$ phases absorbed in l_{i}
- $P_{k k}^{\nu} \supset \mathrm{N}-1$ phases absorbed in ν_{i} (only possible if ν_{i} is Dirac)
\Rightarrow For $N=3+s: \quad U_{\text {LEP }} \supset 3(1+s)$ angles $+(2 s+1)$ Dirac phases $+(s+2)$ Maj phases
- For example for 3 Dirac $\nu: 3$ Mixing angles +1 Dirac Phase

$$
U_{\mathrm{LEP}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{-i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{21} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Lepton Mixing

$U_{\mathrm{LEP}} \equiv 3 \times N$ matrix

$$
U_{\mathrm{LEP}}^{i j}=\sum_{k=1}^{3} P_{i i}^{\ell} V_{L}^{\ell \dagger^{i k}} V^{\nu k j} P_{j j}^{\nu}
$$

- $P_{i i}^{\ell} \supset 3$ phases absorbed in l_{i}
- $P_{k k}^{\nu} \supset \mathrm{N}-1$ phases absorbed in ν_{i} (only possible if ν_{i} is Dirac)
\Rightarrow For $N=3+s: U_{\text {LEP }} \supset 3(1+s)$ angles $+(2 s+1)$ Dirac phases $+(s+2)$ Maj phases
- For example for 3 Dirac $\nu: 3$ Mixing angles + 1 Dirac Phase

$$
U_{\mathrm{LEP}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{-i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{21} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- For 3 Majorana $\nu: 3$ Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$
U_{\mathrm{LEP}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{-i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{21} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \phi_{2}} & 0 \\
0 & 0 & e^{i \phi_{3}}
\end{array}\right)
$$

Hffects of V Mass

- Neutrino masses can have kinematic effects

Effects of ν Mass

- Neutrino masses can have kinematic effects
- Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

$$
\frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{i j}\left(U_{L E P}^{i j} \overline{\ell^{i}} \gamma^{\mu} L \nu^{j}+U_{C K M}^{i j} \overline{U^{i}} \gamma^{\mu} L D^{j}\right)+\text { h.c. }
$$

Effects of ν Mass

- Neutrino masses can have kinematic effects
- Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

$$
\frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{i j}\left(U_{L E P}^{i j} \overline{\ell^{i}} \gamma^{\mu} L \nu^{j}+U_{C K M}^{i j} \overline{U^{i}} \gamma^{\mu} L D^{j}\right)+\text { h.c. }
$$

- SM gauge invariance does not imply $U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$ symmetry

Effects of ν Mass

- Neutrino masses can have kinematic effects
- Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

$$
\frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{i j}\left(U_{L E P}^{i j} \overline{\ell^{i}} \gamma^{\mu} L \nu^{j}+U_{C K M}^{i j} \overline{U^{i}} \gamma^{\mu} L D^{j}\right)+\text { h.c. }
$$

- SM gauge invariance does not imply $U(1)_{L_{e}} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$ symmetry
- Total lepton number $U(1)_{L}=U(1)_{L e+L_{\mu}+L_{\tau}}$ can be or cannot be still a symmetry depending on whether neutrinos are Dirac or Majorana
- Fermi proposed a kinematic search of ν_{e} mass from beta spectra in ${ }^{3} H$ beta decay

$$
{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+e+\bar{\nu}_{e}
$$

- For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$
K(T) \equiv \sqrt{\frac{d N}{d T} \frac{1}{C p E F(E)}} \propto \sqrt{(Q-T) \sqrt{(Q-T)^{2}-m_{\nu_{e}}^{2}}}
$$

$T=E_{e}-m_{e}, Q=$ maximum kinetic energy, (for ${ }^{3} H$ beta decay $Q=18.6 \mathrm{KeV}$)
Taking into account mixing $m_{\nu_{e}}^{\text {eff }} \equiv \sqrt{\sum m_{\nu_{j}}^{2}\left|U_{e j}\right|^{2}}$

- Fermi proposed a kinematic search of ν_{e} mass from beta spectra in ${ }^{3} H$ beta decay

$$
{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+e+\bar{\nu}_{e}
$$

- For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$
K(T) \equiv \sqrt{\frac{d N}{d T} \frac{1}{C p E F(E)}} \propto \sqrt{(Q-T) \sqrt{(Q-T)^{2}-m_{\nu_{e}}^{2}}}
$$

$T=E_{e}-m_{e}, Q=$ maximum kinetic energy, (for ${ }^{3} H$ beta decay $Q=18.6 \mathrm{KeV}$)
Taking into account mixing $m_{\nu_{e}}^{\mathrm{eff}} \equiv \sqrt{\sum m_{\nu_{j}}^{2}\left|U_{e j}\right|^{2}}$

- $m_{\nu} \neq 0 \Rightarrow$ distortion from the straight-line at the end point of the spectrum

$$
\begin{aligned}
& m_{\nu}=0 \Rightarrow T_{\max }=Q \\
& m_{\nu} \neq 0 \Rightarrow T_{\max }=Q-m_{\nu}
\end{aligned}
$$

- Fermi proposed a kinematic search of ν_{e} mass from beta spectra in ${ }^{3} H$ beta decay

$$
{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+e+\bar{\nu}_{e}
$$

- For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$
K(T) \equiv \sqrt{\frac{d N}{d T} \frac{1}{C p E F(E)}} \propto \sqrt{(Q-T) \sqrt{(Q-T)^{2}-m_{\nu_{e}}^{2}}}
$$

$T=E_{e}-m_{e}, Q=$ maximum kinetic energy, (for ${ }^{3} H$ beta decay $Q=18.6 \mathrm{KeV}$)
Taking into account mixing $m_{\nu_{e}}^{\mathrm{eff}} \equiv \sqrt{\sum m_{\nu_{j}}^{2}\left|U_{e j}\right|^{2}}$

- $m_{\nu} \neq 0 \Rightarrow$ distortion from the straight-line at the end point of the spectrum

$$
\begin{aligned}
& m_{\nu}=0 \Rightarrow T_{\max }=Q \\
& m_{\nu} \neq 0 \Rightarrow T_{\max }=Q-m_{\nu}
\end{aligned}
$$

- At present only a bound: $m_{\nu_{e}}^{\text {eff }}<0.8 \mathrm{eV} \quad$ (at $90 \% \mathrm{CL}$) (Katrin)
- Katrin operating can improve present sensitivity to $m_{\nu_{e}}^{\text {eff }} \sim 0.3 \mathrm{eV}$

Neutrino Mass Scale: Other Channels

Neutrino Mass Scale: Other Channels

"Muon neutrino mass"

- From the two body decay at rest

$$
\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}
$$

- Energy momentum conservation:

$$
\begin{gathered}
m_{\pi}=\sqrt{p_{\mu}^{2}+m_{\mu}^{2}}+\sqrt{p_{\mu}^{2}+m_{\nu}^{2}} \\
m_{\nu}^{2}=m_{\pi}^{2}+m_{\mu}^{2}-2+m_{\mu} \sqrt{p^{2}+m_{\pi}^{2}}
\end{gathered}
$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

$$
m_{\nu_{\mu}}^{e f f} \equiv \sqrt{\sum m_{j}^{2}\left|U_{\mu j}\right|^{2}}<190 \mathrm{KeV}
$$

Neutrino Mass Scale: Other Channels

"Muon neutrino mass"

- From the two body decay at rest

$$
\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}
$$

- Energy momentum conservation:

$$
\begin{gathered}
m_{\pi}=\sqrt{p_{\mu}^{2}+m_{\mu}^{2}}+\sqrt{p_{\mu}^{2}+m_{\nu}^{2}} \\
m_{\nu}^{2}=m_{\pi}^{2}+m_{\mu}^{2}-2+m_{\mu} \sqrt{p^{2}+m_{\pi}^{2}}
\end{gathered}
$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

$$
m_{\nu_{\mu}}^{e f f} \equiv \sqrt{\sum m_{j}^{2}\left|U_{\mu j}\right|^{2}}<190 \mathrm{KeV}
$$

"Tau neutrino mass"

- The τ is much heavier $m_{\tau}=1.776 \mathrm{GeV}$
\Rightarrow Large phase space \Rightarrow difficult precision for m_{ν}
- The best precision is obtained from hadronic final states

$$
\tau \rightarrow n \pi+\nu_{\tau} \quad \text { with } n \geq 3
$$

- Lep I experiments obtain:

$$
m_{\nu_{\tau}}^{\text {eff }} \equiv \sqrt{\sum m_{j}^{2}\left|U_{\tau j}\right|^{2}}<18.2 \mathrm{MeV}
$$

Neutrino Mass Scale: Other Channels

"Muon neutrino mass"

- From the two body decay at rest

$$
\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}
$$

- Energy momentum conservation:

$$
\begin{gathered}
m_{\pi}=\sqrt{p_{\mu}^{2}+m_{\mu}^{2}}+\sqrt{p_{\mu}^{2}+m_{\nu}^{2}} \\
m_{\nu}^{2}=m_{\pi}^{2}+m_{\mu}^{2}-2+m_{\mu} \sqrt{p^{2}+m_{\pi}^{2}}
\end{gathered}
$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

$$
m_{\nu_{\mu}}^{\text {eff }} \equiv \sqrt{\sum m_{j}^{2}\left|U_{\mu j}\right|^{2}}<190 \mathrm{KeV}
$$

"Tau neutrino mass"

- The τ is much heavier $m_{\tau}=1.776 \mathrm{GeV}$
\Rightarrow Large phase space \Rightarrow difficult precision for m_{ν}
- The best precision is obtained from hadronic final states

$$
\tau \rightarrow n \pi+\nu_{\tau} \quad \text { with } n \geq 3
$$

- Lep I experiments obtain:

$$
m_{\nu_{\tau}}^{e f f} \equiv \sqrt{\sum m_{j}^{2}\left|U_{\tau j}\right|^{2}}<18.2 \mathrm{MeV}
$$

\Rightarrow If mixing angles $U_{e j}$ are not negligible

- Amplitude includes $\left[\bar{e} \gamma^{\mu} L_{\nu_{e}}\right]\left[\bar{e} \gamma^{\mu} L_{\nu_{e}}\right]=\sum_{i j} U_{e i} U_{e j}^{p}\left[\bar{e} \gamma^{\mu} \nu_{i}\right]\left[\bar{e} \gamma^{\mu} \nu_{j}\right]$

Dirac or Majorana? ν-less Double- β Decay

- Amplitude includes $\left[\bar{e} \gamma^{\mu} L \nu_{e}\right]\left[\bar{e} \gamma^{\mu} L \nu_{e}\right]=\sum_{i j} U_{e i} U_{e j}^{p}\left[\bar{e} \gamma^{\mu} \nu_{i}\right]\left[\bar{e} \gamma^{\mu} \nu_{j}\right]$
- If ν_{i} Dirac $\Rightarrow \nu_{i}$ annihilates a neutrino and creates an antineutrino
\Rightarrow no same state \Rightarrow Amplitude $=0$
- If ν_{i} Majorana $\Rightarrow \nu_{i}=\nu_{i}^{c}$ annihilates and creates a neutrino=antineutrino \Rightarrow same state \Rightarrow Amplitude $\propto \widetilde{\nu_{i}\left(\nu_{i}\right)^{T}} \neq 0$

Dirac or Majorana? ν-less Double- β Decay

n

- Amplitude includes $\left[\bar{e} \gamma^{\mu} L \nu_{e}\right]\left[\bar{e} \gamma^{\mu} L \nu_{e}\right]=\sum_{i j} U_{e i} U_{e j}^{p}\left[\bar{e} \gamma^{\mu} \nu_{i}\right]\left[\bar{e} \gamma^{\mu} \nu_{j}\right]$
- If ν_{i} Dirac $\Rightarrow \nu_{i}$ annihilates a neutrino and creates an antineutrino

$$
\Rightarrow \text { no same state } \Rightarrow \text { Amplitude }=0
$$

- If ν_{i} Majorana $\Rightarrow \nu_{i}=\nu_{i}^{c}$ annihilates and creates a neutrino=antineutrino \Rightarrow same state \Rightarrow Amplitude $\propto \widetilde{\nu_{i}\left(\nu_{i}\right)^{T} \neq 0}$
- If Majorana m_{ν} only source of L-violation
\Rightarrow Amplitude of ν-less- $\beta \beta$ decay is proportional to $\left\langle m_{\beta \beta}\right\rangle=\sum_{j} U_{e j}^{2} m_{j}$

Summary I

Summary I

- In the SM:
- Accidental global symmetry: $B \times L_{e} \times L_{\mu} \times L_{\tau} \leftrightarrow m_{\nu} \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu}=0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos

Summary I

- In the SM :
- Accidental global symmetry: $B \times L_{e} \times L_{\mu} \times L_{\tau} \leftrightarrow m_{\nu} \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu}=0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow$ Need to extend SM
\rightarrow different ways of adding m_{ν} to the SM
- breaking total lepton number $\left(L=L_{e}+L_{\mu}+L_{\tau}\right) \rightarrow$ Majorana $\nu: \nu=\nu^{C}$
- conserving total lepton number \rightarrow Dirac $\nu: \nu \neq \nu^{C}$
\rightarrow Lepton Mixing \equiv breaking of $L_{e} \times L_{\mu} \times L_{\tau}$

Summary I

- In the SM:
- Accidental global symmetry: $B \times L_{e} \times L_{\mu} \times L_{\tau} \leftrightarrow m_{\nu} \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu}=0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow$ Need to extend SM
\rightarrow different ways of adding m_{ν} to the SM
- breaking total lepton number $\left(L=L_{e}+L_{\mu}+L_{\tau}\right) \rightarrow$ Majorana $\nu: \nu=\nu^{C}$
- conserving total lepton number \rightarrow Dirac $\nu: \nu \neq \nu^{C}$
\rightarrow Lepton Mixing \equiv breaking of $L_{e} \times L_{\mu} \times L_{\tau}$
- From direct searches of ν-mass: $m_{\nu} \leq \mathcal{O}(\mathrm{eV})$

Summary I

- In the SM:
- Accidental global symmetry: $B \times L_{e} \times L_{\mu} \times L_{\tau} \leftrightarrow m_{\nu} \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu}=0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow$ Need to extend SM
\rightarrow different ways of adding m_{ν} to the SM
- breaking total lepton number $\left(L=L_{e}+L_{\mu}+L_{\tau}\right) \rightarrow$ Majorana $\nu: \nu=\nu^{C}$
- conserving total lepton number \rightarrow Dirac $\nu: \nu \neq \nu^{C}$
\rightarrow Lepton Mixing \equiv breaking of $L_{e} \times L_{\mu} \times L_{\tau}$
- From direct searches of ν-mass: $m_{\nu} \leq \mathcal{O}(e V)$

Question: How to search for $m_{\nu} \ll \mathcal{O}(e V)$?
Answer: Neutrino Oscillations. . . Tomorrow

Light massive ν in Cosmology

Relic $\nu^{\prime} s$: Effects in several cosmological observations at several epochs Mainly via two effects: $\rho_{r}=\left[1+\frac{7}{8} \times\left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\mathrm{eff}}\right] \rho_{\gamma}$ and $\sum_{i} m_{\nu_{i}}$

BUT: Observables also depend on all other cosmo parameters (and assumptions)

Range of Bounds in Λ CDM

Model	Observables	$\Sigma m_{\nu}(\mathrm{eV}) 95 \%$
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT + lowP	≤ 0.72
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT + lowP + lensing	≤ 0.68
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT,TE,EE + lowP+lensing	≤ 0.59
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT,TE,EE + lowP	≤ 0.49
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT + lowP + lensing + BAO + SN + H_{0}	≤ 0.23
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT,TE,EE + lowP+ BAO	≤ 0.17

Example: Cosmological Analysis by Planck

Range of Bounds in Λ CDM

Model	Observables	$\Sigma m_{\nu}(\mathrm{eV}) 95 \%$
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT + lowP	≤ 0.72
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT + lowP + lensing	≤ 0.68
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT,TE,EE + lowP+lensing	≤ 0.59
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT,TE,EE + lowP	≤ 0.49
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT + lowP + lensing + BAO + SN + H_{0}	≤ 0.23
$\Lambda \mathrm{CDM}+m_{\nu}$	Planck TT,TE,EE + lowP+ BAO	≤ 0.17

