

Walter C. Pettus

Neutrinoless Double Beta Decay Experiments

International Neutrino Summer School 8 August 2023

LEGEND

INDIANA UNIVERSITY

REACHING FOR THE HORIZON

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

Nuclear Physics Roadmap

RECOMMENDATION II

The excess of matter over antimatter in the universe is one of the most compelling mysteries in all of science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antiparticles and would have profound implications for our understanding of the matter-antimatter mystery.

We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment.

A ton-scale instrument designed to search for this asyet unseen nuclear decay will provide the most powerful test of the particle-antiparticle nature of neutrinos ever performed. With recent experimental breakthroughs pioneered by U.S. physicists and the availability of deep underground laboratories, we are poised to make a major discovery.

Particle Physics Science Drivers

2014 (the last) P5 report identified five science drivers:

- 1. Use the Higgs Boson as a Tool for Discovery,
- 2. Pursue the Physics Associated with Neutrino Mass,
- 3. Identify the New Physics of Dark Matter,
- 4. Understand Cosmic Acceleration: Dark Energy and Inflation,
- 5. Explore the Unknown: New Particles, Interactions, and Physical Principles.

Reaffirmed by 2021 Snowmass Community Study

Snowmass 2021

Opportunity of Neutrino Mass

Neutrino mass is BSM physics!

- What is the neutrino mass?
- Why is the neutrino mass so much smaller than other fermion masses?
- How much CP violation in lepton sector?
- Other new physics hiding with neutrinos?

ΠΠ

Neutrinoless Double Beta Decay (0vββ)

Searching for theoretical process:

- $(A, Z) \to (A, Z + 2) + 2e^{-1}$
 - Contrast with $(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\bar{v}_e$, observed

 $0\nu\beta\beta$ always implies new physics

- Lepton number violating process ($\Delta L=2$)
- Majorana neutrinos generate $0\nu\beta\beta$
- Majorana neutrinos help explain small observed neutrino masses via see-saw mechanism
- Leptogenesis as ingredient for explaining matter-antimatter asymmetry

 $v_{\rm M}$ X

n

Double-Beta Decay

 Double-beta decay with two neutrinos is the rarest observed weak nuclear process

 $\mathbf{Z} + \mathbf{1}$

F. Avignone et al. Rev. Mod. Phys. 2008

Experimental Backgrounds

 Signal is buried under myriad other backgrounds

INDIANA UNIVERSITY

Menu of Isotopes

- O(50) isotopes are capable of ββ
 - Only directly measured in 9 isotopes

INDIANA UNIVERSITY

- Availability/cost of element
- Suitability of enrichment
- Compatibility with detector technology

8 August 2023

. . .

Double-Beta Decay

 Double-beta decay with two neutrinos is the rarest observed weak nuclear process

 $\mathbf{Z} + \mathbf{1}$

F. Avignone et al. Rev. Mod. Phys. 2008

Neutrinoless Double-Beta Decay

 Neutrinoless double-beta decay is an analogous nuclear process wherein lepton number is violated
ONE DOES NOT SIMPLY

From Half-Life to Neutrino Mass

Half-life of $0v\beta\beta$ related to neutrino mass scale

•
$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M_{0\nu}|^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$$

• $\langle m_{\beta\beta} \rangle = |\Sigma U_{ei}^2 n_i|$

e el

$$U'_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\phi_1} & 0 \\ 0 & 0 & e^{-i\phi_2} \end{pmatrix}$$

n

n

W

 $v_{\rm M}$ X

р

Sensitivity to Neutrino Mass

• Half-life of $0\nu\beta\beta$ related to neutrino mass scale

A. Schubert

10⁻³

10-4

16

10⁻⁴

INDIANA UNIVERSITY

 10^{-1}

8 August 2023

mixing pa

10⁻²

Lightest neutrino mass [eV]

Plus a Dose of Theory

• Half-life of $0\nu\beta\beta$ related to neutrino mass scale

• $(T_{1/2}^{0\nu})^{-1} = G^{0\nu} M_{0\nu}^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$

Double-beta candidate	Q-value (MeV)	Phase space $G_{01}(y^{-1})$	Isotopic abundance (%)	Enrichable by centrifugation
⁴⁸ Ca	4.27226 (404)	6.05×10^{-14}	0.187	No
⁷⁶ Ge	2.03904 (16)	5.77×10^{-15}	7.8	Yes
⁸² Se	2.99512 (201)	2.48×10^{-14}	9.2	Yes
⁹⁶ Zr	3.35037 (289)	5.02×10^{-14}	2.8	No
¹⁰⁰ Mo	3.03440 (17)	3.89×10^{-14}	9.6	Yes
¹¹⁶ Cd	2.81350 (13)	4.08×10^{-14}	7.5	Yes
¹³⁰ Te	2.52697 (23)	3.47×10^{-14}	33.8	Yes
¹³⁶ Xe	2.45783 (37)	3.56×10^{-14}	8.9	Yes
150Nd	3.37138 (20)	1.54×10^{-13}	5.6	No

• also g_A quenching...

Experimental Peak Search

- Experiment sensitivity can largely be reduced to only two parameters, following prescription of Agostini-Benato-Detwiler:
 - Phys. Rev. D 96 (2017) 053001, arXiv:1705.02996
 - Sensitive exposure: *E*
 - Product of active isotope mass and livetime, corrected by efficiency and ROI containment
 - Sensitive background: B
 - Number of background events in ROI divided by sensitive exposure
- Parameters allow relevant statistical quantities to be calculated directly
 - Signal counts: $N_{0\nu\beta\beta} = \frac{\ln 2 \cdot N_A \cdot \mathcal{E}}{m_a \cdot T_{1/2}}$
 - Background counts: $N_{bkg} = \mathcal{B} \cdot \mathcal{E}$

Experimental Sensitivity

Translating to Mass Sensitivity

- Experimental T_{1/2} sensitivity is tradeoff of exposure and background
 - Typically design next-generation improvements in both simultaneously
- Width of mass bands relates to matrix element theory uncertainty

$$T_{1/2} = \frac{\ln 2 \cdot N_A \cdot \mathcal{E}}{m_a \cdot S_{3\sigma}(\mathcal{B} \cdot \mathcal{E})}$$

Experimental Considerations

- Maximize exposure
 - Larger source
 - Higher enrichment*
 - Higher efficiency
- Minimize background
 - Deep underground
 - Material purity
 - Energy resolution
 - Decay Q-value*
 - Background rejection via cuts**

INDIANA UNIVERSITY

Classifying Experiments

- At gross simplification, there are two kinds of detectors:
 - Monolithic
 - Simpler size scaling
 - Self-shielding for lower background
 - Granular
 - Better energy resolution
 - Modularity
- Detectors leverage all basic signal readouts (charge, light, heat)

Contextualizing Experiments

- "Current leaders" have 10²⁵-10²⁶ yr sensitivity
 - CUORE, EXO-200, GERDA, KamLAND-Zen, MAJORANA DEMONSTRATOR
- "Tonne-scale" experiments target 10²⁸ yr sensitivity
 - CUPID, nEXO, LEGEND-1000
- With various other experimental programs targeting intermediate reach, or R&D towards beyond tonne-scale

Current 0vßß Field Context

Experiment	Half-Life Limit (yr)	Exposure (kg*yr)	
MAJORANA DEMONSTRATOR	8.3e25	65	
GERDA [1]	1.8e26	127	
KamLAND-Zen800 [2]	2.3e26	970	
EXO-200 [3]	3.5e25	234	
CUORE [4]	3.2e25	373	

M. Agostini et al. (GERDA Collaboration), PRL **125**, 252502 (2020)
S. Abe et al (KamLAND-Zen Collaboration), PRL **130**, 051801 (2023)
G. Anton et al. (EXO-200 Collaboration), PRL **123**, 161802 (2019)
D. Q. Adams et al. (CUORE Collaboration) PRL **124**, 122501 (2019)

Best-fit values of neutrino oscillation parameters from 2022 PDG [PTEP 2022 083C01 (2022)]

ΠΠ

Too Many Experiments to Discuss

A non-exhaustive, and slightly outdated list

(there's a lot to keep track of)

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
CANDLES	48Ca	305 kg CaF2 crystals - liq. scint	0.3 kg	Operating
CARVEL	48Ca	48CaWO4 crystal scint.	16 kg	R&D
GERDA I	⁷⁶ Ge	Ge diodes in LAr	15 kg	Complete
GERDA II	76Ge	Point contact Ge in active LAr	44 kg	Operating
MAJORANA DEMONSTRATOR	76Ge	Point contact Ge in Lead	30 kg	Operating
LEGEND 200	76Ge	Point contact Ge in active LAr	200 kg	Constructio
LEGEND 1000	76Ge	Point contact Ge in active LAr	1 tonne	R&D
NEMO3	100Mo/82Se	Foils with tracking	6.9 kg/0.9 kg	Complete
SuperNEMO Demonstrator	⁸² Se	Foils with tracking	7 kg	Constructio
SELENA	^{s2} Se	Se CCDs	<1 kg	R&D
NvDEx	⁸² Se	SeF6 high pressure gas TPC	50 kg	R&D
AMoRE	100Mo	CaMoO4 bolometers (+ scint.)	5 kg	Constructio
CUPID	100Mo	Scintillating Bolometers	250 kg	R&D
COBRA	116Cd/130Te	CdZnTe detectors	10 kg	Operating
CUORE-0	130 Te	TeO ₂ Bolometer	11 kg	Complete
CUORE	130Te	TeO ₂ Bolometer	206 kg	Operating
SNO+	130Te	0.3% n#Te in liquid scint.	800 kg	Constructio
SNO+ Phase II	130Te	3% m/Te in liquid scint.	8 tonnes	R&D
KamLAND-Zen 400	¹³⁶ Xe	2.7% in liquid scint.	370 kg	Complete
KamLAND-Zen 800	136Xe	2.7% in liquid scint.	750 kg	Operating
KamLAND2-ZEN	136Xe	2.7% in liquid scint.	~tonne	R&D
EXO-200	¹³⁶ Xe	Xe liquid TPC	160 kg	Complete
nEXO	¹³⁶ Xe	Xe liquid TPC	5 tonnes	R&D
NEXT-WHITE	136Xe	High pressure GXe TPC	~5 kg	Operating
NEXT-100	136Xe	High pressure GXe TPC	100 kg	Constructio
PandaX	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D
DARWIN	¹³⁶ Xe	Xe liquid TPC	3.5 tonnes	R&D
AXEL	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D
DCBA	¹⁵⁰ Nd	Nd foils & tracking chambers	30 kg	R&D
	Contra	Oramina	Constant	

INDIANA UNIVERSITY

KamLAND-Zen

- Builds on successful KamLAND detector and physics program
 - Ultra-clean large-volume liquid scintillator detector
- Inner volume segregated by clean balloon with ¹³⁶Xe dissolved
- Phased program scaling isotope mass and background
 - KamLAND-Zen 400 : first experiment to reach $T_{1/2} > 10^{26} \, \rm yr$ exclusion
 - KamLAND-Zen 800 : current leading singleexperiment sensitivity, $T_{1/2} > 2.3 \times 10^{26}$ yr exclusion
 - KamLAND2-Zen : planned future iteration

KamLAND-Zen 800 Result

- Current experimental campaign began January 2019
 - 750 kg of ¹³⁶Xe (double 400 phase), cleaner material
- Current result, $T_{1/2} > 2.3 \times 10^{26}$ yr exclusion
 - Sensitivity target of $T_{1/2} > 5 \times 10^{26} \text{ yr}$

KamLAND-Zen Future

- Increase loading to 1 tonne ¹³⁶Xe
- Increased energy resolution from new high-QE
 - PMTs with Winston cones and brighter scintillator
- New electronics with longer acquision to suppress (dominant) cosmogenic background Scintillating balloon for surface background
- suppression
- Sensitivity target of $T_{1/2} > 2 \times 10^{27}$ yr

SNO+

Walter C. Pettus

- Builds on successful SNO detector and physics program
 - Liquid scintillator active volume replaces heavy water
 - Tellurium compound dissolved in LS

- >1.3 tonne ¹³⁰Te beginning at 0.5% ^{nat}Te loading
- Water phase 2017-2019, LS fill complete April 2021

SNO+ Results

Partial fill data (COVID-imposed) provided first demonstration of event-by-event direction reconstruction in large scale LS detector

Future LS-Based Experiments

- JUNO boasts very large volume, low-background, high light-yield base
 - Could dissolve 50T of ¹³⁶Xe
 - Switch to 0vββ operations in 2030s
- R&D on timing/wavelength separation of Cerenkov and scintillation signals
 - Need push on light emission (slow fluors, dichroic filler) and detection (LAPPDs)
 - Plus work on loading (quantum dots), WbLS, etc.

EXO-200

- Experimental program ran 2011-2018
- Single-phase liquid xenon time projection chamber (TPC)
 - Light and charge signals collected

8 August 2023

EXO-200 Final Result

- Limit of $T_{1/2} > 3.5 \times 10^{25} \text{ yr}$
- Roughly balanced ROI background from U/Th/¹³⁷Xe

nEXO

- Single-phase LXe time projection chamber
 - Monolithic single drift volume of 1.2 m length
- Proposed 5 tonne target enriched to 90% in ¹³⁶Xe
- Solid xenon barium tagging under investigation for zero-background upgrade

pCDR: arXiv1805.11142 Sensitivity: arXiv 2106.16243

Xenon Dark Matter Detectors

J. Aalbers et al. J. Phys. G 50 (2023) 013001

- Dual-phase xenon TPCs dominant in dark matter field
 - Carry 0vββ sensitivity for free
 - But not optimized for this search

NEXT & PandaX-III

- Distinct R&D programs focused on highpressure gaseous xenon TPC technologies
 - Centered at Canfranc (Spain) and CJPL (China)
 - Evolving to O(100) kg in ~last year
- Topological information provides powerful background rejection

Barium-tagging technologies being pursued

From Alberto Usón Andrés, TAUP21

NEXT Progression

CUORE Cryogenic Underground Observatory for Rare Events

INDIANA UNIVERSITY

- CUORE
- Array of cryogenic TeO₂ bolometers operated at 10 mK
 - 988 channels with 206 kg ¹³⁰Te
- Operating since Spring 2017

CUORE Cryogenic Underground Observatory for Rare Events

- Array of cryogenic TeO₂ bolometers operated at 10 mK
 - 988 channels with 206 kg ¹³⁰Te
- Operating since Spring 2017

From Irene Nutini, Nu2022

CUORE Cryogenic Underground Observatory for Rare Events

- Latest result $T_{1/2} > 2.2 \times 10^{25} \text{ yr}$
- Based on 1 tonne*yr (TeO₂)
 - 1/3 of planned dataset

 Spectrum surprisingly not dominated by 2vββ events

CUORE

Fun Aside on CUORE

If you haven't read about CUORE's Roman lead, look it up

٦ſ

INDIANA UNIVERSITY

8 August 2023

Walter C. Pettus

CUPID: CUORE Upgrade with Particle ID

- Array of cryogenic Li₂¹⁰⁰MoO₄ bolometers
- ¹⁰⁰Mo affords higher $Q_{\beta\beta}$ = 3.034 MeV
- Charge+light readout for background suppression
- Also conducted R&D tests of Zn⁸²Se crystals
 - Minimal modification required to switch source

NDIANA UNIVERSITY

⁷⁶Ge Searches

- Modern germanium-based $0\nu\beta\beta$ boast the lowest backgrounds with best energy resolution for guasi-background free operation
 - Combined have best half-life sensitivity
- Share common "point-contact" germanium detector design

-20

-10

-30

10

8 August 2023

0

- Excellent energy resolution
- Excellent pulse shape discrimination performance
- Low noise, low threshold for BSM searches

Axial Position (mm)

30

20

10

MAJORANA DEMONSTRATOR

Ge arrays in vacuum cryostat in large
layered passive shield (Cu and Pb)
30 kg enriched to 88% in ⁷⁶Ge

- $0v\beta\beta$ operations 2015-2021
- Focus on low-background materials and low-noise electronics developed
 - Underground electroformed copper
 - Low-mass front-ends enable best energy resolution of 0.12% (FWHM)
 - Still operating, conducting worldleading search for decay of ^{180m}Ta

MAJORANA Results

- 65 kg*yr exposure
- $T_{1/2} > 8.3 \times 10^{25} \text{ yr}$

(MAJORANA) Phys. Rev. Lett. **129** (2022) 081803

- Notable other searches leverage energy resolution and low energy threshold
 - Tantalum, excited states decay, solar axions, quantum wavefunction collapse, lightly ionizing particles, bosonic dark matter, tribaryon decay, cosmogenics

GERDA

- Ge detector array immersed in novel active liquid argon veto
- ~40 kg enriched in ⁷⁶Ge
- Operated 2015-2019
- Achieved $T_{1/2} > 1.8 \cdot 10^{26}$ yr sensitivity
- Background index $5 \cdot 10^{-4}$ cts / (keV kg yr)
 - World-leading
 - Achieved quasi-background free operation with no background observed in ROI in exposure

From Luigi Pertoldi, PANIC21

GERD

efficiency variation

single-detector erents

All detectors (103.7 kg yr)

1500

2000

Adapted from Luigi Pertoldi, PANIC21

INDIANA UNIVERSITY

2500

3000

Counts / 15 keV

10⁴

10²

10⁰

1000

GERDA Result

Background best fit and 68% C.L. interval

90% C.L. $T_{1/2}$ lower limit (1.8 × 10²⁶ yr)

nnimo

limit vinalization

8-lines

JERDA 202(

8 August 2023

 10^{-1}

 10^{-2}

 10^{-3}

Walter C. Pettus

- Collaboration formed by merger of GERDA and MAJORANA (and some others)
 - Leveraging best advances from each experiment
 - Liquid argon active veto from GERDA
 - Ultra-low-background materials from MAJORANA
- Primarily composed of new larger-mass inverted coaxial point contact detectors
 - Average detector mass >3x those of last-generation
 - Enriched detectors from predecessors also running in L200
- First results coming at TAUP later this month
- Sensitivity goal of 10²⁷ yr in 5 yr run

 New large-mass detectors achieving excellent performance for resolution (and PSA)

- Tonne-scale continuation of ⁷⁶Ge program
- Underground argon volumes reduce surface bg
 - Reopen low-energy physics program
- Proposes lowest background, best resolution, greatest discovery potential

- Tonne-scale continuation of ⁷⁶Ge program
- Underground argon volumes reduce surface bg
 - Reopen low-energy physics program
- Proposes lowest background, best resolution, greatest discovery potential

INDIANA UNIVERSITY

Plus Many Other Technologies

CANDLES: exploit high ⁴⁸Ca Q-value

זר

The Path Ahead

M. Agostini *et al*. Rev. Mod. Phys. **95** (2023

Πſ

Summary

- Discovery of neutrinoless double beta decay would fundamentally reshape what we know about particle physics
- Experimental challenges in searching for neutrinoless double beta decay are real and varied
- Broad experimental program searching for this compelling new physics
- Compelling experimental programs taking data now
- Exciting prospects to cover inverted ordering range
- R&D looking for solution to beyond-next-generation sensitivity

