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About Myself

● I am an Experimental Particle Physicist
● Ph.D. (Wayne State University)

➡ CMS experiment at CERN, LHC
● Postdoc (Kansas State University)

➡ Switched to neutrinos as a postdoc — best decision of my life! 
➡ Spent most of my postdoctoral career on MicroBooNE

● Faculty (University of Tennessee, Knoxville, 2016-19)
● Senior Scientist at Los Alamos National Lab since 2019
● Experimental collaborations

➡ Short and long-baseline oscillation experiments (MicroBooNE, 
SBND, DUNE)

➡ Neutron cross section experiments (ARTIE, MarEX)
● Involvement 

➡ Oscillations, argon cross sections, detector physics & calibration analyses
➡ Detector R&D, calibration & cryogenic instrumentation, slow controls 

Constructing MicroBooNE TPC

My first trip to Fermilab
as a graduate student 

(2009)
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Neutrino Detector Lectures

We have two 1-hour lectures
● Lecture 1: Neutrino Detection Basics
● Lecture 2: Detector Technologies

Disclaimer: 
● There is no way I can cover everything…plus I have my own biases
● My goal with these lectures is to cover the general principles of neutrino 

detection, their interactions and experimental signatures along with an overview 
of technologies. 

● Biggest challenge in preparing these lectures: getting the CaPiTaLiZatioN right!
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Lecture 1: Outline

● Lecture 1 (Neutrino Detection Basics)
➡ Brief Intro to Neutrinos
➡ Neutrino Sources
➡ Neutrino Detection Challenges
➡ Neutrino Detector Goals
➡ Neutrino Interactions
➡ Passage of Particles in Matter
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Nuclear 
β decay

 A desperate remedy by Pauli to explain 
the observed energies in β decay (1931)

Project Poltergeist

1956: F. Reines and C. 
Cowen from LANL 
detected the first neutrino 
from a nuclear reactor 
(Nobel Prize 1995)



Until as recently as 1998, neutrinos were 
considered to be massless

Neutrinos Oscillate 
and so

they have mass! 
(albeit very tiny)
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Within SM 3-flavor mixing Beyond SM 3-flavor mixing

• Absolute mass of neutrinos?

• Neutrinos Majorana or Dirac? 
Are neutrinos their own anti-
particles?

• Precision Measurement of 
neutrino mixing parameters?

• Which neutrino is the lightest?

• CP violation in the neutrino 
sector? Matter-antimatter puzzle

• Absolute mass of neutrinos? 
Are there more than 3 
neutrinos? Candidates for 
dark matter?

• Other New physics e.g. non-
standard interactions

SM = Standard Model

There is still a lot we don’t know

We have been studying neutrinos for about a century now and there is still a lot we 
don’t know. The story of neutrinos is far from being complete
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Within SM 3-flavor mixing Beyond SM 3-flavor mixing

• Absolute mass of neutrinos?

• Neutrinos Majorana or Dirac?

• Precision Measurement of 
mixing parameters?

• Neutrino mass ordering?

• Is θ23 maximal mixing? 

• CP violation in the neutrino 
sector?

• Absolute mass of 
neutrinos? Are there more 
than 3 neutrinos?

• Other BSM physics e.g. 
non-standard interactions

There is still a lot we don’t know

Neutrinoless 
Double Beta 
Decay Expts.

Direct Mass 
Measurement 
Experiments

Long-Baseline 
Neutrino 

Oscillation 
Experiments

Short-Baseline 
Neutrino 

Experiments

Short- and 
Long-Baseline 
Experiments

Neutrino Physics is a 
very active field and will be for 

the next few decades! 



• Overwhelming number of sources, wide range of energies 
• Need wide spectrum of experiments and technologies!

Credit: G. P. Zeller
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Neutrino Sources

Particle Physics

AstroPhysics

Cosmology

High energy Astro-
particle physics

Nuclear physics

Neutrinos span 
multiple frontiers!



few 100 MeV-scale neutrinos from 

the Super-K detector!

Super-KCOHERENT 

ICECUBE

MicroBooNE ArgoNeuT
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Neutrino Detectors at All Scales

Technologies 
advances at every 

turn have enabled and 
continue to enable 

neutrino discoveries



A 2 PeV scale astro physical event in the 
detector

ICECUBE
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Super-KBOREXINO

MeV-scale neutrino

A few-100 MeV neutrino

MeV PeVWe have observed neutrinos  

at wide range of energies

MicroBooNE
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Visualizing Neutrinos
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Detecting Neutrinos is Challenging

● They are invisible (no charge)
● They are extremely weakly interacting
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● They are invisible (no charge)
● They are extremely weakly interacting
● In other words, they have very small interaction cross sections
● MeV-scale neutrino (typical energy of a neutrino emitted from sun or a nuclear 

reactor) has a cross section, 𝜎 ~!10-44 cm2  —  tiny!

€ 

ν e + p→e+ + n
Inverse Beta Decay

€ 

σν p ≈ 5 ×10
−44cm2 for (Eν ~ 2 MeV )

Detecting Neutrinos is Challenging



14

● They are invisible (no charge)
● They are extremely weakly interacting
● In other words, they have very small interaction cross sections
● MeV-scale neutrino (typical energy of a neutrino emitted from sun or a nuclear 

reactor) has a cross section, 𝜎 ~!10-44 cm2  —  tiny!

● GeV-scale neutrino (typical energy of a neutrino from a particle accelerator) has a 

cross section, 𝜎 ~!10-40 cm2  —  still tiny!

Detecting Neutrinos is Challenging
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● They are invisible (no charge)
● They are extremely weakly interacting
● In other words, they have very small interaction cross sections
● MeV-scale neutrino (typical energy of a neutrino emitted from sun or a nuclear 

reactor) has a cross section, 𝜎 ~!10-44 cm2  —  tiny!

● GeV-scale neutrino (typical energy of a neutrino from a particle accelerator) has a 

cross section, 𝜎 ~!10-40 cm2  —  still tiny!

● Mean free path of a neutrino in lead
➡ MeV-scale neutrino: dlead ~ 1016 m (over a light year of lead!)
➡ GeV-scale neutrino: dlead ~ 1012 m (still almost a trillion miles of lead!)

● What about a GeV-scale proton? 𝜎 ~!10-25 cm2 

➡ GeV-scale proton: dlead ~ 10 cm! 

Detecting Neutrinos is Challenging
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Detecting Neutrinos 101

● Basic Strategy
➡ Produce them in large quantities in a well defined area
➡ Put something very Dense, very BIG and very Sensitive for neutrinos to 

interact

● In other words
➡ High intense beams (typically kW beams, now moving to MW)
➡ Large neutrino fluxes 
➡ Long exposure time
➡ Dense targets (e.g. Argon)
➡ Large target mass (tens of meters, hundreds to multi-kiloton-scale)
➡ Low background (place them underground; design for maximum signal 

sensitivity; efficient background tagging etc.)



Dimensions:

41 m height


30m diameter tank

50,000 tons of water


11,000 PMTs


Researchers sitting

 in a boat


inside the detector

How cool is that?

To study solar and atmospheric neutrinos

(1000 m underground)


A water Cherenkov detector


Photo Multiplier 
Tube

The Super Kamiokande Experiment (Japan)



To study solar neutrinos

(about 2 km underground)

A water Cherenkov detector


Dimensions:

 12m diameter tank

1000 tons of heavy 

water

9000 PMTs


The Sudbury Neutrino Observatory (Canada)



Cubical tank

17x17.5x23 m


2.5 million gallons of 

Pure water

2000 PMTs


To study nucleon decay

(about 600 m underground)

A water Cherenkov detector


A scuba diver swims 

through the detector


The Irvine-Michigan-Brookhaven Detector



Super Kamiokande Experiment (Japan)
3 km deep in the ice!

searches for neutrinos from the most violent astrophysical sources: exploding stars, 
gamma-ray bursts, black holes and neutron stars. 

The IceCUBE Experiment (South Pole)



3 km deep in the ice!

searches for neutrinos from the most violent astrophysical sources: exploding stars, 
gamma-ray bursts, black holes and neutron stars. 

A 2 PeV scale astro physical event 
in the detector

The IceCUBE Experiment (South Pole)
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υµ υe  
Source   

Detector

Oscillation 
Probability

Experimental parameters: L, E 

Parameter of nature: ∆m2, Sin22θ 

Long-baseline: L ~ 1000 km   

Short-baseline: L ~ 1 km

2-Flavor Oscillations
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A Typical Oscillation Experiment
A Typical Oscillation Experiment Oscillation experiments are basically counting experiments

● Start with an intense source of neutrinos (e.g. υμ)
● Build a near detector and a far detector with distance optimized for 

oscillations to occur
● Measure unoscillated flavor and energy spectrum at L~0 (near detector)
● Measure oscillated flavor and energy spectrum again at L~oscillation 

maximum (far detector)
● Compare
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A Typical Oscillation Experiment Oscillation experiments are basically counting experiments

● Start with an intense source of neutrinos (e.g. υμ)
● Build a near detector and a far detector with distance optimized for 

oscillations to occur
● Measure unoscillated flavor and energy spectrum at L~0 (near detector)
● Measure oscillated flavor and energy spectrum again at L~oscillation 

maximum (far detector)
● Compare

A Typical Oscillation Experiment
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Detecting Neutrinos

No oscillations
Oscillations

No oscillations
Oscillations

nb “appearance”na “disappearance”
(look	 for	deficit of	na events) (look	 for	excess of	nb events)

Can perform “Appearance” or “Disappearance” measurements
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A Typical Oscillation Experiment
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MINOS DAYABAYSUPER-K
Atmospheric Accelerator Reactor source

Fermilab

450 m
iles

Soudan mine

Oscillation Experiments
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Neutrino Detection Goals

This depends on the experiment but typically 
● Identify the flavor of the neutrino

➡ Only indirect detection via particles produced in 
neutrino interactions

➡ Need to know the reaction channel
✓ Charged Current vs Neutral Current
✓ Various interaction modes within each 

reaction channel
● Measure the Eυ as accurately as possible

➡ Not easy since neutrino sources are not always 
monochromatic

● Neutrino or Anti-neutrino? 
➡ differentiate this e.g. oscillation experiments 

aiming to measure Charge-Parity Violation
➡ Charged Current interactions can provide 

handles 

Credit: P. Rodriguez
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Neutrino Flavor Tagging

● Outgoing lepton determines the υ flavor
● Outgoing hadrons: protons, neutrons, pions
● Typically, your signal event

(e, μ, τ)(υμ, υe, υτ)

Charged Current (CC)
(W+/- exchange)

Neutrino-nucleon 

scattering
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Neutrino Flavor Tagging

● Outgoing lepton determines the υ flavor
● Outgoing hadrons: protons, neutrons, pions
● Typically, your signal event

(e, μ, τ)(υμ, υe, υτ)

Charged Current (CC)
(W+/- exchange)

Neutrino-nucleon 

scattering

● Production of a lepton requires 
minimum energy. Thresholds

➡ Eυ ~ 500 keV (for an electron)
➡ Eυ ~120 MeV (for a muon)
➡ Eυ ~3.5 GeV (for a tau)
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Neutrino Flavor Tagging

● Outgoing lepton determines the υ flavor
● Outgoing hadrons: protons, neutrons, pions
● Typically, your signal event
● Production of a lepton requires minimum 

energy. Thresholds
➡ Eυ ~ 500 keV (for an electron)
➡ Eυ ~120 MeV (for a muon)
➡ Eυ ~3.5 GeV (for a tau)

(e, μ, τ)(υμ, υe, υτ)

Charged Current (CC)
(W+/- exchange)

Neutral Current (NC)
(Z exchange)

● No outgoing lepton to tag the υ type
● Can only see hadrons in the final state
● Typically, your background event (e.g. in 

“appearance oscillation” measurements)

(υμ, υe, υτ) (υμ, υe, υτ)

Neutrino-nucleon 

scattering
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Neutrino Flavor Tagging

● Outgoing lepton determines 
the υ flavor

● Outgoing hadrons: protons, 
neutrons, pions

● Typically, your signal event

(e, μ, τ)(υμ, υe, υτ)

Charged Current (CC)
(W+/- exchange)

Neutral Current (NC)
(Z exchange)

(υμ, υe, υτ) (υμ, υe, υτ)

Neutrino-nucleon 

scattering

● No outgoing lepton to tag the υ type
● Can only see hadrons in the final state
● Typically, your background event (e.g. in 

“appearance oscillation” measurements)



32

● Neutrino scattering off of an electron
● Signal is a single final state electron

Charged Current (CC)
(W+/- exchange)

Neutral Current (NC)
(Z exchange)

Neutrino-electron 

scattering

Neutrino Flavor Tagging
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Neutrino vs Anti-Neutrino Tagging
● Key for many experimental searches such as oscillation experiments 

looking to measure charge-parity violation in the neutrino sector
● Magnetic field is ideal for charge sign determination, however, 

➡ Neutrino detectors are typically huge 
➡ High volume magnetic field is hard
➡ Expensive
➡ Impacts other detector elements e.g. electronics 
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Neutrino vs Anti-Neutrino Tagging

● Key for many experimental searches such as oscillation 
experiments looking to measure charge-parity violation in the 
neutrino sector

● Magnetic field is ideal for charge sign determination, however, 
➡ Neutrino detectors are typically huge 
➡ High volume magnetic field is hard
➡ Expensive
➡ Impacts other detector elements e.g. electronics 

● One can use topology (e.g. decay vs capture) for particle sign 
identification in the absence of a magnetic field

● NC interactions cannot distinguish 
● But, CC can distinguish b/n υ and anti-υ using

➡ opposite lepton charge
➡ different final state hadrons
➡ Muons from hadron decays
➡ Requires good final state reconstruction 
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Neutrino Interactions are Complex

Neutrinos probe matter from its
Atomic structure to quark 

structure depending on the 
energy of the incoming neutrino
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Neutrino Interactions are Complex
Current and future neutrino oscillation 

experiments focus in the few GeV range

● Higher energies are more messy due to superposition of different channels
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Neutrino Energy Reconstruction
● Neutrino energy from charged lepton kinematics for CCQE

(2 body kinematics; assumes the target nucleon is at rest)

● More complicated final states for RES and DIS channels
● Both lepton and hadron kinematics important for an accurate 

measurement for all reaction channels
● Modern experiments use denser targets (e.g. Argon) making this picture 

even more complex — thorough understanding of neutrino-nucleus 
interaction theory is key

Final State 
Interactions Nucleon-nucleon 

correlations
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Neutrino Detector Goals

● Neutrino detectors need to work over a broad energy range (from MeV to PeV)
● They should

➡ detect leptons and hadrons (protons, pions etc.)
➡ distinguish electrons from photons (key for υμ  υe Appearance experiments)
➡ reduce backgrounds and measure them when necessary

MiniBooNE
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About Backgrounds

● Backgrounds vary with neutrino energy 
➡ backgrounds for MeV-scale are not the same as GeV-scale neutrinos)

● Cosmic rays are a worrisome background, many ways to handle this
➡ place your detector underground when possible
➡ Take beam-off runs to measure cosmic ray background
➡ If on surface, implement a cosmic veto/tagger system and/or shielding/overburden

● Reactors produce copious amounts of low-energy (< 10 MeV) neutrinos
➡ place your detectors far away from reactors

● Low-energy backgrounds are a concern for many experiments (e.g. reactor, solar/
atmospheric, geo-neutrino etc.) 

ICARUS

MicroBooNE
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Particle Interactions in Matter
● As particles move through matter, many things can happen

➡ Ionization: strip electrons off of atoms in the medium
➡ Scintillation: excite atoms and produce scintillation light
➡ Cherenkov radiation
➡ Decay into other particles
➡ Produce new particles 

● Many processes can occur that can result in energy loss of the particle
➡ Common energy loss process is inelastic collisions with atomic electrons 

(Ionization)
➡ Elastic scattering from nuclei
➡ Atomic excitations
➡ Hadronic interactions
➡ Compton scattering
➡ Bremsstrahlung
➡ Pari production
➡ Photoelectric effect…and so on
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Particle Interactions in Matter
● As particles move through matter, many things can happen

➡ Ionization: strip electrons off of atoms in the medium
➡ Scintillation: excite atoms and produce scintillation light
➡ Cherenkov radiation
➡ Decay into other particles
➡ Produce new particles 

● Many processes can occur that can result in energy loss of the particle
➡ Common energy loss process is inelastic collisions with atomic electrons 

(Ionization)
➡ Elastic scattering from nuclei
➡ Atomic excitations
➡ Hadronic interactions
➡ Compton scattering
➡ Bremsstrahlung
➡ Pari production
➡ Photoelectric effect…and so on

Read PDG Review on this (available online)

A great resource!
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● Mean rate of energy loss for heavy (heavier than e+/-) charged particles
➡ muon, pion, proton, kaon etc.

● Good to a few % in the MeV to 
GeV energy range and for 
intermediate Z materials

Basic shape of the curve

Bethe-Bloch Equation

Energy Loss of Particles (Heavy Charged Particles)
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● Mean rate of energy loss for different materials and different incident particles

● Stopping power is an important 
number as it tells you how far a 
particle can travel in the detector 
medium

● Important for determining how 
big your detector needs to be

Energy Loss of Particles (Heavy Charged Particles)
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● Mean rate of energy loss for different materials and different incident particles

If you know dE/dx and p, you can do 
particle ID —  a common technique 
used in experiments

Energy Loss of Particles (Heavy Charged Particles)
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● Electrons act differently in a detector medium
● Electrons above the critical energy (Ec) lose energy via both 

radiation (Bremsstrahlung) and collisional processes resulting 
in a electromagnetic shower (or spray) in the detector

➡ Electrons above Ec create photons via Bremsstrahlung 
which then produce e+e- pairs which then go on to 
produce more photons until energies drop below Ec

● Critical energy depends on the medium (typically few tens of 
MeV) and is defined as the cross over point where 
Bremsstrahlung energy loss > ionization loss

Energy Loss of Particles (Electrons)

Material Ec (MeV)

Lead 9.51

Aluminum 51.0

Iron 27.4

Copper 24.8

Water 92

Bethe-Heitler 
approximation
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● Radiation length (X0) is an important parameter for 
electromagnetic showers

● It is defined as the distance over which electrons lose 1/e of 
their energy by radiation i.e., at every X0 an election would 
Bremsstrahlung creating a photon

● Distance over which photons pair produce is (9/7) X0

● Electromagnetic shower size estimate after “t” radiation 
lengths

Energy Loss of Particles (Electrons)
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Energy Loss of Particles (Photons)
● Photon primarily lose energies through 4 ways

Photoelectric effect

Pair production
Photo-nuclear effect
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Energy Loss of Particles (Photons)
● Photon primarily lose energies through 4 ways

Photoelectric effect

Pair production
Photo-nuclear effect
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Energy Loss of Particles (Hadrons)
● For hadrons, interaction (λ) length defines the distance 

they travel before undergoing a strong nuclear 
interaction

● Neutron, for example, interacts via the weak force and 
undergoes energy loss through various mechanisms

➡ Elastic scattering, inelastic scattering, neutron capture, 
hadronic showers etc.

➡ Elastic scattering on nuclei is the main mechanism of 
energy loss for neutrons

➡ Neutron capture import for low energy neutrino 
experiments

● Hadron interaction lengths are longer than radiation 
lengths

● At higher energies, hadronic showers initiated by e.g. 
proton, neutron become relevant

● Hadronic showers are broader than EM showers 
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Thank you, we will continue tomorrow!  



