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Something about me
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• In October 2008, I started my Physics studies 
at “La Sapienza University of Rome”. I obtained 
my Bachelor and my Master degree there 

• In 2012, I started my PhD focusing on 
Neutrino Physics 

• Between 2016 to 2018 I have been traveling a lot:
 Canada, Spain, and UK

• In 2018 I moved to Chicago and started 
working in the Theory Group at Fermilab. (Fermilab, 2019)

• Modeling neutrino-nucleus interactions: Quantum Monte Carlo, Spectral Function
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Practical Info
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• Some of the Figures have been taken from papers published in peer reviews. The references 
are reported as:

Authors, Journal’s name and # of the paper

If there is anything you find interesting, I strongly encourage you to download the paper and 
read it!

• I also included some suggestions for more ‘pedagogical’ readings. The references are 
indicated as

Author, Title of the Book/Journal

• Please, ask question! Now or later: nrocco@fnal.gov
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Introduction

Which are the topics that have been in the previous lectures? ？
• Neutrinos are extremely elusive particles, many open questions: how they oscillate, 

what is their mass hierarchy…

• Neutrinos can be produced by different sources, different energies and very different 
physics 

• Neutrinos can not be directly measured: we study the interactions that take place in 
the detectors and “extract” neutrino properties  

Understanding neutrino interactions means understanding their cross sections!
• What is a cross section?

• What did we learn from electron scattering that can be used to better understand 
neutrinos?

• What are the different contributions to neutrino-nucleus cross sections
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Addressing Neutrino-Oscillation Physics
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A precise determination of σ(E) is crucial to extract ν oscillation parameters
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To study neutrinos we use nuclei
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# Targets

Utilize heavy target in neutrino detectors to maximize interactions→ understand nuclear structure
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This exp.

milab 15-ft deuterium-filled bubble chamber to a wide-
band neutrino beam. A total of 362 quasielastic events
were found in the 16.7-m fiducial volume, from the
analysis of 96% of the total exposure. In the dipole
parametrization of the axial-vector form factor of the nu-
cleon, we measured the axial-vector mass to be
Mz ——1.05+o &6 GeV, which is consistent with the previous
low-energy measurements. A search for an energy depen-
dence of M~ showed no clear energy dependence„support-
ing the assumptions and the V—2 formulation used for
the quasielastic reaction in our energy range (5—200 GeV).
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FIG. 10. Quasielastic cross section o(v„n~p pl as a func-
tion of E„. The data points from this experiment and Ref. 4 are
calculated from Eq. (7) using the M~ values in Table I. The
curve is derived from Eq. (7) with M& ——1.05 GeV.
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Neutrino scattering extensively 
studied 1970-90’s using deuterium-
filled bubble chambers
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µ

clear ring fuzzy ring

Off-axis:
full tracking and 
particle 
reconstruction in near 
detectors 
(magnetized TPC!)

huge water 
cherenkov detector 
(50 kTon) with 

optimal µ/e 

identification to 

distinguish ν
e
, ν

µ
 

T2K: Tokai (JPARC) to Kamioka (SuperKamiokande)

1% mis-id

On-axis:
iron/CH scintillator 
monitoring of beam 
angle and position

Long baseline (295 km) neutrino oscillation experiment with off-axis technique:
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T. Kitagaki et al, Phys. Rev. D 28, 436 (1983)
Bubble Chamber experiment 
at Fermilab
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Oscillations Require E𝜈 reconstruction

7

C. Results

Both the M1 and M2 analyses find the point estimates
sin2 θ23 ¼ 0.514 and Δm2

32 ¼ 2.51 × 10−3 eV2=c4 when
assuming the normal mass hierarchy and sin2θ23 ¼ 0.511
and Δm2

13 ¼ 2.48 × 10−3 eV2=c4 when assuming the
inverted mass hierarchy. Table XXI summarizes these
results from the M1 and M2 analyses. Likewise, the

confidence intervals produced by M1 and M2 are similar.
Since the M1 and M2 analyses are consistent with each
other, only results from M1 are given below. Figure 27
shows the best-fit values of the oscillation parameters, the
two-dimensional confidence intervals calculated using the
Feldman and Cousins method, assuming normal and
inverted hierarchy, and the sensitivity at the current
exposure. The size of the confidence interval found by
the fit to the data is smaller than the sensitivity. This arises
because the best-fit point is at the physical boundary
corresponding to maximum disappearance probability.
The amount by which the region is smaller is not unusual
in an ensemble of toy MC experiments produced under the
assumption of maximal disappearance. The best-fit spec-
trum from the normal hierarchy fit compared to the
observed spectrum is shown in Fig. 28, showing as well
the ratio of the number of observed events to the predicted
number of events with sin2θ23 ¼ 0. The observed oscil-
lation dip is significant and well fit by simulation. The
calculated one-dimensional Feldman and Cousins confi-
dence intervals are given in Table XXII. Figure 29 shows
the -2Δ lnL distributions for sin2 θ23 and jΔm2j from the
data, along with the 90% C.L. critical values.

D. Multinucleon effects study

Recently, experimental [67,113–115] and theoretical
[24,25,116–129] results have suggested that the charged-
current neutrino-nucleus scattering cross section at T2K
energies could contain a significant multinucleon compo-
nent. Such processes are known to be important in
describing electron-nucleus scattering (for a review, see
[130]), but have not yet been included in the model of
neutrino-nucleus interactions in our muon neutrino dis-
appearance analyses. If such multinucleon effects are
important, their omission could introduce a bias in the
oscillation analyses. Since low energy nucleons are not
detected in SK, such events can be selected in the QE
sample and assigned incorrect neutrino energies.
A Monte Carlo study was performed in order to explore

the sensitivity of the analysis to multinucleon effects. The
nominal interaction model includes pion-less delta decay
(PDD), which can be considered to be a multinucleon
effect. As an alternative, we turn off PDD and use a model
by Nieves [24] to simulate multinucleon interactions for
neutrino energies below 1.5 GeV. Pairs of toy Monte Carlo
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FIG. 27 (color online). The 68% (dashed) and 90% (solid) C.L.
intervals for the M1 νμ -disappearance analysis assuming normal
and inverted mass hierarchies. The 90% C.L. sensitivity contour
for the normal hierarchy is overlaid for comparison.
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FIG. 28 (color online). Top: Reconstructed neutrino energy
spectrum for data, best-fit prediction, and unoscillated prediction.
Bottom: Ratio of oscillated to unoscillated events as a function of
neutrino energy for the data and the best-fit spectrum.

TABLE XXII. The 68% and 90% confidence level intervals for
the νμ-disappearance analysis.

MH 68% C.L. 90% C.L.

sin2 θ23 NH [0.458, 0.568] [0.428, 0.598]
sin2 θ23 IH [0.456, 0.566] [0.427, 0.596]
Δm2

32ð10−3 eV2=c4Þ NH [2.41, 2.61] [2.34, 2.68]
Δm2

13ð10−3 eV2=c4Þ IH [2.38, 2.58] [2.31, 2.64]

K. ABE et al. PHYSICAL REVIEW D 91, 072010 (2015)

072010-34

T2K, Phys. Rev. D 91, 072010 (2015) 
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Oscillations Require E𝜈 reconstruction
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by Nieves [24] to simulate multinucleon interactions for
neutrino energies below 1.5 GeV. Pairs of toy Monte Carlo

)23θ(2s in

0.3 0.4 0.5 0.6 0.7

)4
/c2

 e
V

-3
 (

10
2

m∆

2.2

2.4

2.6

2.8

3
Normal Hierarchy Inverted Hierarchy

Sensitivity, NH 90% CL

FIG. 27 (color online). The 68% (dashed) and 90% (solid) C.L.
intervals for the M1 νμ -disappearance analysis assuming normal
and inverted mass hierarchies. The 90% C.L. sensitivity contour
for the normal hierarchy is overlaid for comparison.

 Energy (GeV)ν Reconstructed 
0 2 4

 E
ve

nt
s/

0.
10

 G
eV

0

20

40

60

> 5

Data

MC Unoscillated Spectrum

MC Best Fit Spectrum

NC MC Prediction

 Energy (GeV)νReconstructed
0 2 4O
sc

. t
o 

un
os

c 
E

ve
nt

s/
0.

1 
G

eV

2−10

1−10

1

10

> 5

FIG. 28 (color online). Top: Reconstructed neutrino energy
spectrum for data, best-fit prediction, and unoscillated prediction.
Bottom: Ratio of oscillated to unoscillated events as a function of
neutrino energy for the data and the best-fit spectrum.

TABLE XXII. The 68% and 90% confidence level intervals for
the νμ-disappearance analysis.

MH 68% C.L. 90% C.L.

sin2 θ23 NH [0.458, 0.568] [0.428, 0.598]
sin2 θ23 IH [0.456, 0.566] [0.427, 0.596]
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32ð10−3 eV2=c4Þ NH [2.41, 2.61] [2.34, 2.68]
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K. ABE et al. PHYSICAL REVIEW D 91, 072010 (2015)
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How do we compute a cross section?

e-(E,k) e-(E’,k’)

• We start from a generic process: 1+2 ➜ 3+4

• The cross section can be written as 

ū(k0,�0)�µu(k,�)
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F. Close, An Introduction to quark and partons
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Nucleon Form Factor

• Accounts for the finite size of the nucleon
⇣ d�

d⌦

⌘

exp
=

⇣ d�

d⌦

⌘

Mott
· |F (q2)|2

• Form factor and electric charge distribution 
are Fourier pairs F (q2) =

Z
d3r ⇢(r) · eiq·r

Nuclear Form Factor

7

taken from ref. [2]
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• accounts for finite size of the 
nucleus 

• form factor and electric charge 
distribution are Fourier pairs

✐ Thomson, M.: Modern Particle Physics, Cambridge University Press, 2013
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Summary of electron-nucleus scattering

`�(k) +N(p) ! `�(k0) +N(p0)

⇣ d�

d⌦

⌘
=

⇣ d�

d⌦

⌘

Mott

h
1� q2

2M2
tan2

✓

2

i

⇣ d�

d⌦

⌘
=

⇣ d�

d⌦

⌘

Mott

hG2
E � q2

4M2G2
M

1� q2

4M2

� q2

2M2
G2

M tan2
✓

2

i

Scattering on a point-like spinless target

Scattering on a point-like 1/2 
spin target

• Protons and neutrons have an internal structure: described by electric and magnetic form factors

Rosenbluth separation

• We consider the process:
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Determination of nucleon form factors
• A reduced cross section can be defined as 

⇣ d�

d⌦

⌘
=

⇣ d�

d⌦
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Mott
⇥ ✏G2

E + ⌧G2
M

✏(1 + ⌧)

✏ =
h
1 + 2(⌧ + 1) tan2

✓

2

i1

• Measuring angular dependence of the cross section 
at fixed Q2

• In Born approximation: GE2 is the slope and the intercept is τ GM2 

the end cap contributions, but normalize the contribution to
the LH2 spectrum at large !p, where the hydrogen con-
tribution is negligible. While the shape of the bremsstrah-
lung spectrum differs slightly between the dummy and
LH2 targets, the effect is only noticeable near the end
point, and a small uncertainty due to this difference is
included in the systematic uncertainties.

After removing the end cap background, the simulated
spectra from the combination of "p ! #0p and "p ! "p
are normalized to the low-momentum sides of the !p
spectra (taking into account the elastic radiative tail).
Removing this background yields clean spectra of elastic
events. We examine a window in !p around the elastic
peak and extract the elastic cross section by taking the
value used in the simulation, scaled by the ratio of counts in
the data to counts in the simulated spectrum. The upper
edge of the window varied from 5 to 15 MeV above the
peak, and is scaled with the resolution of the peak. The
lower edge goes from 10 to 16 MeV below the peak, and is
chosen to minimize the radiative correction while exclud-
ing background events. We also varied the !p windows,
and the change in the extracted cross sections was consis-
tent with the uncertainties we have assigned to the cut-
dependent corrections.

The yield is corrected for dead time in the data acquis-
ition system as well as several small inefficiencies. Correc-
tions for tracking efficiency, trigger efficiency, and particle
identification cuts were small (<2%) and independent of ".
About 5% of the protons are absorbed in the target and
detector stack, mainly in the hodoscopes and the aerogel
detector. We calculate the absorption in the target and
detector materials, which is " independent except for the
target absorption which varies by !0:1%. Radiative cor-
rections to the cross section are "20%, with a 5%–10% "
dependence, smaller than in previous Rosenbluth separa-
tions where the electron was detected. We also require a
single clean cluster of hits in each drift chamber plane to
avoid events where the resolution is worsened by noise in
the chambers. This reduces the non-Gaussian tails, but
leads to an inefficiency of roughly 7%, with a small
(0.25%) " dependence, possibly related to the variation
of rate with ". We correct the yield for the observed
inefficiency and apply a 100% uncertainty on the " depen-
dence of the correction.

The absolute uncertainty on the extracted cross sections
is approximately 3%, dominated by corrections for the
angular acceptance (2%), radiative processes (1%), proton
absorption in the target and detectors (1%), background
processes (1%), and the uncertainty in the integrated lumi-
nosity (1%). We apply a tight cut on the solid angle, using
only the data in the central 1.6 msr of the total #6 msr
acceptance. This cut limits the elastic data to the region of
100% acceptance, but leads to the relatively large uncer-
tainty in the size of the software-defined solid angle.
Because the solid angle is identical for all " values at

each Q2, this uncertainty affects the absolute cross section,
but not the extraction of GE=GM.

The largest random uncertainties, where the error can
differ at different " values, are related to the tracking
efficiency (0.2%), uncertainty in the scattering angle
(0.2%), subtraction of the inelastic proton backgrounds
(0.2%), and radiative corrections (0.2%). The total random
systematic uncertainty is 0.45%, with typical statistical
uncertainties of 0.25% at Q2 $ 2:64 GeV2 and 0.40% at
Q2 $ 4:1 GeV2. Data taken at the lowest beam energy
have an additional uncertainty (0.3%) because these data
were taken at lower beam currents (30–50 $A), and so are
sensitive to nonlinearity in the beam current measurements
and have different target heating corrections.

The reduced cross sections, %R $ &G2
M % "G2

E, are
shown in Fig. 2. The uncertainties are the statistical and
random systematic uncertainties. Some corrections lead to
correction to %R that varies nearly linearly with ". This
modifies the slope, but does not contribute to the scatter of
the points or deviations from linearity. The main uncer-
tainties in the extracted slope come from the " dependence
of the radiative corrections (0.3%), background subtrac-
tion, (0.25%), tracking efficiency (0.25%), and the effect of
beam energy or scattering angle offset (0.25%). Note that
we do not include the uncertainty related to two-photon
exchange, which we will discuss later. The combined
0.55% uncertainty in the slope of the reduced cross section

FIG. 2 (color online). Reduced cross sections as a function of
". The solid line is a linear fit to the reduced cross sections, the
dashed line shows the slope expected from scaling
($pGE=GM $ 1), and the dotted line shows the slope predicted
by the polarization transfer experiments [6].

PRL 94, 142301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
15 APRIL 2005

142301-3

polarization transfer experiment

previous Rosenbluth

�R = ✏(1 + ⌧)
�

�Mott
= ✏G2

E + ⌧G2
M

✐ Qattan et al.,PRL 94, 142301 (2005) 

• The virtual photon polarization parameter is 
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Determination of nucleon form factors

Figure 11: Illustration of the quality
of the dipole fit for GEp; data from
Refs. [Han63, Lit70, Pri71, Ber71,
Han73, Bar73, Mur74, Bor75, Sim80,
Wal94, And94] in Q2 range 0.005-2.0
GeV2.

Figure 12: Illustration of the qual-
ity of the dipole fit for GMp; the data
of Refs. [Han63, Jan66, Lit70, Pri71,
Ber71, Han73, Bar73, Bor75, Wal94]
in the range 0.005-2.0 GeV2 are in-
cluded here.

Figure 13: Illustration of the qual-
ity of the dipole fit for GMn; the data
included are the same as in Fig. 10,
Refs. [Roc92, Lun93, Mar93, Ank94,
Bru95, Ank98, Kub02, Bro05] in the
Q2-range 0.005-2.0 GeV2.

2.2.4 Rosenbluth results and dipole form factor

In figures 11, 12 and 13 the Rosenbluth separation resultsGEp,GMp andGMn are shown in double logarithmic
plots for Q2 < 2 GeV2, to emphasize the good agreement of these data with the dipole formula of Eq. 14.

Noticeable is the lack of GMp and GMn data below Q2 of 0.02 GeV2, a consequence of the dominance of
the electric FF at small Q2 for the proton, as seen in Eq. (12).

Although Hofstadter was the first to note that the proton FF data could be fitted by an “exponential model”,
which corresponds to the “dipole model” for FFs in momentum space, it appears that the usage of dividing
data by GD was introduced first by Goitein et al. [Goi67].

The possible origin of the dipole FF has been discussed in a number of early papers. Within the framework
of dispersion theory the isovector and isoscalar parts of a FF is written as, GV,S

E,M = Σi
αV,S

i

1+Q2/(MV,S
i )2

, where

GV
E,M , GS

E,M are defined in footnote 2, and MV,S
i and αV,S

i are the masses and residua of the isovector-,
isoscalar vector mesons, respectively. A dipole term occurs when the contribution of two vector mesons with
opposite residua but similar masses are combined.

14

Gp
E(q

2) = GD(q2) , Gp
M (q2) = µpGD(q2) , Gn

M (q2) = µnGD(q2) , GD =
⇣
1� q2

M2
V

⌘�2

✐ Perdrisat et al., Prog.Part.Nucl.Phys. 59 (2007) 694-764 

µp = 2.793, µn = �1.913,

M2
V = 0.71 GeV2
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• Lattice QCD is a technique in which space-time is discretized into a four-dimensional grid 

• The QCD path integral over the quark and gluon fields at each point in the grid is performed 
in Euclidean space-time using Monte Carlo methods

§ Lattice QCD is an ideal theoretical tool for investigating the 
strong-coupling regime of quantum field theories 

§ Physical observables are calculated from the path integral
0 𝑂 𝜓,𝜓, 𝐴 0 =

1
𝑍

𝒟𝐴 𝒟𝜓 𝒟𝜓 𝑒 , , 𝑂 𝜓,𝜓, 𝐴

gluon field

quark field

a

L

t

x, y, z

in Euclidean space
[ Quark mass parameter 

(described by 𝑚 )
[ Impose a UV cutoff 

discretize spacetime
[ Impose an infrared cutoff

finite volume

§ Recover physical limit
𝑚 → 𝑚 , 𝒂 → 𝟎, 𝑳 → ∞

Lattice 101

Huey-Wen Lin — First Nuclear & Particle Theory Meeting @ WashU

Figure by Huey-Wen Lin

• The quark mass is a parameter of the calculation : mπ

• Space time is discretized, step a: UV cutoff

• Finite volume L : infrared cutoff 

• The physical limit is recovered by imposing that 

mπ ➞ mπphys , a ➞ 0, L ➞ ∞
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Lattice QCD form factors
Gupta’s talk @Lattice2023

• Isovector electric and magnetic form factors
• The form factors do not show significant dependence on the lattice spacing  

or the quark mass 

• Good agreement with the Kelly curve. Validates the lattice methodology 

R. Gupta, Introduction to Lattice QCD, arXiv:hep-lat/9807028

Electric & Magnetic FF

• The extraction of electric and magnetic form factors is insensitive to the 
details of the excited states

• Vector meson dominance ➝ 8OO state should contribute (some evidence)
• The form factors do not show significant dependence on the lattice spacing 

or the quark mass 
• Good agreement with the Kelly curve. Validates the lattice methodology
• Improve precision and get data over larger range of parameter values

Electric Magnetic
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l𝜈

N N’
W

Charge Current (CC)

Z

𝜈

N N’

𝜈

Neutral Current (NC)

• Exchange of the W boson 

• Lepton produced has the same flavor of 
the neutrino

• Initial and final nucleon have different isospin

• Exchange of the Z boson 

• Independent of the neutrino flavor

• Initial and final nucleon have same isospin

F. Close, An Introduction to quark and partons
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l𝜈

N N’

𝜈

N N’

𝜈

d2�

dE0d⌦0 =
1

16⇡2

G2

2
Lµ⌫W

µ⌫

Lµ⌫ = 8[kµk
0
⌫ + k0µk⌫ � gµ⌫k · k0 ± i✏µ⌫↵�k

0↵k� ]

Wµ⌫ =
X

�i�f

1

2Ep

Z
d3p0

2Ep0
hN(p)|Jµ|N 0(p0)ihN 0(p0)|J⌫ |N(p)i

⇥ �(4)(p0 + k0 � p� k)

G = GF G = GF cos ✓c

• Leptonic Tensor:

• Hadronic Tensor:

• Differential cross section for CC and NC processes

• For NC • For CC 

Charge Current (CC)

Neutral Current (NC)
⌫/⌫̄

GF = 1.1803⇥ 10�5 GeV�2 , cos ✓c = 0.97425
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hN 0|Jµ|Ni = ū(p0)�µu(p) = Jµ
V + Jµ

A

Jµ
V = F1�

µ + i�µ⌫q⌫
F2

2M

• Electroweak current operator:

• The vector contribution is given by: • The axial contribution is given by:

Jµ
A = ��µ�5FA � qµ�5

FP

M

Vector Axial
q

N’ (Ep’,p')N (Ep,p)

T. Leitner, O. Buss, L. Alvarez-Ruso, and U. Mosel, Electron- and neutrino-nucleus 
scattering from the quasielastic to the resonance region, Phys. Rev. C 79, 034601 
(2009). 

• General expression for both neutral- and charge current processes. The iso-spin dependence 
of these form factors is different (see next slide). 

• The Vector current is the same of the electromagnetic: Conserved Vector Current hypothesis
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N N’

Z0

N N’

W±

N N’

ɣ

F1 =
1

2
[FS

1 + FV
1 ⌧z]

F2 =
1

2
[FS

2 + FV
2 ⌧z]

F1 = FV
1 ⌧±

F2 = FV
2 ⌧±

FA = FA⌧±

FP = FP ⌧±

F1 =
1

2
[�2sin2✓WFS

1 + (1� 2sin2✓W )FV
1 ⌧z]

F2 =
1

2
[�2sin2✓WFS

2 + (1� 2sin2✓W )FV
2 ⌧z]

FA =
1

2
FA⌧z

FP =
1

2
Fp⌧z

• EM • CC • NC

• PCAC:• We used the Conserved Vector Current hypothesis: 

FV
1 ⌧z ! FV

1 ⌧± , FV
2 ⌧z ! FV

2 ⌧± FP =
2m2

N

(m2
⇡ � q2)

FA
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• The axial form-factor has been fit to the dipole form

FA(q
2) =

gA
(1� q2/m2

A)
2

• Different values of mA from experiments
• mA =1.02 GeV q.e. scattering from deuterium
• mA =1.35 GeV @ MiniBooNE

• Alternative derivation based on z-expansion 
—model independent parametrization

A.S.Meyer et al, Phys.Rev.D 93 (2016) 11, 113015

• The intercept gA=-1.2723 is known from neutron 
β decay

T. KITAGAKI et al. 28

2.0

E
1.2-

"P~

CL+ 0.8-

ANL (Ref. 2)
BVL (Rei. a)
This exp.

milab 15-ft deuterium-filled bubble chamber to a wide-
band neutrino beam. A total of 362 quasielastic events
were found in the 16.7-m fiducial volume, from the
analysis of 96% of the total exposure. In the dipole
parametrization of the axial-vector form factor of the nu-
cleon, we measured the axial-vector mass to be
Mz ——1.05+o &6 GeV, which is consistent with the previous
low-energy measurements. A search for an energy depen-
dence of M~ showed no clear energy dependence„support-
ing the assumptions and the V—2 formulation used for
the quasielastic reaction in our energy range (5—200 GeV).

OA-
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0
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FIG. 10. Quasielastic cross section o(v„n~p pl as a func-
tion of E„. The data points from this experiment and Ref. 4 are
calculated from Eq. (7) using the M~ values in Table I. The
curve is derived from Eq. (7) with M& ——1.05 GeV.
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where ni is the number of events in the ith bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the �2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and only
FNAL shows a discrepancy in central value. A similar
exercise was performed in Refs. [66, 74, 75], and similar
results were obtained. Having reproduced the original
analyses to the extent possible, we will proceed with the
updated constants as in the final column of Table I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z 1

tcut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where tcut = 9m2
⇡ represents the leading three-pion

threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [31],

z(q2, tcut, t0) =

p
tcut � q2 �

p
tcut � t0p

tcut � q2 +
p
tcut � t0

, (12)

where t0, with �1 < t0 < tcut, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

kmaxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t0. t

optimal
0 is defined in Eq. (14).

Q2
max [GeV2] t0 |z|max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal
0 (3.0GeV2) = �0.57GeV2 0.35

by toptimal
0 (Q2

max) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max  q2  0. Explicitly,

toptimal
0 (Q2) = tcut(1�

p
1 +Q2

max/tcut) . (14)

Table III displays |z|max for several choices of Q2
max and

t0.
The choice of t0 can be optimized for various applica-

tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄0 = toptimal
0 (1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|max = 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [76], FA ⇠ Q�4, implies the series of four sum
rules [35]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = kmax � 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [35] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [31] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fallo↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)
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FIG. 5. Same as Fig. 1, but with Q2  1GeV2. These fits
correspond to the Na = 4 z expansion in Table V.
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FIG. 6. Di↵erential scattering cross sections for neutrino-
deuteron scattering at 1GeV neutrino energy, employing dif-
ferent nuclear models. The solid (red) curve is the free-
neutron result. The dashed (blue) curve is obtained from
the free-neutron result using the model from Ref. [65], as in
the original deuterium analyses. The top dot-dashed (black)
curve is extracted at E⌫ = 1GeV from Ref. [70]. The charged
lepton mass is neglected in this plot.

ANL : [ā1, �2LL] =

(
[2.29(14), 30.5] (without)

[2.38(14), 26.3] (with)
,

FNAL : [ā1, �2LL] =

(
[1.88(25), 8.2] (without)

[1.88(25), 8.2] (with)
.

(29)

The parameter ⌘ takes on values of�1.9, �1.0, and +0.01
for data from ANL1982, BNL1981, and FNAL1983 re-
spectively; the negative values indicate a pull to decrease
the predicted cross section to match the data. In each
case there is only modest improvement in the fit quality,
and small impact on the form factor shape. Acceptance
corrections within the quoted range have only minor im-
pact.

C. Deuteron corrections

The analysis to this point, like the original analyses,
used the deuteron correction model R(Q2) of Singh [65].
This model yields a suppression of the cross section for
Q2 < 0.16 GeV2.11 An example of a modern calculation

11
A follow-up analysis [80] considers e↵ects of meson exchange cur-

rents and alternate deuteron wave functions, with a total result

very similar to Ref. [65].

Bhattacharya, Hill, and Paz  PRD 84 (2011) 073006

free parameters

known functions
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FIG. 7. Final form factor from Eqs. (31), (32) and (33).
Also shown is the dipole axial form factor with axial mass
mA = 1.014(14) GeV [55].

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the data sets.

Data set r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [55]. At representative

14
Extractions of the radius from electroproduction data are also

strongly influenced by the dipole assumption [31].
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FIG. 8. Free nucleon CCQE cross section computed
from Eqs. (31), (32) and (33), for neutrino-neutron (top)
and antineutrino-proton (bottom) scattering. Also shown
are results using dipole axial form factor with axial mass
mA = 1.014(14) GeV [55].

energies, the cross sections and uncertainties shown in
Fig. 8 are

�⌫n!µp(E⌫ = 1GeV) = 10.1(0.9)⇥ 10�39 cm2 ,

�⌫n!µp(E⌫ = 3GeV) = 9.6(0.9)⇥ 10�39 cm2 , (38)

for neutrinos and

�⌫̄p!µn(E⌫ = 1GeV) = 3.83(23)⇥ 10�39 cm2 ,

�⌫̄p!µn(E⌫ = 3GeV) = 6.47(47)⇥ 10�39 cm2 , (39)

for antineutrinos.
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FIG. 9. Cross section for charged-current quasielastic events
from the MINERvA experiment [56] as a function of re-
constructed Q2, compared with prediction using relativistic
Fermi gas (RFG) nuclear model with z expansion axial form
factor extracted from deuterium data. MINERvA data uses
an updated flux prediction from [82]. Also shown are results
using the same nuclear model but dipole form factor with
axial mass mA = 1.014(14) GeV [55].

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [56]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [55]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15
The z expansion will be available in GENIE production release

v2.12.0. The code is currently available in the GENIE trunk

prior to its o�cial release. The module provides full generality

of the z expansion, and supports reweighting and error analysis

with correlated parameters.

• Sum rule can be enforced ensuring that the form factor falls smoothly to zero at large Q2
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where ni is the number of events in the ith bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the �2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and only
FNAL shows a discrepancy in central value. A similar
exercise was performed in Refs. [66, 74, 75], and similar
results were obtained. Having reproduced the original
analyses to the extent possible, we will proceed with the
updated constants as in the final column of Table I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z 1

tcut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where tcut = 9m2
⇡ represents the leading three-pion

threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [31],

z(q2, tcut, t0) =

p
tcut � q2 �

p
tcut � t0p

tcut � q2 +
p
tcut � t0

, (12)

where t0, with �1 < t0 < tcut, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

kmaxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t0. t

optimal
0 is defined in Eq. (14).

Q2
max [GeV2] t0 |z|max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal
0 (3.0GeV2) = �0.57GeV2 0.35

by toptimal
0 (Q2

max) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max  q2  0. Explicitly,

toptimal
0 (Q2) = tcut(1�

p
1 +Q2

max/tcut) . (14)

Table III displays |z|max for several choices of Q2
max and

t0.
The choice of t0 can be optimized for various applica-

tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄0 = toptimal
0 (1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|max = 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [76], FA ⇠ Q�4, implies the series of four sum
rules [35]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = kmax � 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [35] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [31] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fallo↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)

Fit deuteron data replacing dipole axial form factor with z-expansion, enforce the sum rule constraints 


A.S.Meyer, Phys.Rev.D 93 (2016) 11, 113015

5

where ni is the number of events in the ith bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the �2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and only
FNAL shows a discrepancy in central value. A similar
exercise was performed in Refs. [66, 74, 75], and similar
results were obtained. Having reproduced the original
analyses to the extent possible, we will proceed with the
updated constants as in the final column of Table I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z 1

tcut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where tcut = 9m2
⇡ represents the leading three-pion

threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [31],

z(q2, tcut, t0) =

p
tcut � q2 �

p
tcut � t0p

tcut � q2 +
p
tcut � t0

, (12)

where t0, with �1 < t0 < tcut, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

kmaxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t0. t

optimal
0 is defined in Eq. (14).

Q2
max [GeV2] t0 |z|max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal
0 (3.0GeV2) = �0.57GeV2 0.35

by toptimal
0 (Q2

max) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max  q2  0. Explicitly,

toptimal
0 (Q2) = tcut(1�

p
1 +Q2

max/tcut) . (14)

Table III displays |z|max for several choices of Q2
max and

t0.
The choice of t0 can be optimized for various applica-

tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄0 = toptimal
0 (1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|max = 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [76], FA ⇠ Q�4, implies the series of four sum
rules [35]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = kmax � 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [35] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [31] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fallo↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)
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FIG. 2. The nucleon axial form factor FA(Q
2) determined us-

ing fits to neutrino-deuteron scattering data using the model-
independent z expansion from Ref. [65] (D2 Meyer et al.)
are shown as a blue band in the top panel. LQCD results
are shown for comparison from Ref. [30] (LQCD Bali et al.,
green), Ref. [34] (LQCD Park et al., red) and Ref. [35] (LQCD
Djukanovic et al., purple). Bands show combined statistical
and systematic uncertainties in all cases, see the main text
for more details. A dipole parameterization with MA = 1.0
GeV and a 1.4% uncertainty [107] is also shown for compari-
son (black). The lower panel shows the absolute value of the
di↵erence between D2 Meyer et al. and LQCD Bali et al.
results divided by their uncertainties added in quadrature,
denoted �FA/�; very similar results are obtained using the
other LQCD results.

factor results determined from experimental neutrino-
deuteron scattering data in Ref. [65]. Fits were performed
using results with Q

2
 1 GeV2 in Refs. [30, 34, 65] and

with Q
2
 0.7 GeV2 in Ref. [35] with the parameteri-

zation provided by the z expansion used to extrapolate
form factor results to larger Q

2. Clear agreement be-
tween di↵erent LQCD calculations can be seen. However,
the LQCD axial form factor results are 2-3� larger than
the results of Ref. [65] for Q

2 & 0.3 GeV2. The e↵ects of
this form factor tension on neutrino-nucleus cross section
predictions is studied using nuclear many-body calcula-
tions with the GFMC and SF methods in Sec. IV below.
The LQCD results of Refs. [30, 34] lead to nearly in-
distinguishable cross-section results that will be denoted
“LQCD Bali et al./Park et al.” or “LQCD” below and
used for comparison with the deuterium bubble-chamber
analysis of Ref. [65], denoted “D2 Meyer et al.” or “D2”
below.

IV. FLUX-AVERAGED CROSS SECTION
RESULTS

To evaluate both the nuclear model and nucleon axial
form factor dependence of neutrino-nucleus cross-section
predictions and their agreement with data, the GFMC
and spectral function methods are used to predict flux-
averaged cross sections that can be compared with data
from the T2K and MiniBooNE experiments. The Mini-
BooNE data for this comparison is a double di↵eren-
tial CCQE measurement where the main CC1⇡+ back-
ground has been subtracted using a tuned model [13],
and the T2K data is a double di↵erential CC0⇡ measure-
ment [114]. Muon neutrino flux-averaged cross sections
were calculated from

d�

dTµd cos ✓µ

=

Z
dE⌫�(E⌫)

d�(E⌫)

dTµd cos ✓µ

, (43)

where �(E⌫) are the normalized ⌫µ fluxes from Mini-
BooNE and T2K. Details on the neutrino fluxes for
each experiment can be found in the references above.

d�(E⌫)
dTµd cos ✓µ

are the corresponding inclusive cross sections

computed using the GFMC and SF methods as described
in Sec. II.

The fractional contribution of the axial form factor
to the one-body piece of the MiniBooNE flux-averaged
cross section is determined by including only pure axial
and axial-vector interference terms in the cross section
and shown in Fig. 3. These pure axial and axial-vector
interference terms account for half or more of the to-
tal one-body cross section for most Tµ and cos ✓µ, which
emphasizes the need for an accurate determination of the
nucleon axial form factor.

Figures 4 and 5 show the GFMC and SF predictions for
MiniBooNE and T2K, respectively, including the break-
down into one-body and two-body contributions. For
these comparisons we use the D2 Meyer et al. z expan-
sion for FA. Two features of the calculations should be
noted before discussing the results of these comparisons.
First, the uncertainty bands in the SF come only from the
axial form factor, while the GFMC error bands include
axial form factor uncertainties as well as a combination
of GFMC statistical errors and uncertainties associated
with the maximum-entropy inversion. Secondly, the axial
form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
both the one-body and one and two-body interference
term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
tions at each model’s peak are shown. The GFMC predic-
tions are up to 20% larger in backwards angle regions for
MiniBooNE and 13% larger for T2K in the same back-
ward region. The agreement between GFMC and SF
predictions is better at more forward angles but a 5-10%
di↵erence persists.
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ing fits to neutrino-deuteron scattering data using the model-
independent z expansion from Ref. [65] (D2 Meyer et al.)
are shown as a blue band in the top panel. LQCD results
are shown for comparison from Ref. [30] (LQCD Bali et al.,
green), Ref. [34] (LQCD Park et al., red) and Ref. [35] (LQCD
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 0.7 GeV2 in Ref. [35] with the parameteri-
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tween di↵erent LQCD calculations can be seen. However,
the LQCD axial form factor results are 2-3� larger than
the results of Ref. [65] for Q
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form factor dependence of neutrino-nucleus cross-section
predictions and their agreement with data, the GFMC
and spectral function methods are used to predict flux-
averaged cross sections that can be compared with data
from the T2K and MiniBooNE experiments. The Mini-
BooNE data for this comparison is a double di↵eren-
tial CCQE measurement where the main CC1⇡+ back-
ground has been subtracted using a tuned model [13],
and the T2K data is a double di↵erential CC0⇡ measure-
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computed using the GFMC and SF methods as described
in Sec. II.

The fractional contribution of the axial form factor
to the one-body piece of the MiniBooNE flux-averaged
cross section is determined by including only pure axial
and axial-vector interference terms in the cross section
and shown in Fig. 3. These pure axial and axial-vector
interference terms account for half or more of the to-
tal one-body cross section for most Tµ and cos ✓µ, which
emphasizes the need for an accurate determination of the
nucleon axial form factor.

Figures 4 and 5 show the GFMC and SF predictions for
MiniBooNE and T2K, respectively, including the break-
down into one-body and two-body contributions. For
these comparisons we use the D2 Meyer et al. z expan-
sion for FA. Two features of the calculations should be
noted before discussing the results of these comparisons.
First, the uncertainty bands in the SF come only from the
axial form factor, while the GFMC error bands include
axial form factor uncertainties as well as a combination
of GFMC statistical errors and uncertainties associated
with the maximum-entropy inversion. Secondly, the axial
form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
both the one-body and one and two-body interference
term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
tions at each model’s peak are shown. The GFMC predic-
tions are up to 20% larger in backwards angle regions for
MiniBooNE and 13% larger for T2K in the same back-
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D2 Meyer et al: fits to neutrino-deuteron 
scattering data
LQCD result: general agreement between 
the different calculations

LQCD results are 2-3σ larger than D2 
Meyer ones for Q2 > 0.3 GeV2

D.Simons, N. Steinberg et al, 2210.02455

A. Meyer, A. Walker-Loud, C. Wilkinson, 2201.01839
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Figure 1. (Left) Comparison of the nucleon axial-vector form factor GA

�
Q2

�
= �FA

�
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�
as a function of the momentum

transfer squared Q2 obtained from (i) fit to the deuterium bubble-chamber data [27] shown by blue solid lines with error band;
(ii) fit to recent MINERvA antineutrino-hydrogen data [28], shown by black dashed lines and turquoise error band; and (iii)
lattice QCD result obtained by the PNDME Collaboration [29] shown by red dotted lines. (Right) A comparison of LQCD
axial-vector form factors from various collaborations labeled RQCD 19 [31], ETMC 21 [32], NME 22 [33], Mainz 22 [34], and
PNDME 23 [29]. The ⌫D [27] band is the same as the deuterium fit shown in the left panel.

contributions from all excited states that couple to,
and are thus created, by the interpolating opera-
tors used. This problem can be severe for nucleons
especially if towers of multihadron states, starting
with the N⇡ states that have mass gaps starting
at ⇡ 1200 MeV (much smaller than the N(1440)
radial excitation) as M⇡ ! 135 MeV, make large
contributions. This has been shown to be the case
for the axial channel [35]. The PNDME calculation
includes a detailed analysis to remove contributions
of such excited states.

• Satisfying, to within the expected size of discretiza-
tion errors, the partially conserved axial current
(PCAC) relation between the three form factors,
axial FA(Q2), induced pseudoscalar FP (Q2), and
pseudoscalarGP (Q2), obtained after removing con-
tributions from N⇡ excited states. Since the lat-
tice correlation functions automatically satisfy the
PCAC relation, this is a check of the decomposi-
tion into form factors that relies on the absence
of transition matrix elements to excited states. It
is a necessary requirement that must be satisfied
by all LQCD calculations of the three form fac-
tors. Note that PNDME paper uses the notation
GA(Q2) ⌘ �FA(Q2) and eGP (Q2) ⌘ �FP (Q2)/2.

• The data for FA(Q2)|{a,M⇡,M⇡L} obtained at dis-
crete values of Q2 on each of the thirteen ensem-
bles is well-fitted using the model-independent z-
expansion. The lattice size L is in units of M⇡.

• Extrapolation of the thirteen FA(Q2)|{a,M⇡,M⇡L}

to get the form factor at the physical point, a = 0
and M⇡ = 135 MeV, is carried out for eleven
equally spaced values of Q2 between 0–1 GeV2 us-
ing the leading-order corrections in {a,M⇡,M⇡L}.
This full analysis is done within a single overall
bootstrap process and the reasonableness of the re-
sulting error estimates are discussed. The finite-
volume artifacts are found to be small forM⇡L & 4,
which holds for all but two ensembles.

• All fits to FA(Q2) are presented using the z2 trun-
cation of the z-expansion. Results with z3 trun-
cation give essentially the same values, indicating
convergence. The z2 results were chosen to avoid
overparameterization as defined by the Akaike In-
formation Criterion (AIC) [36].

Raw lattice data with reliable error estimates are avail-
able at discrete values of Q2 over a limited range of mo-
mentum transfer, 0 < Q2 . 1 GeV2. As shown below,
for the calculation of the cross section outside this range,
a robust parameterization of the form factor is needed
to connect to the 1/Q4 behavior (with possible logarith-
mic corrections) expected at large Q2 [37, 38]. This is
typically done by enforcing sum rules [39]. This has not
been done in the PNDME analysis [29]. It is, there-
fore, reasonable to make comparisons of the lattice and
the experimental determinations for the (anti)neutrino-
nucleon charged-current elastic cross sections for di↵er-
ential distributions only at Q2 . Q2

max ⇡ 1 GeV2.
For inclusive cross sections with (anti)neutrino energy

E⌫ . M
�
⌧max + r2`

� ⇣
1 +

p
1 + 1/⌧max

⌘
⇡ 0.84 GeV,

O. Tomalak, R. Gupta, T. Battacharaya, 2307.14920

Comparison with recent MINERvA 
antineutrino-hydrogen charged-current 
measurements 

1-2σ agreement with MINERvA data and 
LQCD prediction by PNDME Collaboration 

Novel methods are needed to remove excited-
state contributions and discretization errors
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Motivation: GeV neutrino reaction

T2K Eν ∼ 0.6± 0.2(GeV )

Dune 2± 2

atmospheric(MH) a few ∼ 10
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(p+ q)2, Q2 = −q2 = −(pν − pl)2

T. Sato (Osaka U.) Meson Production Oct. 2019, NuSTEC Workshop 3 / 40

Single pion production(CC)

ν

µ

π

N N

q

W}
W 2 = (pN (f) + pπ)2 = (pν + pN (i)− pµ)2

Q2 = −q2 = −(pν − pµ)2

D. Allasia et al. Nucl. Phys. B343(1990)285

T. Sato (Osaka U.) Pion Production 2 Nov. , 2017 2 / 37

Contribution from both background and Δ-resonance states (but also higher resonances)
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T.Sato talks @ NuSTEC Workshop on Neutrino-Nucleus 
Pion Production in the Resonance Region
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Single pion production in ∆(1232) region
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J. Sobczyk,E. Hernandez,S.X. Nakamura, J. Nieves,T. Sato PRD98(2018)073001

Re-analyzed ANL/BNL data, C. Wilkinson et al. PRD90

ANL-Osaka DCC,PRD92, Hernandez,Nieves,Valverde PRD76

Caution on σ(νN) of ANL/BNL data extracted from σ(νd).
About 10 ∼ 30% correction due to FSI effects should be corrected S. Nakamura, H. Kamano, T.
Sato PRD99,031301(R)(2019)

T. Sato (Osaka U.) Meson Production Oct. 2019, NuSTEC Workshop 17 / 40

J. Sobczyk,E. Hernandez,S.X. Nakamura, J. Nieves,T. Sato PRD 98 (2018) 073001 
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Brief summary:Models of neutrino induced pion production

Res Non-res Unit. 1pi 2pi Tot
RS Delta,N* - X O O

LPP Delta,N* X X O O

HVM Delta(1232) chiral O O
Delta(1232)+N(1440) chiral X O O

Giessen Delta, N* phen. X O O

ANL-Osaka Delta, N* O O O O O

Summary of models for neutrino reaction in RES 

RS: D. Rein, L. M. Sehgal AP133(81), LPP: O. Lalakulich,E.A. Paschos,G. Piranlshvili,PRD74(2006)
HNV: E. Hernandez,J. Nieves,M. Valverde PRD76(2007) Giessen: T. Leitner,O.Buss,L.Alvarez-Ruso,U. Mosel,PRC79(2009)
ANL-Osaka DCC:S.X.Nakamura,H. Kamano,TS,PRD92(2015) ,TS,D. Uno,T.-S.H.Lee PRC67(2003)

R. Gonzales-Jimenes et al. PRD95,113007(2017)+Regge

T. Sato (Osaka U.) Meson Production Oct. 2019, NuSTEC Workshop 5 / 40
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FIG. 15. (W, Q2) landscape. for neutrino-nucleon scattering at two representative laboratory
neutrino energies.

formation. Indeed, thanks to approximate flavor symmetries and the partial conservation
of the axial current (PCAC), electron- and meson-nucleon scattering provide very valuable
input for the description of weak inelastic processes. The axial current contribution however
remains largely unconstrained, which calls for new measurements on elementary (hydrogen,
deuterium) targets.

Away from threshold, most of these reactions are dominated by baryon resonances, al-
beit with sizable contributions from non-resonant amplitudes and their interference with
the resonant counterpart [472, 473]. In the case of ⇡N , but also �N final states, �(1232)
excitation is dominant. Among heavier baryonic resonances, the N(1520) has been identi-

Above the pion production threshold W ≈ 1080 MeV 
the excitation of the ∆(1232) dominates, but at higher 
W the dynamics results from the interplay of 
overlapping baryon resonances, non-resonant 
amplitudes and their interference. 


It is this region of W above the ∆(1232) and at 
moderate Q2 >1 GeV2 that we refer to as Shallow 
Inelastic Scattering (SIS). As Q2 grows, one 
approaches the onset of Deep Inleastic Scattering 
(DIS). 


Transition from strong interactions described in 
terms of hadronic degrees of freedom to those 
among quarks and gluons described by 
perturbative QCD. 


Theoretical tools for neutrino scattering,  
Contribution to: 2022 Snowmass Summer Study
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Parton Structure of the nucleon

C. Quigg, Gauge Theories of the strong, weak, and electromagnetic interaction

• Nuclear level • Nucleon level • Quark level

Parton model is analogous to the notion that a nucleus is a collection of noninteracting nucleons—but 
with a critical difference. Nucleons are rather easily liberated from nuclei, but the division of a hadron 
into its constituent partons has never been observed  

ELECTROWEAK INTERACTIONS OF QUARKS • 209

which is conventionally written as

Wµν = −W1

(
gµν −

qµqν
q2

)
+ W2

M2

[
Pµ −

(q · P)qµ

q2

] [
Pν −

(q · P)qν
q2

]
. (7.4.21)

The objects W1,2 are known as the structure functions for (unpolarized) inelastic
electron–proton scattering. All that may be learned about hadron structure from
such collisions is contained in these two structure functions, which depend upon P
and q or, more precisely, upon the invariants Q2 and ν.

To make contact with observables, we neglect lepton masses, so that

" · "′ = q · "′ = −q · " = Q2

2
, (7.4.22)

and form

LµνWµν = 2W1(Q2, ν)Q2 + W2(Q2, ν)
[
4(" · P)("′ · P)

M2 − Q2
]

. (7.4.23)

In the laboratory frame, we may express

" · P = ME,

"′ · P = ME′,
(7.4.24)

to obtain

LµνWµν = 4EE′
[
2W1(Q2, ν) sin2

(
θ

2

)
+ W2(Q2, ν) cos2

(
θ

2

)]
. (7.4.25)

The differential cross section in the laboratory frame is given by

d2σ
dE′d%′

= 1
16π2

E′

E
|M|2 = (4πα)2

16π2Q4

E′

E
LµνWµν (7.4.26)

= 4α2E′2

Q4

[
2W1(Q2, ν) sin2

(
θ

2

)
+ W2(Q2, ν) cos2

(
θ

2

)]
.

It is often more convenient to express the differential cross section with respect to
the invariants ν and Q2 as

d2σ
dQ2dν

= π

EE′
d2σ

dE′d%′
= 4πα2

Q4

E′

E

[
2W1(Q2, ν) sin2

(
θ

2

)
+ W2(Q2, ν) cos2

(
θ

2

)]
.

(7.4.27)

It is interesting to compare the cross section (7.4.26) with the more familiar
results for elastic scattering. The Rosenbluth formula for elastic electron–proton
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Parton Structure of the nucleon
The transition to the parton model is made in the infinite- momentum frame, in which the longitudinal 
momentum of the proton is extremely large 


212 • CHAPTER 7

P||

pN|| = xNP||

p1|| = x1P||

...

Figure 7.10. Parton-model depiction of the proton in the infinite-momentum frame.

parton is negligible, we may write the four-momentum of an individual parton as

pµ
i = xi Pµ. (7.4.43)

Then if interactions among the partons can be neglected, so that the individual
current–parton interactions may be treated incoherently, we may write the contri-
bution to W2 due to scattering from a single parton of charge ei as [19]

W(i)
2 (Q2, ν; xi ) = xie2i δ

(
q · pi
M
− Q2

2M

)

= xie2i δ
(
xiq · P
M

− Q2

2M

)

= e2i δ
(
ν − Q2

2Mxi

)
, (7.4.44)

which reproduces, as it must, the Rutherford cross section

dσ
dQ2 = 4πα2e2i

Q4 (7.4.45)

at high energies.
The incoherence assumption, or impulse approximation, means that the struc-

ture function for electron–proton scattering is simply the sum over the contributions
of individual partons:

W2(Q2, ν) =
∑

i

∫ 1

0
dxi fi (xi )W

(i)
2 (Q2, ν; xi ), (7.4.46)

where fi (xi ) gives the probability of finding the ith parton with momentum fraction
xi . The integration over dxi is readily carried out using the rule

∫
dx δ(h(x)) = 1

∂h/∂x h(x)=0
. (7.4.47)

We find at once that

W2(Q2, ν) =
∑

i

e2i fi (x)x
ν

, (7.4.48)
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Momentum of individual partons is:

W1 =
Q2

4m2
N

(F1 + F2)
2�
⇣
! � Q2

2mN

⌘

W2 =
⇣
F 2
1 + F 2

2
Q2

4m2
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⌘
�
⇣
! � Q2

2mN
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Elastic electron-proton

W point
2 = �

⇣
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Electron-point-like particle

✴Let’s move to the blackboard
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• Nuclear level • Nucleon level • Quark level
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which is conventionally written as

Wµν = −W1

(
gµν −

qµqν
q2

)
+ W2

M2

[
Pµ −

(q · P)qµ

q2

] [
Pν −

(q · P)qν
q2

]
. (7.4.21)

The objects W1,2 are known as the structure functions for (unpolarized) inelastic
electron–proton scattering. All that may be learned about hadron structure from
such collisions is contained in these two structure functions, which depend upon P
and q or, more precisely, upon the invariants Q2 and ν.

To make contact with observables, we neglect lepton masses, so that

" · "′ = q · "′ = −q · " = Q2

2
, (7.4.22)

and form

LµνWµν = 2W1(Q2, ν)Q2 + W2(Q2, ν)
[
4(" · P)("′ · P)

M2 − Q2
]

. (7.4.23)

In the laboratory frame, we may express

" · P = ME,

"′ · P = ME′,
(7.4.24)

to obtain

LµνWµν = 4EE′
[
2W1(Q2, ν) sin2
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θ
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+ W2(Q2, ν) cos2

(
θ
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The differential cross section in the laboratory frame is given by

d2σ
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E′

E
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16π2Q4

E′

E
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= 4α2E′2

Q4

[
2W1(Q2, ν) sin2

(
θ

2

)
+ W2(Q2, ν) cos2

(
θ

2

)]
.

It is often more convenient to express the differential cross section with respect to
the invariants ν and Q2 as

d2σ
dQ2dν

= π

EE′
d2σ

dE′d%′
= 4πα2

Q4

E′

E

[
2W1(Q2, ν) sin2

(
θ

2

)
+ W2(Q2, ν) cos2

(
θ

2

)]
.

(7.4.27)

It is interesting to compare the cross section (7.4.26) with the more familiar
results for elastic scattering. The Rosenbluth formula for elastic electron–proton
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Neglecting the strange and heavier quarks, we may write

F ep
2 (x) + F en

2 (x) = 5x
9
[
u(x) + ū(x) + d(x) + d̄(x)

]
, (7.4.67)

whereupon the fractional momentum carried by the quarks is [25]

9
5

∫ 1
0 dx (F

ep
2 (x) + F en

2 (x)) ≈ 0.45. (7.4.68)

Unless our neglect of strange quarks was grossly in error (see problem 7.13), we are
led to conclude that 55% of the proton momentum is carried by neutral partons. As
we shall see in chapter 8, this role falls naturally to the gluons, the gauge bosons of
quantum chromodynamics.

To proceed further in the analysis of the quark distributions without making
strongly model-dependent assumptions, we must make use of information from the
charged-current weak interactions. The most general form of the cross section for
the inclusive reaction

ν + N→ µ + anything (7.4.69)

may be derived (cf. problem 7.14) by the same methods used to derive the form
(7.4.27) for deeply inelastic electron scattering. There is the important difference that
the lepton tensor in this case has a V− A structure, and the cross section expression
is slightly complicated by the violation of parity. The general result is

d2σ ν

dQ2 dν
= G2

F

2π
E′E

[
2Wν

1 sin2
(
θ

2

)
+ Wν

2 cos2
(
θ

2

)
+ Wν

3
(E + E′)

M
sin2

(
θ

2

)]
,

(7.4.70)

where the final term arises from the parity-violating εµναβ Pαqβ term in the general
expansion (7.4.14) of the hadronic vertex. The cross section is conveniently recast
in terms of the scaling variables x and y as

d2σ ν,ν̄

dxdy
= G2

FME
π

[
F1(x)xy2 + F2(x)(1− y) ± F3(x)xy

(
1− y

2

)]
, (7.4.71)

where the dimensionless structure functions F1,2(x) are defined in analogy with
F1,2(x) in the electromagnetic case, and

F3(x) ≡ νWν
3 (x). (7.4.72)

Without further analysis, we obtain the parton-model prediction for the total
charged-current cross section,

σt(νN→ (+ anything) ∝ E. (7.4.73)

The experimental results collected in figure 7.12 show this to be the case to
excellent approximation for neutrino and antineutrino scattering at energies from

 has the contribution of an additional structure function⌫ +N
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Quark-Hadron Duality
Duality can then be considered as a conceptual experimental bridge between free and confined partons.  

Language of quarks/gluons in the DIS region and, as W 
decreases, one transitions to hadrons; in the SIS region 
that includes both resonant and non-resonant pion 
production. 

45

approximately equal to the leading twist contribution measured in the DIS region. That
is the DIS scaling curve extrapolated down into the resonance region passes through the
average of the ”peaks and valleys” of the resonant structure. It is important to recall
that the understanding of this SIS region is critical for long-baseline oscillation experiments
where, for example, in the future DUNE experiment around 50% of the interactions will be
in these SIS and DIS regions with W above the mass of the � resonance.

This higher-W SIS region between the � resonance and DIS has been quite intensively
studied experimentally in electron/muon-nucleon (e/µ-N) interactions and somewhat less
thoroughly in electron/muon-nucleus (e/µ-A) scattering. The studies of e/µ-N interactions
in this kinematic region have been used to test this hypothesis of quark-hadron duality. An
early Je↵erson Lab measurement (E94-110) showed that global duality was clearly observed
for Q2

� 0.5 GeV2, as can be seen in Fig. 17, with resonances following the extrapolated
DIS curve.

04-28-2005

Duality in the F2 Structure Function

§ Empirically, DIS region is 
where logarithmic scaling is 
observed: 
Q2 > 5 GeV2, W2 > 4 GeV2

§ Duality:
Averaged over W, log scaling

observed to work also for 
Q2 > 0.5 GeV2, W2 < 4 GeV2

§ JLab results (E94110):
Works quantitatively to 
better than 10%

FIG. 17. Comparison of F p

2 from the series of resonances measured by E94-110 vs the Nachtmann
variable ⇠ at the indicated Q2 compared to the extrapolated DIS measurement from the NMC
collaboration at 5 GeV2

A quantitative description of how well duality is satisfied can be accomplished by defining
the ratio of integrals of structure functions, over the same interval in the Nachtmann variable
⇠(x,Q2) = 2x/[1 +

p
1 + 4x2M2

N
/Q2], from the resonance (RES) region and DIS region. To

keep the same ⇠ interval in the higher W DIS region compared to the lower W RES region
requires a di↵erent Q2 for the RES and DIS regions, thus the indexing of Q2 in the ratios.
This method tests local duality within the integrals limits and for perfect quark-hadron local

• 1970 Bloom-Gilman duality in (e,e’) experiments on p

DIS scaling curve extrapolated down into the 
resonance region passes through the average of the 
”peaks and valleys” of the resonant structure. 

Comparison of Fp2 from the series of resonances 
measured by E94-110 vs the Nachtmann variable ξ 
compared to the extrapolated DIS measurement from 
the NMC collaboration at 5 GeV2 


For Q2> 0.5 GeV2 resonances follow the extrapolated DIS curve showing quark-hadron duality
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Quark-Hadron Duality in 𝜈

The experimental study of duality with neutrinos is very restricted since the measurement of resonance 
production by ν-N interactions is confined to low-statistics data obtained in hydrogen and deuterium 
bubble chamber experiments from the 70’s and 80’s.  

Quark-hadron duality in neutrino interactions

[T. Sato EPJ:ST (2021) 230:4409-4418 (2022)]!!

Alexis Nikolakopoulos | SLAC Theory Seminar40

Bloom-Gilman duality in (e,e’) 
experiments on proton

● At large Q2 the F
2 
structure function in 

the resonance region oscillates 
around and approaches the DIS 
structure function

 

For CC ν scattering 

● ANL-Osaka DCC model 
underestimates F

2 
from DIS 

[T. Sato EPJ:ST (2021) 230:4409-4418 (2022)]

see also: 
[O. Lalakulich et al. PRC79 015206 (2009)]

For CC 𝜈 scattering

ANL-Osaka DCC model 
underestimates F2 from DIS 
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Quark-Hadron Duality in 𝜈

The experimental study of duality with neutrinos is very restricted since the measurement of resonance 
production by ν-N interactions is confined to low-statistics data obtained in hydrogen and deuterium 
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For CC 𝜈 scattering

ANL-Osaka DCC model 
underestimates F2 from DIS 


Quark-hadron duality in neutrino interactions

[T. Sato EPJ:ST (2021) 230:4409-4418 (2022)]!!

Alexis Nikolakopoulos | SLAC Theory Seminar41

Bloom-Gilman duality in (e,e’) 
experiments on proton

● At large Q2 the F
2 
structure function in 

the resonance region oscillates 
around and approaches the DIS 
structure function

 

For CC ν scattering 

● ANL-Osaka DCC model 
underestimates F

2 
from DIS

● Upon modifying the Q2-
dependence: 

Improved agreement with DIS

Improvement with DIS upon 
modifying the Q2- dependence of the 
axial form factor:


Quark-hadron duality in neutrino interactions

[T. Sato EPJ:ST (2021) 230:4409-4418 (2022)]!!

Alexis Nikolakopoulos | SLAC Theory Seminar41

Bloom-Gilman duality in (e,e’) 
experiments on proton

● At large Q2 the F
2 
structure function in 

the resonance region oscillates 
around and approaches the DIS 
structure function

 

For CC ν scattering 

● ANL-Osaka DCC model 
underestimates F

2 
from DIS

● Upon modifying the Q2-
dependence: 

Improved agreement with DIS

• More data are needed to better constrain/understand 𝜈-N scattering
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From theory to experiment

34

µ

p

𝜈µ

n

Free nucleon scattering case 
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Nuclear model describing the target nucleus


Different reaction mechanisms depending on the momentum transferred to the the nucleus


Final state interactions: describe how the particles  propagate through the nuclear medium
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The Nucleus internal structure

35

Nuclei are strongly interacting many body systems exhibiting fascinating properties

n
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strong field

Each nucleon is made of three quarks held 
together by strong interactions→mediated by 
gluons 

The nucleus is held together by the strong interactions between quark and gluons of neighboring 
nucleons 

Nuclear Physicists effectively describe the interactions between protons and neutrons in terms 
of exchange of pions 

The nucleus is formed by protons and neutrons: 
nucleons.

Nuclear chart. Magic numbers N or Z= 2, 8, 20, 
28, 50 and 126; major shell complete and are 
more stable than other elements
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Theory of lepton-nucleus scattering

36

• The cross section of the process in which a lepton scatters off a nucleus is given by

|0i = | A
0 i , |fi = | A

f i, | N
p , A�1

f i, | ⇡
k , 

N
p , A�1

f i . . .

`

`0

�, Z,W±

| 0i

| f i

The initial and final wave functions describe many-body states:

d� / L↵�R↵�

Leptonic Tensor: is the same as before, completely 
determined by lepton kinematics 

Hadronic Tensor: nuclear response function

R↵�(!,q) =
X

f

h0|J†
↵(q)|fihf |J�(q)|0i�(! � Ef + E0)

For inclusive reactions, the hadronic final state is not detected. We need to sum over all the 
possible ones
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Liquid Drop Model

• The nucleus is treated as a drop of incompressible nuclear fluid. The fluid is made of nucleons 
which are held together by the strong nuclear forces. 

Introduction 

• The Liquid Drop Model assumes that nuclei can be treated as drops of an incompressible liquid

B(A,Z) = aV A+ aSA
2/3 + aC

Z2

A1/3
+ SN

(N � Z)2

A
+ aP

(�1)Z + (�1)N

2A1/2

• This model encompasses the saturation of nuclear forces, a consequence of their short-range nature

• The nuclear binding energy is given by the Weizsäcker formula

Volume Surface Coulomb Symmetry Pairing

(Much) more in Natalie’s lectures!

• This model explains the spherical shape and the binding energy of nuclei. 

Introduction 

• The Liquid Drop Model assumes that nuclei can be treated as drops of an incompressible liquid

B(A,Z) = aV A+ aSA
2/3 + aC

Z2

A1/3
+ SN

(N � Z)2

A
+ aP

(�1)Z + (�1)N

2A1/2

• This model encompasses the saturation of nuclear forces, a consequence of their short-range nature

• The nuclear binding energy is given by the Weizsäcker formula

Volume Surface Coulomb Symmetry Pairing

(Much) more in Natalie’s lectures!

• The nuclear binding is given by the Weizsäcker formula 
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Liquid Drop Model

Introduction 

• The Liquid Drop Model assumes that nuclei can be treated as drops of an incompressible liquid

B(A,Z) = aV A+ aSA
2/3 + aC

Z2

A1/3
+ SN

(N � Z)2

A
+ aP

(�1)Z + (�1)N

2A1/2

• This model encompasses the saturation of nuclear forces, a consequence of their short-range nature

• The nuclear binding energy is given by the Weizsäcker formula

Volume Surface Coulomb Symmetry Pairing

(Much) more in Natalie’s lectures!

• The nuclear binding is given by the Weizsäcker formula 

• Volume Term: This term represents the attractive nuclear force that acts over the entire volume 
of the nucleus

• Surface Term: This term accounts for the fact that nucleons at the surface of the nucleus have 
fewer neighboring nucleons than those in the interior

• Coulomb Term: This term represents the electrostatic repulsion between protons in the nucleus 
due to their positive charges.

• Asymmetry Term: It reflects the preference for equal numbers of protons and neutrons, which 
contribute to greater nuclear stability. Deviations from this balance result in less binding energy.

• Pairing Term: This term considers the additional binding energy due to the pairing of nucleons 
(protons with protons and neutrons with neutrons) in even numbers.
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Initial state: global Fermi gas 

• Simple picture of the nucleus: only 
statistical correlations are retained 
(Pauli exclusion principle)

• Protons and neutrons are considered 
as moving freely within the nuclear 
volume

• The nuclear potential wells are rectangular: constant inside the nucleus and goes sharply to 
zero at its edge 

• The energy of the highest occupied state is the Fermi energy:  EF

• The difference B’ between the top of the well and the Fermi level is constant for most nuclei 
and is just the average binding energy per nucleon B’/A ~ 7-8 MeV

C. Bertulani, Nuclear Physics in a Nutshell

2

The basic concept of the FermiThe basic concept of the Fermi--gas modelgas model

The theoretical concept of a Fermi-gas may be applied for systems of weakly 
interacting fermions, i.e. particles obeying Fermi-Dirac statistics leading to the Pauli
exclusion principle !!!!
• Simple picture of the nucleus:
— Protons and neutrons are considered as moving freely within the nuclear volume. 
The binding potential is generated by all nucleons
— In a first approximation, these nuclear potential wells are considered as
rectangular: it is constant inside the nucleus and stops sharply at its edge 
— Neutrons and protons are distinguishable fermions and are therefore situated in 
two separate potential wells

— Each energy state can be ocupied by two
nucleons with different spin projections
— All available energy states are filled by 
the pairs of nucleons !!!! no free states , no 
transitions between the states
— The energy of the highest occupied state 
is the Fermi energy EF

— The difference B‘ between the top of the well and the Fermi level is constant for 
most nuclei and is just the average binding energy per nucleon B‘/A = 7–8 MeV.
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Initial state: Local Fermi gas 

pF =
⇣9⇡ · n

4A

⌘1/3
· ~
R0

���������������������������������

� � � � � � � �

ᅻ վփ	ԡ
(
7K

ϯ )

ԡ (7K)

2tT

• A spherically symmetric nucleus can be approximated 
by concentric spheres of a constant density. 

More likely to find a particle r ~ rch~ 2.5 fm

51 Gabriel Perdue // Neutrino University // Neutrino Interactions July 19, 2017

Fermi gas

Plan
MC in experiment

Neutrino interactions

Nuclear effects
Fermi gas
Spectral function
Final state interactions
Intranuclear cascade
FSI in GENIE

Generating splines

Generating events

Analyzing an output

Tomasz Golan MINERvA101 GENIE 12 / 45
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pF = ~
⇣
3⇡2⇢(r)

n

A

⌘1/3

• Global Fermi Gas • Local Fermi Gas
Figure by T. Golan
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Initial state: shell Model 

• As in the Fermi Gas model: the nucleons move within the nucleus independently of each other

• Difference: the nucleons are not free: subject to a central potential

• Each nucleon moves in an average potential created by the other nucleons, the potential 
should be chosen to best reproduce the experimental results

H =
X

i

p
2
i

2m
+

X

i<j

vij + . . . H =
X

i

p
2
i

2m
+

AX

i

Ui +Hres

• We solve the Schrödinger Equation:

H  = E  
E = E1 + E2 + . . .+ EA

 (1, . . . , A) = A[�1(1) . . .�A(A)]
{
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Initial state: shell Model 
• Example: Particles are subject to an harmonic oscillator potential

U(r) =
1

2
m!2r2  The frequency should be adapted to the mass number A

V0, r, a, are adjustable parameters chosen to best 
reproduce the experimental results

 (r) =
u(r)

r
Y m
l (✓,�)

d2u

dr2
+

(
2m

~2 [E � U(r)]� l(l + 1)

r2

)
u(r) = 0

Enl = ~!
⇣
2n+ l � 1

2

⌘

V = V0/[1 + exp[(r �R)/a]

• We will seek solutions of the type 

• Solving the Schrödinger Equation reduces to a solution of u:

Eigenvalues

FIG. 5: (Color online) Woods-Saxon potential in H (solid line) and harmonic oscillator potential

in HHO
0 (dashed line) as a function of r.

The main idea for using the Rayleigh-Schrödinger perturbation theory [156] to investigate

the spin symmetry (SS) and PSS in single-particle Hamiltonian as well as their breaking in

atomic nuclei can be found in Ref. [135]. Following this idea, the Hamiltonian H is split as

H = H0 +W, (34)

where H0 conserves the exact PSS and W is identified as the corresponding symmetry

breaking potential. The condition
∣

∣

∣

∣

Wmk

Ek − Em

∣

∣

∣

∣

" 1 for m #= k (35)

with Wmk = 〈ψm|W |ψk〉 determines whether W can be treated as a small perturbation and

governs the convergence of the perturbation series [156].

For the present case, it has been analytically shown in Section IIC that the Hamiltonian

with harmonic oscillator (HO) potentials is one of the exact PSS limits. Thus, one has

HHO
0 = −

1

2M

[

d2

dr2
+
κ(κ+ 1)

r2

]

+
M

2
ω2r2 + V (0), (36)

and WHO is just the difference between H and HHO
0 . To minimize the perturbations to the

sdg states, the coefficient ω is chosen as 1.118×41A−1/3 MeV, and the trivial constant V (0)

is taken as −73 MeV, as illustrated in Fig. 5. Although the symmetry breaking potential

WHO diverges at r → ∞ due to the parabolic behavior of HHO
0 , the property that the bound

state wave functions decay exponentially at large radius leads to convergent results of the

matrix elements Wmk.

14

• A more realistic potential is the Wood Saxon:

Spherical Harmonics

Physical Review C 87(1):014334
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Nuclear Shell Model

1s (ms=0)    Z=2

The lowest level, s shell, can contain 2 protons

H =
X

i

p
2
i

2m
+
X

i

V (ri)

Our assumption: central potential

 n is the principal quantum number, l orbital 
momentum, m magnetic quantum number



Nuclear Shell Model
The p shell can contain up to 6 protons

We explained the first two magic numbers: 2 and 8. 
We can follow the same strategy for the Z=20 case; 
but at the next step we obtain Z=40 while 
experimentally Z=50  

Our assumption: central potential

H =
X

i

p
2
i

2m
+
X

i

V (ri)
1s (ms=0)  

1p (mp=-1,0,1) 

Z=8 

 n is the principal quantum number, l orbital 
momentum, m magnetic quantum number



Nuclear Shell Model
The p shell can contain up to 6 protons Our assumption: central potential

H =
X

i

p
2
i

2m
+
X

i

V (ri)

✐ Maria Goeppert Mayer poses with her colleagues in front of 
Argonne’s Physics building.

In 1963, Goeppert Mayer, Jensen, and Wigner shared 
the Nobel Prize for Physics "for their discoveries 
concerning nuclear shell structure."

The solution to the puzzle lies in the spin-orbit 
coupling. This effect in the nuclear potential is 20 
times larger then in Atomic Physics

V (r) ! V (r) +W (r)L · S

The spin-orbit introduces an energy split which 
modifies the shell structure and reproduces magic 
number up to Z=126

We explained the first two magic numbers: 2 and 8. 
We can follow the same strategy for the Z=20 case; 
but at the next step we obtain Z=40 while 
experimentally Z=50  

1s (ms=0)  

1p (mp=-1,0,1) 

Z=8 
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FIG. 2. Electron-proton coincidence counting rate
per 10~' equivalent quanta at 550 MeV as a function of
the incident energy. The dashed lines indicate the
contributions of the various shells and the background
as explained in the text.

which is naturally very narrow, has a width here
of about 12 MeV, only slightly larger than the
calculated resolution. The contribution of the
two 1s protons is not clearly separated with such
a resolution. Our results are, however, fully
consistent with its presence at the binding ener-
gy and with the width observed in the (p, 2p) ex-
periments and a relative height calculated by a
Monte Carlo program on our IBM-7040 computer.
The calculation is based on the impulse approxi-
mation assuming momentum distributions for the
s and p protons fitting the (p, 2p) results' and
integrating over the energies and angles fixed by
our apparatus. The counting rate on the C"P
peak was about two counts per minute per elec-
tron momentum channel and agrees within a fac-
tor two with that calculated. An assumed back-
ground is shown in Fig. 2. The origin of this
background is not yet clear, but it comes at
least partly from the multiple scattering of pro-
tons before leaving the original nucleus. This
effect is enhanced with respect to existing (P, 2P)
results because of the large solid angle of our
proton detector, since the multiply scattered

protons have a wider angular distribution.
For Al ' the spectrum shows one clear peak,

and bumps near 30- and 60-MeV binding energy.
%e assign the peak to the five protons which, ac-
cording to the shell model, are in the outermost
2s-1d shell, and the bumps to the six 1P protons
and the two 1s protons, respectively. The posi-
tion and width of the 2s-1d peak agrees with
those observed in (P, 2P) experiments; the 1s and
1P have not been seen with that reaction. After
subtracting an estimated background, we obtain
a good fit to the data with peaks at 14.5-, 32-,
and 59-MeV binding energy, with total natural
widths of 7, 17, and 21 MeV, respectively, and
areas in the ratio of 1:0.9:0.4. The ratio of the
number of protons in the shells is 1:1.2:0.4, in
reasonable agreement taking into account absorp-
tion in the nucleus.
Aside from the rough agreement of the ratios

and absolute areas of the C" and Al" peaks with
the expected values, the most interesting new
results are the binding energies of the 1s and 1P
peaks in Al". The position of the P peak falls
roughly where expected extrapolating in Z from
nearby nuclei, in which it has been measured
through (p, 2p) reactions, and it is broadened
as expected from the P„,-P3» separation and the
fact that the nucleus is heavily distorted. It is
worthwhile noting that the P and s peaks are not
resolved because of their natural width and not
for experimental reasons. The fact that the s
peak seems to fall nearly on a linear extrapola-
tion of the (P, 2P) results from He4 to 0", how-
ever, is much more informative. Its observed
binding energy of -60 MeV is already consider-
ably greater than the -45-MeV well depth usual-
ly assigned to the shell-model. potential, pre-
sumably indicating an effective proton mass of
less than W.6 free masses in the s shell of Al '.
The curve representing the 1s binding energy as
a function of Z must level off eventually, and it
will be most interesting to follow it to heavier
nuclei. The width of the observed s peak of
roughly 20 MeV (compared with 14 MeV in 0",
for instance) gives some hope that the lifetime of
the 1s hole is becoming short sufficiently slowly
as to permit observation of this shell to consid-
erably higher Z.
%e acknowledge the help given to the experi-

ment by the staff of the Frascati synchrotron in
running the machine according to strict stability
requirements.
One of us (P.H. ) wishes to express his grati-

tude to Comitato Nazionale per 1'Energia Nucle-
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1s1/2

1p3/2

1p1/2

e
e’

p

• (e,e’p) experiments are extremely important to 
investigate the internal structure of the nucleus  

• The peak coming from four 1p protons is visible

• The contribution of the two 1s protons is not 
clearly separated with this resolution  

U.Amaldi et al, Phys. Rev. Lett. 13, 10 (1964)  

12C

• Assuming NO FSI the energy and momentum of 
the initial nucleon can be identified with the 
measured pmiss and Emiss
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(e,e’p) scattering experiments
• Electron and proton experiments also pinned down the limitations of MF approaches

• The large-momentum (short-range) component of the wave 
function is dominated by the presence of Short Range Correlated 
(SRC) pairs of nucleons

12

kF

(Fermi-gas	like)

Why	SRC?

21

(semi)	Exclusive	2N-SRC	Studies
Breakup	the	pair	=>	

Detect	both	nucleons	=>	
Reconstruct	‘initial’	state

‘leading’

‘recoil’

136 Many-body theory exposed!

Fig. 7.6 Spectroscopic factors from the (e, e'p) reaction as a function of target mass.
The dotted line with a height of 1, illustrates the prediction of the independent-particle
model. Data have been obtained at the NIKHEF accelerator in Amsterdam [Lapikas
(1993)].

momentum can also have negative values when it is directed opposite to the
momentum transferred to the target. A correct description of the reaction
requires a good fit at all values of this quantity.

Figure 7.5 demonstrates that the shapes of the valence nucleon wave
functions accurately describe the observed cross sections. Such wave func-
tions have been employed for years in nuclear-structure calculations, which
have relied on the independent-particle model. The description of the data
in Fig. 7.5, however, requires a significant departure of the independent-
particle model, with regard to the integral of the square of these wave
functions. Indeed, the spectroscopic factors, necessary to obtain the solid
curves, are substantially less than 1. Similar spectroscopic factors are
extracted for nuclei all over the periodic table4. A compilation for the
spectroscopic factor of the last valence orbit for different nuclei, adapted
from [Lapikas (1993)], is shown in Fig. 7.6. The results in Fig. 7.6 indicate
that there is an essentially global reduction of the sp strength of about
35% for these valence holes in most nuclei. Such a substantial deviation
from the prediction of the independent-particle model, requires a detailed

4Most experiments have been performed on closed-shell nuclei.

• Quenching of the spectroscopic factors of valence 
states has been confirmed by a number of high resolution 
(e,e’p) experiments 

• Semi-exclusive 2N-SRC 
experiments at x>1 allows to 
detect both nucleons and 
reconstruct the initial state

• Confirmed that the high 
momentum tail of the 
nuclear wave function 
consists mainly of 2N-SRC 

Subedi et al., Science 320, 1476 (2008) 

Figure by Or Hen
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(e,e’p) scattering experiments

Figure by Or Hen

nuclei. This backward peak is a strong signature
of SRC pairs, indicating that the two emitted
protons were largely back-to-back in the initial
state, having a large relative momentum and a
small center-of-mass momentum (8, 9). This is a
direct observation of proton-proton (pp) SRC
pairs in a nucleus heavier than 12C.
Electron scattering fromhigh–missing-momentum

protons is dominated by scattering from protons
in SRC pairs (9). The measured single-proton
knockout (e,e′p) cross section (where e denotes
the incoming electron, e′ the measured scattered
electron, and p the measured knocked-out pro-
ton) is sensitive to the number of pp and np SRC
pairs in the nucleus, whereas the two-proton
knockout (e,e′pp) cross section is only sensitive to
the number of pp-SRC pairs. Very few of the
single-proton knockout events also contained a
second proton; therefore, there are very few
pp pairs, and the knocked-out protons predom-
inantly originated from np pairs.
To quantify this, we extracted the [A(e,e′pp)/

A(e,e′p)]/[12C(e,e′pp)/12C(e,e′p)] cross-section dou-
ble ratio for nucleus A relative to 12C. The double
ratio is sensitive to the ratio of np-to-pp SRC
pairs in the two nuclei (16). Previous measure-
ments have shown that in 12C nearly every high-
momentum proton (k > 300 MeV/c > kF) has a
correlated partner nucleon, with np pairs out-
numbering pp pairs by a factor of ~20 (8, 9).
To estimate the effects of final-state interac-

tions (reinteraction of the outgoing nucleons in
the nucleus), we calculated attenuation factors
for the outgoing protons and the probability of
the electron scattering from a neutron in an np
pair, followed by a neutron-proton single-charge
exchange (SCX) reaction leading to two outgoing
protons. These correction factors are calculated
as in (9) using the Glauber approximation (22)
with effective cross sections that reproduce pre-
viously measured proton transparencies (23), and
using themeasured SCX cross section of (24).We
extracted the cross-section ratios and deduced the
relative pair fractions from the measured yields
following (21); see (16) for details.
Figure 3 shows the extracted fractions of np

and pp SRC pairs from the sum of pp and np
pairs in nuclei, including all statistical, systematic,
and model uncertainties. Our measurements are
not sensitive to neutron-neutron SRC pairs. How-
ever, by a simple combinatoric argument, even in
208Pb these would be only (N/Z)2 ~ 2 times the
number of pp pairs. Thus, np-SRC pairs domi-
nate in all measured nuclei, including neutron-
rich imbalanced ones.

The observed dominance of np-over-pp pairs
implies that even in heavy nuclei, SRC pairs are
dominantly in a spin-triplet state (spin 1, isospin
0), a consequence of the tensor part of the nucleon-
nucleon interaction (17, 18). It also implies that
there are as many high-momentum protons as
neutrons (Fig. 1) so that the fraction of protons
above the Fermi momentum is greater than that
of neutrons in neutron-rich nuclei (25).
In light imbalanced nuclei (A≤ 12), variational

Monte Carlo calculations (26) show that this re-
sults in a greater average momentum for the
minority component (see table S1). The minority
component can also have a greater average mo-
mentum in heavy nuclei if the Fermimomenta of
protons and neutrons are not too dissimilar. For
heavy nuclei, an np-dominance toy model that
quantitatively describes the features of the mo-
mentum distribution shown in Fig. 1 shows that
in imbalanced nuclei, the average proton kinetic
energy is greater than that of the neutron, up to
~20% in 208Pb (16).
The observed np-dominance of SRC pairs in

heavy imbalanced nuclei may have wide-ranging
implications. Neutrino scattering from two nu-
cleon currents and SRC pairs is important for the
analysis of neutrino-nucleus reactions, which are
used to study the nature of the electro-weak in-
teraction (27–29). In particle physics, the distribu-
tion of quarks in these high-momentum nucleons
in SRC pairs might be modified from that of free
nucleons (30, 31). Because each proton has a
greater probability to be in a SRC pair than a
neutron and the proton has two u quarks for
each d quark, the u-quark distribution modifica-
tion could be greater than that of the d quarks
(19, 30). This could explain the difference be-
tween the weak mixing angle measured on an
iron target by the NuTeV experiment and that of
the Standard Model of particle physics (32–34).
In astrophysics, the nuclear symmetry energy

is important for various systems, including neu-
tron stars, the neutronization of matter in core-
collapse supernovae, and r-process nucleosynthesis
(35). The decomposition of the symmetry energy
at saturation density (r0 ≈ 0.17 fm−3, the max-
imum density of normal nuclei) into its kinetic
and potential parts and its value at supranuclear
densities (r > r0) are notwell constrained, largely
because of the uncertainties in the tensor com-
ponent of the nucleon-nucleon interaction (36–39).
Although at supranuclear densities other effects
are relevant, the inclusion of high-momentum
tails, dominated by tensor-force–induced np-SRC
pairs, can notably soften the nuclear symmetry

energy (36–39). Our measurements of np-SRC
pair dominance in heavy imbalanced nuclei can
help constrain the nuclear aspects of these cal-
culations at saturation density.
Based on our results in the nuclear system, we

suggest extending the previous measurements of
Tan’s contact in balanced ultracold atomic gases
to imbalanced systems in which the number of
atoms in the two spin states is different. The
large experimental flexibility of these systems will
allow observing dependence of the momentum-
sharing inversion on the asymmetry, density,
and strength of the short-range interaction.
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Fig. 3. The extracted
fractions of np (top)
and pp (bottom) SRC
pairs from the sum of
pp and np pairs in
nuclei.The green and
yellow bands reflect
68 and 95% confidence
levels (CLs), respec-
tively (9). np-SRC pairs dominate over pp-SRC pairs in all measured nuclei.
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extractions of nðkÞ. We can avoid this model dependence
by making comparisons between nuclei in a region where
the kinematics limit the scattering to k > kF [5,26]. If these
high-momentum components are related to two-nucleon
short-range correlations (2N-SRCs), where two nucleons
have a large relative momentum but a small total momen-
tum due to their hard two-body interaction, then they
should yield the same high-momentum tail whether in a
heavy nucleus or a deuteron.

The first detailed study of SRCs combined data interpo-
lated to fixed kinematics from different experiments at
SLAC [26]. A plateau was seen in the ratio ð!A=AÞ=
ð!D=2Þ that was roughly A independent for A # 12, but
smaller for 3He and 4He. Measurements from Hall B at
JLab showed similar plateaus [27,28] in A=3He ratios for
Q2 # 1:4 GeV2. A previous JLab Hall C experiment at
4 GeV [11,29] measured scattering from nuclei and deu-
terium at larger Q2 values than SLAC or CLAS, but had
limited statistics for deuterium. While these measurements
provided significant evidence for the presence of SRCs,
precise A=D ratios for several nuclei, covering the desired
range in x and Q2, are limited.

Figure 2 shows the cross section ratios from E02-019 for
the "e ¼ 18% data. For x > 1:5, the data show the expected
plateau, although the point at x ¼ 1:95 is always high
because one is approaching the kinematic threshold for
scattering from the deuteron at x ¼ MD=Mp & 2. This
rise was not observed in previous measurements; the
SLAC data did not have sufficient statistics to see the
rise, while the CLAS measurements took ratios of heavy
nuclei to 3He, where the cross section does not go to zero
for x ! 2. Table I gives the ratio in the plateau region for a
range of nuclei at all Q2 values where there were sufficient
large-x data. We apply a cut in x to isolate the plateau
region, although the onset of scaling in x varies somewhat
withQ2. The start of the plateau is independent ofQ2 when
taken as a function of #2n,

#2n ¼ 2' $' qþ 2MN

2MN
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1'M2

N=W
2
2n

q
Þ; (3)

(W2
2n ¼ 4M2

N þ 4MN$'Q2) which corresponds to the
light-cone momentum fraction of the struck nucleon as-
suming that the photon is absorbed by a single nucleon
from a pair of nucleons with zero net momentum [26]. We
take the ratio for xmin < x< 1:9, such that xmin corre-
sponds to a fixed value of #2n.
There are small inelastic contributions at the higher Q2

values, even for x > 1:5. A simple convolution model [7]
predicts an inelastic contribution of 1%–3% at 18% and
5%–10% at 26%. This may explain the small systematicQ2

dependence in the extracted ratios seen in Table I. Further
results on the role of SRCs will be based on the 18% data,
with the inelastic contributions subtracted (including a
100% model dependence uncertainty), to minimize the
size and uncertainty of the inelastic correction.
Calculations of inclusive FSIs generally show them to

decrease rapidly with increasing Q2. However, the effects
can still be important at high Q2 for x > 1. While at least
one calculation suggests that the FSI is A dependent [30],
most indicate that the FSI contributions which do not
decrease rapidly with Q2 are limited to FSI between the
nucleons in the initial-state SRC [3,5,26,31–33]. In this
case, the FSI corrections are identical for 2N-SRCs in the
deuteron or heavy nuclei, and cancel when taking the
ratios. Our y-scaling analysis of the deuteron cross sections
(Fig. 1) suggests that the FSIs are relatively small for the
deuteron, and the ratios shown in Table I have only a small
Q2 dependence, consistent with the estimated inelastic
contributions, supporting the standard assumption that
any FSIs in the plateau region largely cancel in taking
the target ratios.
In the absence of large FSI effects, the cross section ratio

!A=!D yields the strength of the high-momentum tail of
the momentum distribution in nucleus A relative to a
deuteron. If the high-momentum contribution comes
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FIG. 2. Pernucleon cross section ratios vs x at "e ¼ 18%.

TABLE I. rðA;DÞ ¼ ð2=AÞ!A=!D in the 2N correlation re-
gion (xmin < x< 1:9). We take a conservative value of xmin ¼
1:5 at 18%, corresponding to #2n ¼ 1:275, and use this to set xmin

at 22% and 26%. The last column is the ratio at 18% after
subtracting the inelastic contribution as estimated by a simple
convolution model (and applying a 100% systematic uncertainty
on the correction).

A "e ¼ 18% "e ¼ 22% "e ¼ 26% Inel. sub.

3He 2:14) 0:04 2:28) 0:06 2:33) 0:10 2:13) 0:04
4He 3:66) 0:07 3:94) 0:09 3:89) 0:13 3:60) 0:10
Be 4:00) 0:08 4:21) 0:09 4:28) 0:14 3:91) 0:12
C 4:88) 0:10 5:28) 0:12 5:14) 0:17 4:75) 0:16
Cu 5:37) 0:11 5:79) 0:13 5:71) 0:19 5:21) 0:20
Au 5:34) 0:11 5:70) 0:14 5:76) 0:20 5:16) 0:22
hQ2i 2:7 GeV2 3:8 GeV2 4:8 GeV2

xmin 1.5 1.45 1.4
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• Universality of high-momentum component• Observed dominance of np-over-pp pairs 
for a variety of nuclei

• SRC pairs are in  spin-triplet state, a 
consequence of the tensor part of the 
nucleon-nucleon interaction 

• The cross section ratio: A/d, sensitive to 
nA(k)/nd(k)

• Observed scaling for x>1.5
nA(k > pF ) = a2(A)⇥ nd(k)

 Bottom Line

• Two-body Physics can not be neglected:

• ~20% of the nucleons in nuclei
• ~100% of the high k (>pF) nucleons

• Have large relative momentum and low center 
of mass momentum 
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