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About Me
• Ph.D. from University of Wisconsin

• DM-Ice & COSINE : WIMP NaI dark matter
• Short postdoc at Yale University

• Postdoc at University of Washington
• Switched to neutrino physics

• Faculty at Indiana University

• Experiments
• Project 8 neutrino mass experiment
• MAJORANA DEMONSTRATOR and LEGEND 76Ge 

neutrinoless double beta decay experiments
• I deliberately measure no neutrinos in my 

experiments
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Opportunity of Neutrino Mass
Neutrino mass is BSM physics!

• What is the neutrino mass?

• Why is the neutrino mass so much 
smaller than other fermion 
masses?

• How much CP violation in lepton 
sector?

• Other new physics hiding with 
neutrinos?

Walter C. Pettus11 August 2023
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Mystery of the Neutrino Mass Scale

• Scale of neutrino mass sets them apart from all 
other particles of Standard Model

• Physics behind neutrino mass linked to many 
interesting questions in nuclear, particle, and 
astro physics Ethan Siegel

Walter C. Pettus11 August 2023
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Neutrino Oscillation Input

A. Nucciotti, AHEP 2016 (2016) 9153024

• Oscillation experiments have nailed 
down ∆𝑚!"

# parameters

• But these parameters can’t constrain 
the absolute scale of neutrino mass

Walter C. Pettus11 August 2023
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Probing the Neutrino Mass Scale

Walter C. Pettus11 August 2023

Cosmology
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𝒊#𝟏
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Neutrinoless Double-Beta Decay

𝒎𝜷𝜷 = !
𝒊#𝟏

𝟑

𝑼𝒆𝒊𝟐𝒎𝒊

Endpoint Measurements (β-decay and EC)
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Cosmological Limitations

• Neutrino mass added to ΛCDM as a 
seventh parameter

• Constraint on Σmν weakens with 
additional floating parameters

• H0 tension between early universe 
(CMB, BAO, weak lensing) and late 
universe (distance-ladder and quasar) 
measures

Walter C. Pettus11 August 2023

Planck 2018
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Probing the Neutrino Mass Scale

Walter C. Pettus11 August 2023

Endpoint Measurements (β-decay and EC)

𝒎𝜷 = !
𝒊#𝟏

𝟑

𝑼𝒆𝒊 𝟐𝒎𝒊
𝟐
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Time of Flight – Supernovae
• “Direct” neutrino mass sensitivity can be derived from a time-of-flight 

measurement on supernova neutrinos
• Is there spread in arrival times consistent with higher-

energy neutrinos traveling closer to speed of light?

• SN 1987a places limit of mn < 5.7 eV

• Future prospects?
• Sensitivity down to mn > 0.5 (1.0) eV reasonable for DUNE

and Hyper-K (JUNO) estimated
• Closer is better due to statistics
• No room for improvement by including gravitational waves

Walter C. Pettus11 August 2023
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Global Kinematic Neutrino Limits
• Kinematic limits can be (and have been) done for all neutrino flavors

Walter C. Pettus11 August 2023

flatlined

continuing

J. Wilkerson, WIN 2002
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Endpoint Measurements

Walter C. Pettus11 August 2023

β EnergyR. Church

Physics Insitute Zürich, Dec. 4 1930
ETH Zürich Gloriastrasse

Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously ask you to listen, 
will explain to you in more detail, because of the "wrong" statistics 
of the N- and Li-6 nuclei and the continuous beta spectrum, I have 
hit upon a desperate remedy to save the "exchange theorem" (1) of 
statistics and the law of conservation of energy. Namely, the 
possibility that in the nuclei there could exist electrically neutral 
particles, which I will call neutrons, that have spin 1/2 and obey 
the exclusion principle and that further differ from light quanta in 
that they do not travel with the velocity of light. The mass of the 
neutrons should be of the same order of magnitude as the electron 
mass and in any event not larger than 0.01 proton mass. - The 
continuous beta spectrum would then make sense with the 
assumption that in beta decay, in addition to the electron, a 
neutron is emitted such that the sum of the energies of neutron and 
electron is constant. 
…
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Endpoint Measurements

Walter C. Pettus11 August 2023

β EnergyR. Church

Physics Insitute Zürich, Dec. 4 1930
ETH Zürich Gloriastrasse

Dear Radioactive Ladies and Gentlemen,

…The mass of the neutrons should be of the same order of 
magnitude as the electron mass and in any event not larger than 
0.01 proton mass…

I admit that my remedy may seem almost improbable because one 
probably would have seen those neutrons, if they exist, for a long 
time. But nothing ventured, nothing gained, and the seriousness of 
the situation, due to the continuous structure of the beta spectrum, 
is illuminated by a remark of my honored predecessor, Mr Debye, 
who told me recently in Bruxelles: "Oh, It's better not to think about 
this at all, like new taxes." Therefore one should seriously discuss 
every way of rescue. Thus, dear radioactive people, scrutinize and 
judge. - Unfortunately, I cannot personally appear in Tübingen
since I am indispensable here in Zürich because of a ball on the 
night from December 6 to 7. With my best regards to you,
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Endpoint Measurements

Walter C. Pettus11 August 2023

β Energy

E. Fermi, Zeitschrift fur Physik (1934)

Evidence of neutrino mass 
imprinted in endpoint of spectrum

Physics Insitute Zürich, Dec. 4 1930
ETH Zürich Gloriastrasse

Dear Radioactive Ladies and Gentlemen,

…The mass of the neutrons should be of the same order of 
magnitude as the electron mass and in any event not larger than 
0.01 proton mass…

β EnergyR. Church
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Endpoint Measurements

Walter C. Pettus11 August 2023

β Energy

E. Fermi, Zeitschrift fur Physik (1934)

Evidence of neutrino mass 
imprinted in endpoint of spectrum

Kinetic Energy - Q [eV]
0.4− 0.35− 0.3− 0.25− 0.2− 0.15− 0.1− 0.05− 0

C
ou

nt
 ra

te
 [a

.u
.]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16  = 0 eVνm

 = 0.2 eVνm 𝒅𝑵
𝒅𝝐 ∝ 𝝐 𝝐𝟐 −𝒎𝜷

𝟐



INDIANA UNIVERSITY

Endpoint Measurements

Kurie plot: traditional method for plotting endpoint
• Determine endpoint, see neutrino mass effect
• At the endpoint, just square root of spectrum

Walter C. Pettus11 August 2023

E. Fermi, Zeitschrift fur Physik (1934)
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Endpoint Measurements

Walter C. Pettus11 August 2023
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• “Direct” or “endpoint” measurements can individually determine the 
neutrino mass state masses

• In practice, detector energy resolution and experimental statistics are typically 
insufficient to resolve individual state contributions, so we use 𝑚% instead

• 𝑚& has an absolute backstop
• 𝑚% > 9 meV (48 meV) for NO (IO)
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Ordering Determination
• Mass splitting information is always encoded in the spectrum

• Next-generation endpoint experiments 
could resolve the ordering

Walter C. Pettus11 August 2023

(Project 8) Phys. Rev. C 103 (2021) 065501
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Experiment Sandbox
• Source

• Detector

• Compatibility of two

Walter C. Pettus11 August 2023
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Experiment Sandbox
• Source

• Low Q-value

Walter C. Pettus11 August 2023

G. Drexlin et al. AHEP 2013 (2013) 293986

• Neutrino mass imprint is shape 
distortion and shift at the endpoint

• Lower Q-value puts greater fraction 
of decays in ROI

Superallowed Decays:
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Experiment Sandbox
• Source

• Low Q-value
• Intense

Walter C. Pettus11 August 2023

• Neutrino mass imprint is shape 
distortion and shift at the endpoint

• Only 2·10-13 decays in last eV of the 
spectrum H. Robertson & D. Knapp. 

Ann. Rev. Nucl. Part. Sci. 38 (1988) 185
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Experiment Sandbox
• Source

• Low Q-value
• Intense
• Well-understood spectrum

Walter C. Pettus11 August 2023

• Need control of source-related systematics
• Exactly calculable spectrum
• Featureless or at least understood features
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A. Nucciotti, AHEP 2016 (2016) 9153024

Tritium

Holmium
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Experiment Sandbox
• Source

• Low Q-value
• Intense
• Well-understood spectrum

• Detector
• Energy resolution and detector response
• Low-background
• Controlled systematics

Walter C. Pettus11 August 2023

Impact of Resolution (s = 0.5 eV)

A. Nucciotti, AHEP 2016 (2016) 9153024
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Candidate Isotope Suitability
• Low Q-value decay

• 3H (18.6 keV), 163Ho (2.9 keV), 187Re (2.5 keV), 115In (0.15 keV)…
• Modest half-life
• Favorable branching ratio to desired state

• Compatibility with integrating into detector
• Theoretical understanding of spectral shape

Walter C. Pettus11 August 2023

Formaggio, de Gouvêa, Robertson, 
Physics Reports 914 (2021) 1
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Endpoint Search Candidates
• Tritium beta decay has yielded leading direct limits for 75 years

• 𝟏
𝟑𝑯 → 𝟐

𝟑𝑯𝒆) + 𝒆* + 𝒗𝒆
• Endpoint: 18.6 keV; half-life: 12.3 yr

• Holmium electron capture decay
• 𝟔𝟕

𝟏𝟔𝟑𝑯𝒐 → 𝟔𝟔
𝟏𝟔𝟑𝑫𝒚∗ + 𝒗𝒆

• Endpoint: 2.8 keV; half-life: 4570 yr

• Other isotopes have received attention: 187Re, 115In
• No currently viable experimental program
• Orders of magnitude worse figure-of-merit for quantity of isotope per decay in 

last eV

Walter C. Pettus11 August 2023
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A. Nucciotti, AHEP 2016 (2016) 9153024

187Re Experiments
• Rhenium beta decay

• 𝟕𝟓
𝟏𝟖𝟕𝑹𝒆 → 𝟕𝟔

𝟏𝟖𝟕𝑶𝒔) + 𝒆* + 𝒗𝒆
• Endpoint: 2.47 keV; half-life 4.3e10 yr

• Significant experimental work in 1990’s and 2000’s
• Experiments were MANU & MIBETA, followed by MARE
• Based on bolometers of metallic rhenium and AgReO4

• Concluded holmium was more viable option
• Energy resolution was inconsistent and poor (~tens of eV)
• Materials effects led to energy-dependent distortions

• Beta Environmental Fine Structure (BEFS)

Walter C. Pettus11 August 2023
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163Ho Concept
• Holmium electron capture

• 𝟔𝟕
𝟏𝟔𝟑𝑯𝒐 → 𝟔𝟔

𝟏𝟔𝟑𝑫𝒚∗ + 𝒗𝒆
• Endpoint: Q = 2.86 keV; half-life: 4570 yr

• Deexcitation physics is complicated…
• But if you use a bolometer, you collect all the deexcitation energy
• Spectral shape is superposition of Lorentzians

with a cutoff energy

• Significant advances in last ~decade
• Experiments: HOLMES, ECHo, NuMECS

Walter C. Pettus11 August 2023
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163Ho Experiment
• Microcalorimeters are preferred method

• Small (~Bq) activity per pixel
• Slow readout requires low activity

• Ultimately require ~1013 events for sub-eV sensitivity
• Multiplexing the >105 pixels to control channel count

Walter C. Pettus11 August 2023

M. Wegner. ECT* Trento (2018)
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163Ho Highlights – Spectral Modeling
• Higher statistics measurements agreeing with improved spectrum 

calculations

Walter C. Pettus11 August 2023

(ECHo) Eur. Phys. J. C 79 (2019) 1026
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163Ho Highlights – Endpoint Determination
• Most precise endpoint determination

• QEC = (2860 ± 2 stat ± 5 syst) eV
• Awai4ng new PENTATRAP measurement

Walter C. Pettus11 August 2023

L. Gastaldo, Neutrino 2022
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163Ho Challenges – Pileup
• Slow microcalorimeter readout creates pileup in spectrum

• Even with low-activity pixels
• Pileup determination is critical limiting factor in sensitivity

Walter C. Pettus11 August 2023
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163Ho Challenges

Walter C. Pettus11 August 2023

• 163Ho is not naturally abundant
• Typically produced by neutron irradiation of 162Er

• Extraction does yield clean sample with high activity

• Endpoint isn’t precisely known
• No good measurement from Penning trap
• 10% uncertainty in endpoint up to ~5 years ago

• Spectral shape is complicated
• Need solid match of experiment with theory

H. Robertson, Phys. Rev. C 91 (2015) 035504

atomic corrections to 
spectrum in last few eV
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Tritium Beta Decay
• Tritium has been the workhorse of the direct neutrino mass field

• Best limits for 75 years (since 1948), and counting

• Endpoint: 18.6 keV
• Half-life: 12.3 yr
• Superallowed decay

𝟏
𝟑𝑯 → 𝟐

𝟑𝑯𝒆) + 𝒆* + 𝒗𝒆

Walter C. Pettus11 August 2023

constants

nuclear matrix element 
(energy independent)

pure kinematics
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Tritium Beta Decay
• Tritium has been the workhorse of the direct neutrino mass field

• Best limits for 75 years (since 1948), and counting

• Endpoint: 18.6 keV
• Half-life: 12.3 yr
• Superallowed decay

𝟏
𝟑𝑯 → 𝟐

𝟑𝑯𝒆) + 𝒆* + 𝒗𝒆

Walter C. Pettus11 August 2023

L. Bodine et al. PRC 2015
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Tritium Beta Decay
• Tritium has been the workhorse of the direct neutrino mass field

• Best limits for 75 years (since 1948), and counting

• Endpoint: 18.6 keV
• Half-life: 12.3 yr
• Superallowed decay

𝟏
𝟑𝑯 → 𝟐

𝟑𝑯𝒆) + 𝒆* + 𝒗𝒆
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Tritium Beta Decay
• Tritium has been the workhorse of the direct neutrino mass field

• Best limits for 75 years (since 1948), and counting
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Tritium Beta Decay
• Tritium has been the workhorse of the direct neutrino mass field

• Best limits for 75 years (since 1948), and counting

Walter C. Pettus11 August 2023
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Sidenote: Endpoint vs. Q-value
• The “endpoint” (E0) is subtly different from the Q-value

• Q-value: energy difference measured by Penning traps
• Endpoint: maximum energy the electron can have in decay

• Make sure you understand atomic effects!!!

Walter C. Pettus11 August 2023

18592.01(7) eV

4.5909 eV

1.8974 eV
13.6034 eV

24.5861 eV

from L. Bodine et al. PRC 91 (2015) 035505, updated

E0 (T2) = 18 574.01(7) eV
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KATRIN: State-of-the-Art

Walter C. Pettus11 August 2023

KATRIN collaboration. Nature Physics 18, 160 (2022)

• Culmination of decades of experience in magnetic + electrostatic 
spectrometers

• Electrons guided from tritium source, through filtering spectrometer, to 
integrating detector
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KATRIN: WGTS

Walter C. Pettus11 August 2023

KATRIN collaboration. Nature Physics 18, 160 (2022)

Windowless Gaseous Tritium Source (WGTS)
• Intense and pure tritium source
• Uniform field region for tritium decays
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KATRIN: Pumping

Walter C. Pettus11 August 2023

KATRIN collaboration. Nature Physics 18, 160 (2022)

Differential and Cryogenic Pumping
• Reduces tritium flow by ~14 orders of magnitude
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KATRIN: Pre-Spectrometer

Walter C. Pettus11 August 2023

KATRIN collaboration. Nature Physics 18, 160 (2022)

Pre-Spectrometer
• Rejects low-energy electrons back to source
• Miniature version of main spectrometer
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KATRIN: Main Spectrometer

Walter C. Pettus11 August 2023

KATRIN collaboration. Nature Physics 18, 160 (2022)

Main Spectrometer
• Defines energy threshold of experiment
• Sets energy resolution, background rejection
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KATRIN: Detector

Walter C. Pettus11 August 2023

KATRIN collaboration. Nature Physics 18, 160 (2022)

Detector
• Counting detector
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MAC-E Filter Principle
• Magnetic Adiabatic Collimation with Electrostatic (MAC-E) filter

• Magnetic field adiabatically guides electrons
• Weakest field region aligns momentum

• Maximizes longitudinal velocity
• Electrostatic potential here at analyzing plane

sets high pass filter
• Electrons passing filter re-accelerate to detector

• Energy resolution set by magnetic field
• ∆𝑬

𝑬 = 𝑩𝒎𝒊𝒏
𝑩𝒎𝒂𝒙

Walter C. Pettus11 August 2023

G. Drexlin et al. AHEP (2013)
doi:10.1155/2013/293986
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KATRIN: State-of-the-Art
• Released first two “campaigns”

• Campaign 1: world-leading mass limit
• 3 weeks of data at 20% source intensity

• Campaign 2: (world leading) sub-eV mass limit
• mb < 0.8 eV
• 1 month of data, also from 2019

Walter C. Pettus11 August 2023
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KATRIN: State-of-the-Art
• Released first two “campaigns”

• Campaign 1: world-leading mass limit
• 3 weeks of data at 20% source intensity

• Campaign 2: (world leading) sub-eV mass limit
• mb < 0.8 eV
• 1 month of data, also from 2019

• Further results expected this year with ~10x 
statistics, mb ~ 0.5 eV sensitivity

• Cruel reminder that mb sensitivity only improves 
with & 𝑁

• Neutrino mass operations continue through 
2025 down to ~0.2 eV sensitivity

Walter C. Pettus11 August 2023

(KATRIN) Nature Physics 18, 160 (2022)
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KATRIN: Sterile Neutrino Sensitivity
• World leading limits on sterile neutrinos via spectral distortion

Walter C. Pettus11 August 2023

(KATRIN) Phys. Rev. D 105 (2022) 072004
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KATRIN: Sterile Neutrino Sensitivity
• Follow-on keV sterile neutrino search with TRISTAN detector

• Current sensitivity based on low-intensity commissioning data
• Push sin2q down below 10-6 with upgraded detector to handle rate

Walter C. Pettus11 August 2023

(KATRIN) arXiv:2207.06337(KATRIN) J. Phys. G 49 (2022) 100501
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Beyond KATRIN
• MAC-E technology reaching technical 

scaling limit with KATRIN
• Larger spectrometer required for 

improved resolution
• Integrating spectroscopy reduces 

statistical power
• New spectrometer-related backgrounds 

discovered at KATRIN scale

• Molecular tritium source introduces 
statistical and systematic penalties due 
to molecular effects

Walter C. Pettus11 August 2023
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Sensitivity after KATRIN

Walter C. Pettus11 August 2023
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Beyond KATRIN Concept

Walter C. Pettus11 August 2023

Never measure anything 
but frequency.

– Arthur Schawlow

B. Monreal

a) b) c) d) e)
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Beyond KATRIN Concept

Walter C. Pettus11 August 2023

Never measure anything 
but frequency.

– Arthur Schawlow

a) b) c) d) e)

D. Hanneke, S. Fogwell, and 
G. Gabrielse, Phys. Rev. Le+.

100 (2008) 120801
Parker et al., Science 
360 (2018) 191

If you liked the muon g-2 result…
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e–

B field

(CRES)

0.959 T magnetic field

83mKr conversion electrons

Tritium endpoint

• Harness frequency-energy relation for relativistic electrons

𝒇𝒄 =
𝟏
𝟐𝝅

𝒆𝑩
𝒎+ 𝑬𝒌𝒊𝒏
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Project 8 Experiment
• A phased tritium beta endpoint experiment to measure the electron 

neutrino mass

Walter C. Pettus11 August 2023

2015 2016 2017 2018 2019 2020 2021 2022

Phase I

Phase II Commission

Phase III R&D Operations

  Phase IV Conceptual Design

2024 2025 2026 2027 20282023

AnalysisOperations

•

• High-resolution Kr measurements
• First tritium measurement and first neutrino mass limit with CRES

• Zero-background beyond endpoint
• Control of systematics effects

Final results, see:
• arXiv:2212.05048 (accepted in PRL)
• arXiv:2303.12055 (submitted to PRC)
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Waveguide Experimental Concept

Walter C. Pettus11 August 2023

APS / Alan Stonebraker
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Waveguide CRES Results

Walter C. Pettus11 August 2023

D. Asner et al. Phys. Rev. Lett. 114, 162501 (2015)
(reprocessed)

Instrumental resolution (1.7±0.2 eV) now 
better than natural CE linewidth (2.8 eV)
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Waveguide CRES Signals
• Motion in magnetic trap gives rise to signal features

• Frequency modulation (FM) for end-on observation (waveguide)

Walter C. Pettus11 August 2023
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Sidebands and Disappearing Tracks
• Interference pattern and frequency modulation give rise to (dis)appearing 

tracks, variable intensity between carrier and sideband

Walter C. Pettus11 August 2023
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First Tritium Spectrum
• Collected 3 months stable run of tritium

• ~4000 events across all signal channels
• Zero background beyond endpoint
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T2 endpoint: 
𝑬𝟎 = 𝟏𝟖𝟓𝟓𝟑(𝟏𝟗+𝟏𝟖 eV (90%C.I.)

Neutrino mass:
≤ 𝟏𝟓𝟓 eV/c2 (90%C.I.) Bayesian
≤ 𝟏𝟓𝟐 eV/c2 (90%C.L.) Frequentist

Background rate:
≤ 𝟑×𝟏𝟎(𝟏𝟎 eV(-s(- (90%C.I.)

Final results, see:
• arXiv:2212.05048 (accepted in PRL)
• arXiv:2303.12055 (submitted to PRC)
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Project 8 Experiment
• A phased tritium beta endpoint experiment to measure the electron 

neutrino mass
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2015 2016 2017 2018 2019 2020 2021 2022

Phase I

Phase II Commission

Phase III R&D Operations

  Phase IV Conceptual Design

2024 2025 2026 2027 20282023

AnalysisOperations

• Critical R&D demonstrations of technologies
• Large-volume CRES measurement, first with single-mode cavity
• Atomic tritium production, transport, and trapping
• Culminates with first atomic tritium endpoint measurement
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CRES – The Path Forward
Phase II was heavily statistics-limited

• Develop atomic source
• Overcome systematic of molecular 

final states

• Increase volume

• Improve SNR
• Higher density with shorter tracks

• Improve control of systematics, 
field homogeneity, scattering 
effects
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Phase III ATD – Molecular Limitation
• Sensitivity beyond inverted hierarchy requires atomic tritium
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Phase III ATD – Trapping Atoms
• Magnetic moment of atomic species allows for guiding and trapping

• Unpaired electron of atomic T (or H, D) gives it magnetic moment
• “Low-field-seeking” states trapped by magnetic bottle
• Requires high-multipole trap to achieve uniform CRES field region
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UCNτ, PRC 100, 015501 (2019)
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Phase III ATD – Atomic Tritium Source
• Molecular tritium thermally cracked at ~2500 K

• Then cooled by accommodator to ~10 K

• Then cooled evaporatively down to mK
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CRES – The Path Forward

•

• Increase volume

• Improve SNR
• Higher density with shorter tracks

• Improve control of systematics, 
field homogeneity, scattering 
effects
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Phase III – Beyond Waveguide
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• Demonstrate scalability of CRES technique
• Cavity efficiently couples electron power to readout antenna

• Mode-filtering reduces complexity of mode structure
• Open-ended terminated cavity still allows gas injection 26 GHz Cavity Model
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Phase III – Beyond Waveguide
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• Demonstrate scalability of CRES technique
• Cavity efficiently couples electron power to readout antenna

• Mode-filtering reduces complexity of mode structure
• Open-ended terminated cavity still allows gas injection
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26 GHz Cavity CRES Demonstrator
• First cavity demonstrator will operate at 26 GHz / 1 T

• Installation this fall at University of Washington
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• Demonstration of high-precision calibration with electron gun source
• Science from 83mKr spectroscopy measurements
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Future Cavities & Lower Frequency
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• Cavity R&D must press to lower frequency
• 26 GHz has unacceptably high dipolar spin flip losses
• Targeting 1 GHz or lower

6 GHz Prototype 
@ Penn State
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Project 8 Experiment
• A phased tritium beta endpoint experiment to measure the electron 

neutrino mass
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2015 2016 2017 2018 2019 2020 2021 2022

Phase I

Phase II Commission

Phase III R&D Operations

  Phase IV Conceptual Design

2024 2025 2026 2027 20282023

AnalysisOperations

• Atomic tritium endpoint measurement 
covering inverted ordering allowed region
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Atomic Experiment Concept
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A. Lindman

• Experiment must ultimately combine successes of both 
R&D pathways:

• Large-volume CRES detection
• Atomic tritium production, transport, and trapping

• Requires effective exposure of ~10 m3*yr for 40 meV
(inverted ordering) sensitivity
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Phase IV Sensitivity
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Framework developed for investigating 
sensitivity of ultimate experiment

Achieving 40 meV sensitivity requires
• Multi m3·yr effective exposure
• High flux atomic tritium source
• ~0.1 eV resolution
• 10-7 field uniformity

With potential to independently measure 
hierarchy

(Project 8) Phys. Rev. C 103 (2021) 065501
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PTOLEMY
• What happens when you flip an endpoint experiment?
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vs. Neutrino capture Beta decay

(PTOLEMY) JCAP 07 (2019) 047
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PTOLEMY
• Physics: the lowest energy and most abundant neutrinos in the universe

• With an insanely difficult experimental concept
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M. Messina, Neutrino 2022



INDIANA UNIVERSITY

Conclusions
• Direct (endpoint) searches are a critical piece of the neutrino physics 

program
• The definitive method to pin the neutrino mass scale

• KATRIN is delivering world-leading limits
• Expect sensitivity to mb > 0.2 eV after run finishes in 2025

• Beyond KATRIN, lots of R&D required
• 163Ho making great advances over last decade
• Project 8 presents most complete plan
• PTOLEMY working towards CnB, but very hard
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