

Walter C. Pettus

Neutrino Mass Experiments

International Neutrino Summer School 11 August 2023

About Me

- Ph.D. from University of Wisconsin
 - DM-Ice & COSINE : WIMP Nal dark matter
 - Short postdoc at Yale University
- Postdoc at University of Washington
 - Switched to neutrino physics
- Faculty at Indiana University
- Experiments
 - Project 8 neutrino mass experiment
 - MAJORANA DEMONSTRATOR and LEGEND ⁷⁶Ge neutrinoless double beta decay experiments
 - I deliberately measure no neutrinos in my experiments

Opportunity of Neutrino Mass

Neutrino mass is BSM physics!

- What is the neutrino mass?
- Why is the neutrino mass so much smaller than other fermion masses?
- How much CP violation in lepton sector?
- Other new physics hiding with neutrinos?

ΠΠ

Mystery of the Neutrino Mass Scale

 Scale of neutrino mass sets them apart from all other particles of Standard Model

 Physics behind neutrino mass linked to many interesting questions in nuclear, particle, and astro physics

Neutrino Oscillation Input

- Oscillation experiments have nailed down Δm_{ii}^2 parameters
- But these parameters can't constrain the absolute scale of neutrino mass

Probing the Neutrino Mass Scale

Cosmology $\sum m_{\nu} = \sum_{i=1}^{3} m_i$

Neutrinoless Double-Beta Decay

$$\langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

Endpoint Measurements (β-decay and EC)

$$m_{\beta} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$$

INDIANA UNIVERSITY

٦ſ

Cosmological Limitations

- Neutrino mass added to ACDM as a seventh parameter
 - Constraint on Σm_v weakens with additional floating parameters
 - H₀ tension between early universe (CMB, BAO, weak lensing) and late universe (distance-ladder and quasar) measures

Probing the Neutrino Mass Scale

Neutrinoless Double-Beta Decay

$$\langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

Endpoint Measurements (β-decay and EC)

$$m_{\beta} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$$

ΠΠ

Time of Flight – Supernovae

- "Direct" neutrino mass sensitivity can be derived from a time-of-flight measurement on supernova neutrinos
 - Is there spread in arrival times consistent with higherenergy neutrinos traveling closer to speed of light?
- SN 1987a places limit of $m_v < 5.7 \text{ eV}$
- Future prospects?
 - Sensitivity down to m_v > 0.5 (1.0) eV reasonable for DUNE and Hyper-K (JUNO) estimated
 - Closer is better due to statistics
 - No room for improvement by including gravitational waves

Global Kinematic Neutrino Limits

• Kinematic limits can be (and have been) done for all neutrino flavors

Physics Insitute ETH Zürich

Zürich, Dec. 4 1930 Gloriastrasse

Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, because of the "wrong" statistics of the N- and Li-6 nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" (1) of statistics and the law of conservation of energy. Namely, the possibility that in the nuclei there could exist electrically neutral particles, which I will call neutrons, that have spin 1/2 and obey the exclusion principle and that further differ from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton mass. - The continuous beta spectrum would then make sense with the assumption that in beta decay, in addition to the electron, a neutron is emitted such that the sum of the energies of neutron and electron is constant.

11 August 2023

•••

Physics Insitute ETH Zürich

Zürich, Dec. 4 1930 Gloriastrasse

Dear Radioactive Ladies and Gentlemen,

...The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton mass...

I admit that my remedy may seem almost improbable because one probably would have seen those neutrons, if they exist, for a long time. But nothing ventured, nothing gained, and the seriousness of the situation, due to the continuous structure of the beta spectrum, is illuminated by a remark of my honored predecessor, Mr Debye, who told me recently in Bruxelles: "Oh, It's better not to think about this at all, like new taxes." Therefore one should seriously discuss every way of rescue. Thus, dear radioactive people, scrutinize and judge. - Unfortunately, I cannot personally appear in Tübingen since I am indispensable here in Zürich because of a ball on the night from December 6 to 7. With my best regards to you,

Physics Insitute ETH Zürich

Zürich, Dec. 4 1930 Gloriastrasse

Dear Radioactive Ladies and Gentlemen,

...The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton mass...

u groß

klein

JU = 1

β Energy

Evidence of neutrino mass imprinted in endpoint of spectrum

β Energy

E. Fermi, Zeitschrift fur Physik (1934)

R. Church

Electron Energy, eV

 $rac{dN}{d\epsilon} \propto \epsilon \sqrt{\epsilon^2 - m_eta^2}$

Kurie plot: traditional method for plotting endpoint

- Determine endpoint, see neutrino mass effect
- At the endpoint, just square root of spectrum

E. Fermi, Zeitschrift fur Physik (1934)

D. Knapp. Part. Sci. **38** (1988) 185

H. Robertson & | Ann. Rev. Nucl.

- "Direct" or "endpoint" measurements can individually determine the neutrino mass state masses
 - In practice, detector energy resolution and experimental statistics are typically insufficient to resolve individual state contributions, so we use m_{β} instead
- m_{β} has an absolute backstop
 - $m_{\beta} > 9 \text{ meV}$ (48 meV) for NO (IO)

"electron-weighted"
$$m_{\beta} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$$

Ordering Determination

• Mass splitting information is always encoded in the spectrum

•

Next-generation endpoint experiments could resolve the ordering

(Project 8) Phys. Rev. C 103 (2021) 065501

• Source

• Detector

Compatibility of two

- Source
 - Low Q-value

- Neutrino mass imprint is shape distortion and shift *at the endpoint*
- Lower Q-value puts greater fraction of decays in ROI

G. Drexlin et al. AHEP 2013 (2013) 293986

- Source
 - Low Q-value
 - Intense
 - Neutrino mass imprint is shape distortion and shift *at the endpoint*
 - Only 2.10⁻¹³ decays in last eV of the spectrum

H. Robertson & D. Knapp. Ann. Rev. Nucl. Part. Sci. **38** (1988) 185

- Source
 - Low Q-value
 - Intense
 - Well-understood spectrum

- Need control of source-related systematics
 - Exactly calculable spectrum
 - Featureless or at least understood features

- Source
 - Low Q-value
 - Intense
 - Well-understood spectrum
- Detector
 - Energy resolution and detector response
 - Low-background
 - Controlled systematics

A. Nucciotti, AHEP 2016 (2016) 9153024

Candidate Isotope Suitability

- Low Q-value decay
 - ³H (18.6 keV), ¹⁶³Ho (2.9 keV), ¹⁸⁷Re (2.5 keV), ¹¹⁵In (0.15 keV)...
- Modest half-life
- Favorable branching ratio to desired state

Isotope	Spin-Parity	Half-life	Specific Activity	Q_A	Branching ratio	Last eV	Source Mass
		У	$\mathrm{Bq/g}$	eV			g
$^{3}\mathrm{H}_{2}$	$^{1\!\!/_2^+} \rightarrow ^{1\!\!/_2^+}$	12.3	$3.6 imes10^{14}$	18591	0.57	2.9×10^{-13}	$2.0 imes 10^{-7}$
115 In	$^{9/_2+} \rightarrow ^{3/_2+}$	4.4×10^{14}	0.26	147	$1.2 imes 10^{-6}$	$5.0 imes 10^{-7}$	7.5×10^7
$^{135}\mathrm{Cs}$	$7/_2^+ \rightarrow {}^{11}/_2^-$	1.5×10^6	$6.8 imes 10^7$	440	$(0.04 - 16) \times 10^{-6}$	2.2×10^{-8}	0.4 - 217
$^{187}\mathrm{Re}$	$5/_2^+ \rightarrow 1/_2^-$	$4.3 imes 10^{10}$	$1.6 imes 10^3$	2470	1.0	$1.2 imes 10^{-10}$	57
163 Ho	$7/_2^- \rightarrow 5/_2^-$	4750	$1.8 imes 10^{10}$	2858		$\sim 10^{-12}$	$\sim 1.0\times 10^{-5}$

- Compatibility with integrating into detector
- Theoretical understanding of spectral shape

Formaggio, de Gouvêa, Robertson, Physics Reports **914** (2021) 1

Endpoint Search Candidates

- Tritium beta decay has yielded leading direct limits for 75 years y
 - ${}^{3}_{1}H \rightarrow {}^{3}_{2}He^{+} + e^{-} + \overline{\nu_{e}}$
 - Endpoint: 18.6 keV; half-life: 12.3 yr
- Holmium electron capture decay
 - ${}^{163}_{67}Ho \rightarrow {}^{163}_{66}Dy^* + v_e$
 - Endpoint: 2.8 keV; half-life: 4570 yr

- Other isotopes have received attention: ¹⁸⁷Re, ¹¹⁵In
 - No currently viable experimental program
 - Orders of magnitude worse figure-of-merit for quantity of isotope per decay in last eV

¹⁸⁷Re Experiments

- Rhenium beta decay
 - ${}^{187}_{75}Re \rightarrow {}^{187}_{76}Os^+ + e^- + \overline{v_e}$
 - Endpoint: 2.47 keV; half-life 4.3e10 yr
- Significant experimental work in 1990's and 2000's
 - Experiments were MANU & MIBETA, followed by MARE
 - Based on bolometers of metallic rhenium and AgReO₄
- Concluded holmium was more viable option
 - Energy resolution was inconsistent and poor (~tens of eV)
 - Materials effects led to energy-dependent distortions
 - Beta Environmental Fine Structure (BEFS)

A. Nucciotti, AHEP 2016 (2016) 9153024

¹⁶³Ho Concept

- Holmium electron capture
 - ${}^{163}_{67}Ho \rightarrow {}^{163}_{66}Dy^* + v_e$
 - Endpoint: Q = 2.86 keV; half-life: 4570 yr
- Deexcitation physics is complicated...
 - But if you use a bolometer, you collect all the deexcitation energy
 - Spectral shape is superposition of Lorentzians with a cutoff energy
- Significant advances in last ~decade
 - Experiments: HOLMES, ECHo, NuMECS

INDIANA UNIVERSITY

11 August 2023

Walter C. Pettus

¹⁶³Ho Experiment

- Microcalorimeters are preferred method
 - Small (~Bq) activity per pixel
 - · Slow readout requires low activity
 - Ultimately require ~10¹³ events for sub-eV sensitivity
 - Multiplexing the >10⁵ pixels to control channel count

M. Wegner. ECT* Trento (2018)

¹⁶³Ho Highlights – Spectral Modeling

 Higher statistics measurements agreeing with improved spectrum calculations

¹⁶³Ho Highlights – Endpoint Determination

- Most precise endpoint determination
 - Q_{EC} = (2860 ± 2 stat ± 5 syst) eV
 - Awaiting new PENTATRAP measurement

¹⁶³Ho Challenges – Pileup

- Slow microcalorimeter readout creates pileup in spectrum
 - Even with low-activity pixels
 - Pileup determination is critical limiting factor in sensitivity

חה

¹⁶³Ho Challenges

- ¹⁶³Ho is not naturally abundant
 - Typically produced by neutron irradiation of ¹⁶²Er
 - · Extraction does yield clean sample with high activity
- Endpoint isn't precisely known
 - No good measurement from Penning trap
 - 10% uncertainty in endpoint up to ~5 years ago
- Spectral shape is complicated
 - Need solid match of experiment with theory

- Tritium has been the workhorse of the direct neutrino mass field
 - Best limits for 75 years (since 1948), and counting
- Endpoint: 18.6 keV
- Half-life: 12.3 yr
- Superallowed decay ${}^{3}_{1}H \rightarrow {}^{3}_{2}He^{+} + e^{-} + \overline{v_{e}}$

- Tritium has been the workhorse of the direct neutrino mass field
 - Best limits for 75 years (since 1948), and counting

- Tritium has been the workhorse of the direct neutrino mass field
 - Best limits for 75 years (since 1948), and counting
- Endpoint: 18.6 keV
- Half-life: 12.3 yr
- Superallowed decay ${}^{3}_{1}H \rightarrow {}^{3}_{2}He^{+} + e^{-} + \overline{v_{e}}$

H³ and the Mass of the Neutrino

EMIL J. KONOPINSKI Indiana University, Bloomington, Indiana July 28, 1947

The maximum energy of the β -particles from H³ has most recently¹ been reported as 11 ± 2 kev. The unusually low energy of this β -spectrum makes it extremely sensitive as an indicator of a non-vanishing rest mass for the neutrino. Coupled with measurements of the H³ halflife, it shows that the neutrino cannot have a mass greater than 2 to 3 percent of the electron's rest mass. Moreover, the H³ decay rate as presently known seems 6 to 10 times too rapid in comparison with that of heavier elements unless the neutrino is attributed a finite mass of the magnitude mentioned.

- Tritium has been the workhorse of the direct neutrino mass field
 - Best limits for 75 years (since 1948), and counting

H³ and the Mass of the Neutrino

EMIL J. KONOPINSKI Indiana University, Bloomington, Indiana July 28, 1947

T HE maximum energy of the β -particles from H³ has most recently¹ been reported as 11 ± 2 kev. The unusually low energy of this β -spectrum makes it extremely sensitive as an indicator of a non-vanishing rest mass for the neutrino. Coupled with measurements of the H³ halflife, it shows that the neutrino cannot have a mass greater than 2 to 3 percent of the electron's rest mass. Moreover, the H³ decay rate as presently known seems 6 to 10 times too rapid in comparison with that of heavier elements unless the neutrino is attributed a finite mass of the magnitude mentioned.

- Tritium has been the workhorse of the direct neutrino mass field
 - Best limits for 75 years (since 1948), and counting

THE PHYSICAL REVIEW

 \mathcal{A} journal of experimental and theoretical physics established by E. L. Nichols in 1893

Second Series, Vol. 88, No. 4

NOVEMBER 15, 1952

The Beta-Spectrum of Tritium and the Mass of the Neutrino*

L. M. LANGER AND R. J. D. MOFFAT Department of Physics, Indiana University, Bloomington, Indiana (Received June 23, 1952)

A direct determination of the beta-spectrum of H³ has been made in a high resolution magnetic spectrometer. The experimental data are fitted by a straight line Fermi plot from 5.5 kev to the maximum energy at 17.95 ± 0.10 kev. An upper limit of 250 volts or 0.05 percent of the mass of the electron is obtained for the rest mass of the neutrino. New estimates are obtained for the H³ comparative half-life, the neutron half-life, and the value of the Fermi universal constant of beta-decay.

11 August 2023

LIANAN
Sidenote: Endpoint vs. Q-value

- The "endpoint" (E₀) is subtly different from the Q-value
 - Q-value: energy difference measured by Penning traps
 - Endpoint: maximum energy the electron can have in decay
- Make sure you understand atomic effects!!!

KATRIN: State-of-the-Art

 $B_{\rm src} = 2.5 \, {\rm T}$

motion

- Culmination of decades of experience in magnetic + electrostatic spectrometers
 - Electrons guided from tritium source, through filtering spectrometer, to integrating detector Electrostatic high pass filter Analysing plane Electron $U_{\rm ana}(r)$ $U_i(r)$ T₂ ³HeT⁺ $U_{\rm src}(r,z)$ Rydberg atom c) Positive ion T_2 out e) T_2 in T₂ out r-axis a) Transport and Segmented Tritium source detector pumping Rear wall and Main spectrometer electron gun Pitch angle $B_{\rm max} = 4.2 \, {\rm T}$ $B_{\rm ana} = 6.3 \times 10^{-4} \, {\rm T}$ z-axis Magnetic Field line direction Cyclotron adiabatic collimation

KATRIN collaboration. Nature Physics 18, 160 (2022)

KATRIN: WGTS

Windowless Gaseous Tritium Source (WGTS)

- Intense and pure tritium source
- Uniform field region for tritium decays

KATRIN: Pumping

Differential and Cryogenic Pumping

Reduces tritium flow by ~14 orders of magnitude

KATRIN: Pre-Spectrometer

Kantonine Hillium Neutrino Extension

- **Pre-Spectrometer**
- Rejects low-energy electrons back to source
- Miniature version of main spectrometer

KATRIN: Main Spectrometer

Main Spectrometer

- Defines energy threshold of experiment
- Sets energy resolution, background rejection

KATRIN: Detector

ΠΠ

11 August 2023

Walter C. Pettus

MAC-E Filter Principle

Kantan Printing Neutrino

- Magnetic Adiabatic Collimation with Electrostatic (MAC-E) filter
- Magnetic field adiabatically guides electrons
- Weakest field region aligns momentum
 - Maximizes longitudinal velocity
- Electrostatic potential here at analyzing plane sets high pass filter
- Electrons passing filter re-accelerate to detector
- Energy resolution set by magnetic field
 - $\frac{\Delta \bar{E}}{E} = \frac{B_{min}}{B_{max}}$

KATRIN: State-of-the-Art

- Campaign 1: world-leading mass limit
 - 3 weeks of data at 20% source intensity
- Campaign 2: (world leading) sub-eV mass limit
 - $m_{\beta} < 0.8 \text{ eV}$
 - 1 month of data, also from 2019

Effect $(1\sigma \text{ uncertainty on } m_{\nu}^2)$	$KNM1 (eV^2)$	$KNM2 (eV^2)$
Statistical	0.97	0.29
Non-Poissonian background	0.30	0.11
Source-potential variations (plasma effects)	Neglected	0.09
Scan-step-duration-dependent background	Neglected	0.07
qU-dependent background	0.07	0.06
Magnetic fields	0.05	0.04
Molecular final-state distribution	0.02	0.02
Column density × inelastic scat. cross-section $(\rho d\sigma)$	0.05	0.01
Total uncertainty	1.02	0.34

INDIANA UNIVERSITY

(KATRIN) J. Phys. G **49** (2022) 100501

KATRIN: State-of-the-Art

Stat. and syst.

1st campaign

2nd campaign

18700

18650

(KATRIN) Nature Physics 18, 160 (2022)

Uniform spectrum (1st campaign)

with $\pm \sigma$ errorbars \times 50

Stat.

Retarding energy (eV)

Count rate

Residuals (σ)

Time (h)

10⁰

2 -

-2

50

25

d)

18550

- Campaign 1: world-leading mass limit
 - 3 weeks of data at 20% source intensity
- Campaign 2: (world leading) sub-eV mass limit
 - m_β < 0.8 eV
 - 1 month of data, also from 2019
- Further results expected this year with ~10x statistics, $m_{\beta} \sim 0.5 \text{ eV}$ sensitivity
 - Cruel reminder that m_{β} sensitivity only improves with $\sqrt[4]{N}$
 - Neutrino mass operations continue through 2025 down to ~0.2 eV sensitivity

18600

KATRIN: Sterile Neutrino Sensitivity

World leading limits on sterile neutrinos via spectral distortion

KATRIN: Sterile Neutrino Sensitivity

- Follow-on keV sterile neutrino search with TRISTAN detector
 - Current sensitivity based on low-intensity commissioning data
 - Push $sin^2\theta$ down below 10⁻⁶ with upgraded detector to handle rate

Beyond KATRIN

- MAC-E technology reaching technical scaling limit with KATRIN
 - Larger spectrometer required for improved resolution
 - Integrating spectroscopy reduces
 statistical power
 - New spectrometer-related backgrounds discovered at KATRIN scale
- Molecular tritium source introduces statistical and systematic penalties due to molecular effects

Sensitivity after KATRIN

Beyond KATRIN Concept

Never measure anything but frequency.

- Arthur Schawlow

Beyond KATRIN Concept

If you liked the muon g-2 result...

Never measure anything but frequency.

- Arthur Schawlow

INDIANA UNIVERSITY

Cyclotron Radiation Emission Spectroscopy (CRES)

Harness frequency-energy relation for relativistic electrons

Project 8 Experiment

 A phased tritium beta endpoint experiment to measure the electron neutrino mass

2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
 Phase I Proof-of-principle demonstration of CRES technique ^{83m}Kr measurement in waveguide apparatus 													
	Phase II Commission			Opera	tions	A	nalysis		Final results, see: • arXiv:2212.05048 (accepted in				d in PRL)

- High-resolution Kr measurements
- First tritium measurement and first neutrino mass limit with CRES
 - Zero-background beyond endpoint
 - Control of systematics effects

arXiv:2303.12055 (submitted to PRC)

Waveguide Experimental Concept

APS / Alan Stonebraker

Waveguide CRES Results

eatured in Physics Ed

Editors' Suggestion

Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation

D. M. Asner *et al.* (Project 8 Collaboration) Phys. Rev. Lett. **114**, 162501 – Published 20 April 2015

Physics See Viewpoint: Cyclotron Radiation from One Electron

Instrumental resolution $(1.7\pm0.2 \text{ eV})$ now better than natural CE linewidth (2.8 eV)

Waveguide CRES Signals

INDIANA UNIVERSITY

11 August 2023

Walter C. Pettus

Sidebands and Disappearing Tracks

- PROJECT 8
- Interference pattern and frequency modulation give rise to (dis)appearing tracks, variable intensity between carrier and sideband

140 135 130 130 125 130 Might (A.U.) 0:30 Might (A.U.) 0.25 Liedneuck Fredueuck 115 0.2 0.15 110 105 0.1 100 0.05 95 90 5 10 15 20 25 30 35 40 45 50 Time (ms)

First Tritium Spectrum

- Collected 3 months stable run of tritium
 - ~4000 events across all signal channels
 - Zero background beyond endpoint

Final results, see:

- arXiv:2212.05048 (accepted in PRL)
- arXiv:2303.12055 (submitted to PRC)

Project 8 Experiment

• A phased tritium beta endpoint experiment to measure the electron neutrino mass

- Critical R&D demonstrations of technologies
 - Large-volume CRES measurement, first with single-mode cavity
 - Atomic tritium production, transport, and trapping
 - Culminates with first atomic tritium endpoint measurement

CRES – The Path Forward

- Develop atomic source
 - Overcome systematic of molecular final states
- Increase volume
- Improve SNR
 - Higher density with shorter tracks

Improve control of systematics, field homogeneity, scattering effects

Phase III ATD – Molecular Limitation

• Sensitivity beyond inverted hierarchy requires atomic tritium

Phase III ATD – Trapping Atoms

- Magnetic moment of atomic species allows for guiding and trapping
 - Unpaired electron of atomic T (or H, D) gives it magnetic moment
 - "Low-field-seeking" states trapped by magnetic bottle
 - Requires high-multipole trap to achieve uniform CRES field region

Phase III ATD – Atomic Tritium Source

Molecular tritium thermally cracked at ~2500 K

CRES – The Path Forward

- Develop atomic source
 - Overcome systematic of molecular final states
- Increase volume
- Improve SNR
 - Higher density with shorter tracks

Improve control of systematics, field homogeneity, scattering effects

Phase III – Beyond Waveguide

- Demonstrate scalability of CRES technique
- Cavity efficiently couples electron power to readout antenna
 - Mode-filtering reduces complexity of mode structure
 - Open-ended terminated cavity still allows gas injection

Phase III – Beyond Waveguide

- Demonstrate scalability of CRES technique
- Cavity efficiently couples electron power to readout antenna
 - Mode-filtering reduces complexity of mode structure
 - Open-ended terminated cavity still allows gas injection

26 GHz Cavity CRES Demonstrator

- First cavity demonstrator will operate at 26 GHz / 1 T
 - Installation this fall at University of Washington

- Demonstration of high-precision calibration with electron gun source
- Science from ^{83m}Kr spectroscopy measurements

Future Cavities & Lower Frequency

- Cavity R&D must press to lower frequency
 - 26 GHz has unacceptably high dipolar spin flip losses
 - Targeting 1 GHz or lower

ANA UNIVERSITY

Project 8 Experiment

 A phased tritium beta endpoint experiment to measure the electron neutrino mass

 Atomic tritium endpoint measurement covering inverted ordering allowed region

INDIANA UNIVERSITY

Atomic Experiment Concept

- Experiment must ultimately combine successes of both R&D pathways:
 - Large-volume CRES detection
 - Atomic tritium production, transport, and trapping
- Requires effective exposure of ~10 m³*yr for 40 meV (inverted ordering) sensitivity

2500 K

PROJECT

Phase IV Sensitivity

Framework developed for investigating sensitivity of ultimate experiment

Achieving 40 meV sensitivity requires

- Multi m³·yr effective exposure
- High flux atomic tritium source
- ~0.1 eV resolution
- 10⁻⁷ field uniformity

With potential to independently measure hierarchy

(Project 8) Phys. Rev. C 103 (2021) 065501

PTOLEMY

• What happens when you flip an endpoint experiment?

Walter C. Pettus

PTOLEMY

• Physics: the lowest energy and most abundant neutrinos in the universe

INDIANA UNIVERSITY

Conclusions

- Direct (endpoint) searches are a critical piece of the neutrino physics program
 - The definitive method to pin the neutrino mass scale
- KATRIN is delivering world-leading limits
 - Expect sensitivity to $m_{\beta} > 0.2 \text{ eV}$ after run finishes in 2025
- Beyond KATRIN, lots of R&D required
 - ¹⁶³Ho making great advances over last decade
 - Project 8 presents most complete plan
 - PTOLEMY working towards CvB, but very hard