Neutrinos in the Standard Model

Julian Heeck (University of Virginia)

14th International Neutrino Summer School 2023

Standard Model ingredients

- Renormalizable Quantum Field Theory in *flat* 3+1 spacetime \rightarrow no gravity.
- Ingredients:
 - Gauge group SU(3)_CxSU(2)_LxU(1)_Y → spin-1 bosons (G, W, B).
 - One complex scalar field in representation $(1,2,1/2) \rightarrow$ "Higgs" H.
 - Chiral spin-1/2 fermions in representation
 - $(3,2,1/6)+(\overline{3},1,-4/6)+(\overline{3},1,2/6)+(1,2,-1/2)+(1,1,1)+ (3,2,1/6)+(\overline{3},1,-4/6)+(\overline{3},1,2/6)+(1,2,-1/2)+(1,1,1)+ (3,2,1/6)+(\overline{3},1,-4/6)+(\overline{3},1,2/6)+(1,2,-1/2)+(1,1,1)$ → Quarks and leptons.
- Now just write down all singlets (gauge and Lorentz) with mass dimension ≤ 4 to get SM Lagrangian.

Kinetic terms

- Fermions: $\underbrace{(\mathbf{3},\mathbf{2},1/6)}_{Q_{L}} + \underbrace{(\overline{\mathbf{3}},\mathbf{1},-4/6)}_{(u_{R})^{c}} + \underbrace{(\overline{\mathbf{3}},\mathbf{1},2/6)}_{(d_{R})^{c}} + \underbrace{(\mathbf{1},\mathbf{2},-1/2)}_{L_{L}} + \underbrace{(\mathbf{1},\mathbf{1},1)}_{(e_{R})^{c}} \\ = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}_{(\text{in SU}(2)_{L} \text{ space})}$
- Abuse of notation and hindsight. Three copies of this.
- Gauge invariant kinetic terms $\left(D_{\mu} = \partial_{\mu} + i \sum g_{j}A_{\mu}^{j}T_{j}\right)$:

• All of these interactions just depend on 3 parameters:

 $g_1\simeq 0.36\,,\ g_2\simeq 0.65\,,\ g_3\simeq 1.2\,.$

2

Mass terms

- Gauge invariant mass terms (quadratic pieces without derivatives): ${\rm L}_{\rm mass}=\mu^2{\rm H}^{\dagger}{\rm H}$
- Only the scalar has mass, all fermions are massless?!
- Gauge group SU(2)xU(1) forbids mass terms like $\bar{e}_L e_R$ or $\bar{e}_R^c e_R$.
- But we *know* fermions have mass, so SU(2)xU(1) must be broken!
- Break it explicitely? I.e. just write down $m_e \bar{e}_L e_R$ etc.?
 - Leads to inconsistencies like photon mass
 - ...unless one arranges the explicit breaking terms *very* carefully.
 - Not all breaking terms allowed, all controlled by *one* parameter.

Mass terms

- Gauge invariant mass terms (quadratic pieces without derivatives): ${\rm L}_{\rm mass}=\mu^2{\rm H}^{\dagger}{\rm H}$
- Only the scalar has mass, all fermions are massless?!
- Gauge group SU(2)xU(1) forbids mass terms like $\bar{e}_L e_R$ or $\bar{e}_R^c e_R$.
- But we *know* fermions have mass, so SU(2)xU(1) must be broken!
- Nature: it is broken spontaneously (the reason we need the Higgs).
- Full potential for H: $V = -\mu^2 |H|^2 + \lambda |H|^4$
 - If $\mu^2 > 0$, the minimum (vacuum state) is not at H = 0 but at $|H|^2 = \frac{\mu^2}{2\lambda}$.
 - Vacuum value picks preferred direction in SU(2) space \rightarrow broken.

Spontaneous symmetry breaking

- Scalar potential V= $-\mu^2 |\mathbf{H}|^2 + \lambda |\mathbf{H}|^4$ minimized by
 - $|\mathsf{H}|^2 = rac{\mu^2}{2\lambda}.$
- Without loss of generality pick vacuum direction

 $H = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$ with real $v = \mu/\sqrt{\lambda} \simeq 246$ GeV.

• Since H = (1,2,1/2), both SU(2) and U(1)_Y are broken, but a U(1) subgroup survives!

$$\underbrace{\exp(i\alpha T_3) \exp(i\alpha Y_H) \begin{pmatrix} 0\\ v/\sqrt{2} \end{pmatrix}}_{SU(2)} \underbrace{U(1)_{Y}}_{U(1)_{Y}}$$

Spontaneous symmetry breaking

- H = (1,2,1/2) breaks $SU(2)XU(1)_{Y}$ to $U(1)_{electrodynamics}! [Q = Y + T_3]$
- Particles are excitations around the vacuum, should expand H as

$$H = \begin{pmatrix} H^+ \\ v/\sqrt{2} + h/\sqrt{2} + iA/\sqrt{2} \end{pmatrix}$$

- Shifting by v generates SU(2)xU(1) breaking terms in Lagrangian.
- Find $V = \frac{1}{2}(2\mu^2)h^2 + \lambda vh^3 + \frac{1}{4}\lambda h^4 + \text{other interactions.}$
- The Higgs particle h has mass $m_h = \sqrt{2}\mu = \sqrt{2\lambda}v \simeq 125 \text{ GeV}$, A and H⁺ are massless Goldstone bosons.
- Under U(1)_{EM}, h and A have charge 0, H⁺ has charge 1.
- Now expand the H kinetic terms around the true vacuum.

Massive gauge bosons

• Kinetic term $(D_{\mu}H)^{\dagger}(D^{\mu}H)$ with $D_{\mu} = \partial_{\mu} + i \sum g_{j}A_{\mu}^{j}T_{j}$ contains terms

 Rather than a massless Goldstone scalar + a massless vector we end up with a massive vector boson (3 degrees of freedom)!

=> Higgs mechanism.

- In the SM, the U(1)_{EM} gauge boson (photon) remains massless, the other three get mass (A is swallowed by Z boson, H⁺ by W⁺).
- Can pick 'unitary gauge' that sets $A = 0 = H^+$.

Massive gauge bosons

• Find

$$m_W = g_2 v/2 \simeq 80 \, \text{GeV} \,, \ \ m_Z = \sqrt{g_1^2 + g_2^2} \, v/2 \simeq 91 \, \text{GeV} .$$

and

$$\begin{pmatrix} \mathsf{A}_{\mu} \\ \mathsf{Z}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{\mathsf{W}} & \sin \theta_{\mathsf{W}} \\ -\sin \theta_{\mathsf{W}} & \cos \theta_{\mathsf{W}} \end{pmatrix} \begin{pmatrix} \mathsf{B}_{\mu} \\ \mathsf{W}_{\mu}^{\mathsf{3}} \end{pmatrix}$$

with weak mixing angle $\, heta_{
m W}\simeq 30^\circ$:

 $\label{eq:eq:expansion} \tan\theta_W = g_1/g_2 \ \ \text{or} \ \ \sin^2\theta_W = 1 - m_W^2/m_Z^2 \simeq 0.23.$

- Electric charge $e = g_2 \sin \theta_W \simeq 0.3$.
- Now we have massive **bosons**.

Kinetic fermion terms in this basis

$$\begin{split} \mathcal{L}_{kin} \supset \sum_{f=u,d,e} e Q_f \, \bar{f} \gamma^{\mu} f \, A_{\mu} \\ &- \sum_{f=u,d,e,\nu} \frac{g}{\cos \theta_W} (T_3^f - Q^f \sin^2 \theta_W) \, \bar{f_L} \gamma^{\mu} f_L \, Z_{\mu} \\ &- \sum_{f=u,d,e} \frac{g}{\cos \theta_W} (-Q^f \sin^2 \theta_W) \, \bar{f_R} \gamma^{\mu} f_R \, Z_{\mu} \\ &- \left(\frac{g}{\sqrt{2}} \, \bar{u_L} \gamma^{\mu} d_L \, W_{\mu}^+ + \frac{g}{\sqrt{2}} \, \bar{\nu_L} \gamma^{\mu} e_L \, W_{\mu}^+ + h.c. \right) \end{split}$$

$$\left(\mathsf{T}_3^{\mathsf{u}}=\mathsf{T}_3^{\nu}=+\tfrac{1}{2}\,,\ \mathsf{T}_3^{\mathsf{d}}=\mathsf{T}_3^{\mathsf{e}}=-\tfrac{1}{2}\,,\ \mathsf{Q}^{\nu}=0\,,\ \mathsf{Q}^{\mathsf{e}}=-1\,,\ \mathsf{Q}^{\mathsf{u}}=\tfrac{2}{3}\,,\ \mathsf{Q}^{\mathsf{d}}=-\tfrac{1}{3}\right)$$

Kinetic fermion terms in this basis

$$\left(\mathsf{T}_3^{\mathsf{u}}=\mathsf{T}_3^{\nu}=+\tfrac{1}{2}\,,\ \mathsf{T}_3^{\mathsf{d}}=\mathsf{T}_3^{\mathsf{e}}=-\tfrac{1}{2}\,,\ \mathsf{Q}^{\nu}=0\,,\ \mathsf{Q}^{\mathsf{e}}=-1\,,\ \mathsf{Q}^{\mathsf{u}}=\tfrac{2}{3}\,,\ \mathsf{Q}^{\mathsf{d}}=-\tfrac{1}{3}\right)$$

Massive fermions

• There are more terms we can write down in Lagrangian:

$$- \mathcal{L}_{\mathsf{Yukawa}} = \mathsf{y}_{\mathsf{e}} \overline{\mathsf{L}}_{\mathsf{L}} \mathsf{He}_{\mathsf{R}} + \mathsf{y}_{\mathsf{d}} \overline{\mathsf{Q}}_{\mathsf{L}} \mathsf{Hd}_{\mathsf{R}} + \mathsf{y}_{\mathsf{u}} \overline{\mathsf{Q}}_{\mathsf{L}} \tilde{\mathsf{H}} \mathsf{u}_{\mathsf{R}} + \mathsf{h.c.}$$

where
$$\tilde{H} \equiv \begin{pmatrix} -H^* \\ H^- \end{pmatrix} \sim$$
 (1,2,-1/2).

- Can pick the y_f to be real, absorb phase into f_R .
- Expand H around vacuum: $y_e \overline{L}_L He_R = \underbrace{y_e \frac{v}{\sqrt{2}}}_{m_e!} \overline{e}_L e_R + \cdots = m_e \overline{e}e + \frac{m_e}{v} \overline{e}e h$ Higgs couplings proportional to mass
- Electron becomes massive and forms Dirac spinor $e = e_L + e_R$.
- Same for quarks, only neutrinos remain massless since no $\nu_{\rm R}$.

SM is shockingly efficient: same H gives mass to everything!

Three generations

• For whatever reason we have 3 fermion copies:

$$\begin{split} - \,\mathcal{L}_{\mathsf{Yukawa}} &= \mathsf{y}_{\mathsf{e}}^{\mathsf{ij}}\overline{\mathsf{L}}_{\mathsf{L},\mathsf{i}}\mathsf{He}_{\mathsf{R},\mathsf{j}} + \mathsf{y}_{\mathsf{d}}^{\mathsf{ij}}\overline{\mathsf{Q}}_{\mathsf{L},\mathsf{i}}\mathsf{Hd}_{\mathsf{R},\mathsf{j}} + \mathsf{y}_{\mathsf{u}}^{\mathsf{ij}}\overline{\mathsf{Q}}_{\mathsf{L},\mathsf{i}}\tilde{\mathsf{H}}_{\mathsf{u}_{\mathsf{R},\mathsf{j}}} + \mathsf{h.c.} \\ &= \left(\overline{\mathsf{e}}_{\mathsf{L},\mathsf{i}}\mathsf{y}_{\mathsf{e}}^{\mathsf{ij}}\mathsf{e}_{\mathsf{R},\mathsf{j}} + \overline{\mathsf{d}}_{\mathsf{L},\mathsf{i}}\mathsf{y}_{\mathsf{d}}^{\mathsf{ij}}\mathsf{d}_{\mathsf{R},\mathsf{j}} + \overline{\mathsf{u}}_{\mathsf{L},\mathsf{i}}\mathsf{y}_{\mathsf{u}}^{\mathsf{ij}}\mathsf{u}_{\mathsf{R},\mathsf{j}}\right) \left(\frac{\mathsf{v}+\mathsf{h}}{\sqrt{2}}\right) + \mathsf{h.c.} \end{split}$$

- y_f are now 3x3 complex matrices.
- Linear algebra: use singular value decomposition to write

Diagonal matrix with positive entries

$$y_f = V_L^f \, y_f^{\text{diag}} \, V_R^f$$

Unitary 3x3 matrices

- Now redefine $f_R \to (V_R^f)^\dagger f_R\,,$ just removes $V_{_R}!$
- Now redefine $f_L \rightarrow V_L^f f_L$, Yukawa/mass terms are diagonal: $y_e^{diag} = \frac{\sqrt{2}}{v} \begin{pmatrix} m_e & & \\ & m_\mu & \\ & & m_\tau \end{pmatrix}$

...but

• Rotating components of doublets (u d) by different amounts gives

$$-\left(\frac{g}{\sqrt{2}}\,\bar{u_L}\,(V_L^u)^\dagger V_L^d\,\gamma^\mu d_L\,W_\mu^+ + \frac{g}{\sqrt{2}}\,\bar{\nu_L}\,(V_L^\nu)^\dagger V_L^e\,\gamma^\mu e_L\,W_\mu^+ + \text{h.c.}\right)$$

V' arbitrary in SM, pick $V^{
u}_{L} = V^{e}_{L}$

...but

• Rotating components of doublets (u d) by different amounts gives

$$-\left(\frac{g}{\sqrt{2}}\,\bar{u_L} \underbrace{(V_L^u)^\dagger V_L^d}_{\checkmark} \gamma^{\mu} d_L \,W_{\mu}^+ + \frac{g}{\sqrt{2}}\,\bar{\nu_L} \underbrace{(V_L^\nu)^\dagger V_L^e}_{\checkmark} \gamma^{\mu} e_L \,W_{\mu}^+ + h.c.\right)$$

This is just another unitary matrix, call it V; Cabibbo-Kobayashi-Maskawa matrix V' arbitrary in SM, pick $\,{\sf V}_{\sf L}^
u={\sf V}_{\sf L}^{\sf e}$

• Linear algebra: can write any unitary matrix as

$$\begin{pmatrix} e^{-i\phi(u)} & 0 & 0 \\ 0 & e^{-i\phi(c)} & 0 \\ 0 & 0 & e^{-i\phi(t)} \end{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} e^{-i\phi(d)} & 0 & 0 \\ 0 & e^{i\phi(s)} & 0 \\ 0 & 0 & e^{i\phi(b)} \end{pmatrix}$$

Redefine u_L and d_L once more to absorb/remove these phases.

• Left with 3 angles & 1 phase:

 $\theta_{12}\simeq 13^\circ\,,\ \theta_{13}\simeq 0.2^\circ\,,\ \theta_{23}\simeq 2.4^\circ\,,\ \delta\simeq 69^\circ\,.$

...but

• Rotating components of doublets (u d) by different amounts gives

• Quark-flavor changing interactions.

Neutrino belongs to lepton.

• (There are no flavor-changing neutral currents.)

And that's the Standard Model of particle physics!

Number of parameters

- 3 g couplings, v, m_h , 9 fermion masses, 3 CKM angles & 1 phase.
- All measured by now (as of 2012), SM is now fully predictive!

Symbol	Description	Value		
m _e	Electron mass	510.9989461(31) keV		
m _μ	Muon mass	105.6583745(24) MeV		
m _τ	Tau mass	1.77686(12) GeV		
m _u	Up quark mass	2.16 MeV		
m _d	Down quark mass	4.67 MeV		
m _s	Strange quark mass	93.4 MeV		
m _c	Charm quark mass	1.27 GeV		
m _b	Bottom quark mass	4.18 GeV		
m _t	Top quark mass	172.69 GeV		
θ ₁₂	CKM 12-mixing angle	13.1°		
θ_{23}	CKM 23-mixing angle	2.4°		
θ_{13}	CKM 13-mixing angle	0.2°		
δ	CKM CP-violating Phase	0.995		
g_1 or g'	U(1) gauge coupling	0.357		
g ₂ or g	SU(2) gauge coupling	0.652		
g_3 or g_s	SU(3) gauge coupling	1.221		
$\theta_{\rm QCD}$	QCD vacuum angle	~0		
V	Higgs vacuum expectation value	246.2196(2) GeV		
m _H	Higgs mass	125.18 GeV		

18 parameters that determine all of particle physics.

Sneaky omission of last allowed term in SM Lagrangian: θGG. Why 0? Strong CP problem.

Final SM Lagrangian

$$\begin{split} \mathcal{L}_{\mathsf{SM}} &= \mathsf{i} \sum_{f} \bar{\mathsf{f}} \gamma^{\mu} \partial_{\mu} \mathsf{f} + \frac{1}{2} \partial_{\mu} \mathsf{h} \, \partial^{\mu} \mathsf{h} - \frac{1}{4} \mathsf{G}_{\mu\nu}^{\mathsf{a}} \mathsf{G}^{\mathsf{a}\,\mu\nu} - \frac{1}{4} \mathsf{W}_{\mu\nu}^{\mathsf{a}} \mathsf{W}^{\mathsf{a}\,\mu\nu} - \frac{1}{4} \mathsf{B}_{\mu\nu} \mathsf{B}^{\mu\nu} \\ &- \left(\bar{\mathsf{e}} \mathsf{m}_{\mathsf{e}} \mathsf{e} + \overline{\mathsf{d}} \mathsf{m}_{\mathsf{d}} \mathsf{d} + \overline{\mathsf{u}} \mathsf{m}_{\mathsf{u}} \mathsf{u} \right) \left(1 + \frac{\mathsf{h}}{\mathsf{v}} \right) \\ &- \left(\mathsf{m}_{\mathsf{W}}^{2} \mathsf{W}^{\mu} + \mathsf{W}_{\mu}^{-} + \frac{1}{2} \mathsf{m}_{\mathsf{Z}}^{2} \mathsf{Z}_{\mu} \mathsf{Z}^{\mu} \right) \left(1 + \frac{\mathsf{h}}{\mathsf{v}} \right)^{2} - \frac{1}{2} \mathsf{m}_{\mathsf{h}}^{2} \mathsf{h}^{2} \left(1 + \frac{\mathsf{h}}{2\mathsf{v}} \right)^{2} \\ &+ \sum_{\mathsf{f}=\mathsf{u},\mathsf{d},\mathsf{e}} \mathsf{eQ}_{\mathsf{f}} \, \bar{\mathsf{f}} \gamma^{\mu} \mathsf{f} \, \mathsf{A}_{\mu} + \sum_{\mathsf{q}=\mathsf{u},\mathsf{d}} \mathsf{g}_{\mathsf{3}} \, \bar{\mathsf{q}} \gamma^{\mu} \mathsf{T}^{\mathsf{a}} \mathsf{q} \, \mathsf{G}_{\mu}^{\mathsf{a}} \\ &- \sum_{\mathsf{f}=\mathsf{u},\mathsf{d},\mathsf{e},\nu} \frac{\mathsf{g}}{\cos \theta_{\mathsf{W}}} \left[(\mathsf{T}_{\mathsf{3}}^{\mathsf{f}} - \mathsf{Q}^{\mathsf{f}} \sin^{2} \theta_{\mathsf{W}}) \, \bar{\mathsf{f}}_{\mathsf{L}} \gamma^{\mu} \mathsf{f}_{\mathsf{L}} + \left(-\mathsf{Q}^{\mathsf{f}} \sin^{2} \theta_{\mathsf{W}} \right) \, \bar{\mathsf{f}}_{\mathsf{R}} \gamma^{\mu} \mathsf{f}_{\mathsf{R}} \right] \mathsf{Z}_{\mu} \\ &- \left(\frac{\mathsf{g}}{\sqrt{2}} \, \bar{\mathsf{u}}_{\mathsf{L}} \, \mathsf{V} \, \gamma^{\mu} \mathsf{d}_{\mathsf{L}} \, \mathsf{W}_{\mu}^{+} + \frac{\mathsf{g}}{\sqrt{2}} \, \bar{\nu}_{\mathsf{L}} \gamma^{\mu} \mathsf{e}_{\mathsf{L}} \, \mathsf{W}_{\mu}^{+} + \mathsf{h.c.} \right) \end{split}$$

Accidental symmetries

- SM Lagrangian has more (global) symmetries than we imposed:
- $q \rightarrow e^{i\alpha}q$: U(1) symmetry \rightarrow conserved quark/baryon number.
- $\ell_j \rightarrow e^{i\alpha}\ell_j$, $\nu_j \rightarrow e^{i\alpha}\nu_j$: U(1) symmetry \rightarrow conserved lepton number.

$$\mathbf{G}_{\mathsf{global}} = \underbrace{\mathsf{U}(1)_{\mathsf{B}}}_{\mathsf{V}} \times \underbrace{\mathsf{U}(1)_{\mathsf{L}_{\mathsf{e}}} \times \mathsf{U}(1)_{\mathsf{L}_{\mu}} \times \mathsf{U}(1)_{\mathsf{L}_{\tau}}}_{\mathsf{V}}$$

Forbids proton decay. Forbids lepton flavor violation, e.g. $\mu \rightarrow e\gamma$

't Hooft: at quantum level, non-perturbative instanton/sphaleron ulletprocesses break the subgroup $U(1)_{B+L_e+L_\mu+L_\tau}$:

$$\propto e^{-(4\pi)^2/g^2}$$

Too suppressed to ever see this, but relevant in hot early universe, esp. for leptogenesis.

Accidental symmetries

• Actual global symmetry group after 't Hooft:

$$\mathsf{G}_{\mathsf{global}} = \underbrace{\mathsf{U}(1)_{\mathsf{B}-\mathsf{L}}}_{\mathsf{V}} \times \underbrace{\mathsf{U}(1)_{\mathsf{L}_{\mathsf{e}}-\mathsf{L}_{\mu}}}_{\mathsf{V}} \times \underbrace{\mathsf{U}(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{\tau}}}_{\mathsf{V}}$$

Broken if neutrinos are Violated by neutrino oscillations. Majorana, might be conserved if neutrinos are Dirac.

 Models for neutrino oscillation need to break last two U(1), generically expect charged lepton flavor violation as well:

$$\mu \rightarrow e\gamma \,, \,\, \mu \rightarrow 3e \,, \,\, \tau \rightarrow e\mu\mu \,, \,\, \mathsf{Z} \rightarrow e\mu \,, \,\, \mathrm{etc.}$$

• Rich experimental program for these processes, e.g. Mu2e @ FNAL.

Quantum Chromodynamics

- Everything simple so far, all coupling constants are small enough for • perturbation theory (Feynman diagrams), except for g₂.
- At low energies, g_3 is large and strongly binds quarks and gluons. •
- Should not talk about quarks/gluons but rather their color-neutral • bound states.

p

Mesons are qq or gg ulletstates (bosons), baryons qqq (fermions).

• E.g.

$$\pi^+ = \overline{d}u, \pi^0 = \overline{u}u \text{ or } \overline{d}d, \dots$$

 $p = uud, n = udd, \dots$

- Most complicated SM part.
- Either Chiral Perturbation Theory or Lattice QCD.

pdgLive Home	>	Meson Summary Table	
		LIGHT UNFLAVORED $(S = C = B = 0)$	

LIGHT UNFLAVORED ($S = C = B = 0$)			STRANGE ($S = \pm 1$, $C = B = 0$)			CHARMED, STRANGE $(C = \pm 1, S = \pm 1)$ (including possibly pop- $a \overline{a}$ states)			$b \ \overline{b}$ (including possibly non- $q \ \overline{q}$ states)						
	19(JPC)			1 ^G (J ^{PC})		I	(J ^P)	(incloaning		(J ^P)			19(JPC)	
$\begin{array}{l} \pi^{\pm} \\ \pi^{0} \\ \eta \\ \eta \\ f_{0}(500) \\ \underline{aka} \sigma; \underline{was} f_{0}(1) \\ \underline{f} 0(400-1200) \\ \rho(770) \\ \omega(782) \\ \eta' (958) \\ f_{0}(980) \\ a_{0}(980) \\ a_{0}(980) \\ \phi(1020) \\ h_{1}(1170) \\ b_{1}(1235) \\ a_{1}(1260) \\ f_{2}(1270) \\ f_{1}(1285) \\ \eta(1295) \\ \pi(1300) \\ a_{2}(1320) \\ f_{0}(1370) \\ \pi_{1}(1400) \\ \end{array}$	$\begin{pmatrix} 1^{-}\\ 1^{-}\\ 0^{+}\\ 0^{+}\\ 0^{+}\\ \end{pmatrix}$ $\begin{pmatrix} 1^{+}\\ 0^{-}\\ 0^{+}\\ 0^{+}\\ 1^{-}\\ 0^{-}\\ 0^{-}\\ 1^{+}\\ 1^{-}\\ 0^{+}\\ 0^{+}\\ 0^{+}\\ 0^{+}\\ 1^{-}\\ 0^{+}\\ 0^{+}\\ 1^{-}\\ 0^{+}\\ 1^{-}\\ 0^{+}\\ 1^{-}\\ 0^{+}\\ 1^{-}\\ 0^{+}\\ 1^{-}\\ 0^{+}\\$	$\begin{array}{c} (0^{-}) \\ (0^{+}) \\ (0^{+}) \\ (0^{+}) \\ (0^{+}) \\ (0^{+}) \\ (0^{+}) \\ (0^{+}) \\ (0^{+}) \\ (0^{+}) \\ (1^{-}) \\ (1^{+}) \\ (1^{+}) \\ (1^{+}) \\ (2^{+}) \\ (0^{-}) \\ (0^{-}) \\ (2^{+}) \\ (0^{+}) \\ (0^{+}) \\ (0^{+}) \\ (1^{+}) \\ (0^{+}) \\ (1^{+}) \end{array}$	$\begin{array}{l} \bullet \ \rho(1700) \\ \bullet \ a_2(1700) \\ \bullet \ a_2(1700) \\ a_0(1710) \\ \bullet \ f_0(1710) \\ X(1750) \\ \eta(1760) \\ f_0(1770) \\ \bullet \ \pi(1800) \\ f_2(1810) \\ X(1835) \\ \bullet \ \phi_3(1850) \\ \eta_1(1855) \\ \bullet \ \phi_3(1850) \\ \eta_1(1855) \\ \bullet \ \eta_2(1870) \\ \bullet \ \pi_2(1870) \\ \bullet \ \pi_2(1880) \\ \rho(1900) \\ f_2(1910) \\ a_0(1950) \\ \bullet \ a_4(1970) \\ \frac{w_{CS}}{w_3(1990)} \\ \pi_2(2005) \end{array}$)	$\begin{array}{c} 1^+(1^{})\\ 1^-(2^{++})\\ 1^-(0^{++})\\ 0^+(0^{++})\\ ?^-(1^{})\\ 0^+(0^{-+})\\ 0^+(0^{++})\\ 1^-(0^{-+})\\ 0^+(2^{++})\\ 1^-(0^{++})\\ 0^+(2^{++})\\ 1^-(2^{++})\\ 1^-(2^{++})\\ 1^-(4^{++})\\ 1^+(3^{})\\ 1^-(2^{-+})\\ 1^-(2^{-+})\\ \end{array}$	• K^{\pm} • K^0 • K^0_{L} • K^0_{L} • K^0_{L} • $K^*(892)$ • $K_1(1270)$ • $K_1(1400)$ • $K^*(1410)$ • $K^*(1410)$ • $K^*(1410)$ • $K^*(1430)$ • $K_2(1430)$ • $K(1460)$ • $K_2(1580)$ • $K(1630)$ • $K_1(1650)$ • $K_1(1650)$ • $K^*(1680)$ • $K_2(1770)$ • $K^*_3(1780)$ • $K_2(1820)$ • $K(1830)$ • $K(1830)$	$_{-}K_{0}^{*}(800)$	$1/2(0^{-})$ $1/2(0^{-})$ $1/2(0^{-})$ $1/2(0^{-})$ $1/2(0^{+})$ $1/2(1^{-})$ $1/2(1^{+})$ $1/2(1^{-})$ $1/2(1^{-})$ $1/2(2^{+})$ $1/2(2^{-})$	$\begin{array}{c} D_s^{\pm} \\ D_s^{\pm} \\ D_s^{*\pm} \\ D_{s0}(2317)^{\pm} \\ D_{s1}(2460)^{\pm} \\ D_{s1}(2536)^{\pm} \\ D_{s2}(2573) \\ D_{s0}(2590)^{+} \\ D_{s1}^{*}(2700)^{\pm} \\ D_{s1}^{*}(2700)^{\pm} \\ D_{s1}^{*}(2860)^{\pm} \\ D_{s1}^{*}(2860)^{\pm} \\ D_{s3}(2860)^{\pm} \\ D_{sJ}(3040)^{\pm} \\ \end{array}$	BOTTOM ($B = \pm 1$) IXTURE B-baryon ADM CKM Matrix E	$\begin{array}{c} 0(0^{-}) \\ 0(?^{2}) \\ 0(0^{+}) \\ 0(1^{+}) \\ 0(2^{+}) \\ 0(0^{-}) \\ 0(1^{-}) \\ 0(1^{-}) \\ 0(1^{-}) \\ 0(3^{-}) \\ 0(?^{2}) \\ \hline \end{array}$ $\begin{array}{c} 1/2(0^{-}) \\ 1/2(0^{-}) \\ 1/2(0^{-}) \\ 1/2(1^{+}) \\ 1/2(1^{+}) \end{array}$	• $\eta_b(1S)$ • $\Upsilon(1S)$ • $\chi_{b0}(1P)$ • $\chi_{b1}(1P)$ • $\lambda_b(1P)$ • $\chi_{b2}(1P)$ • $\eta_b(2S)$ • $\Upsilon(2S)$ • $\Upsilon_2(1D)$ • $\psi_{ab}(2P)$ • $\chi_{b1}(2P)$ • $\lambda_{b2}(2P)$ • $\chi_{b1}(2P)$ • $\chi_{b2}(2P)$ • $\chi_{b2}(2P)$ • $\Upsilon(3S)$ • $\chi_{b1}(3P)$ • $\chi_{b2}(3P)$ • $\Upsilon(4S)$ • $\chi(10753)$ • $\Upsilon(10860)$)) 580)	$0^+(0^{-+})$ $0^-(1^{})$ $0^+(0^{++})$ $0^-(1^{+-})$ $0^+(2^{++})$ $0^+(0^{-+})$ $0^-(1^{})$ $0^-(2^{})$ $0^+(0^{++})$ $0^+(1^{++})$ $0^+(2^{++})$ $0^-(1^{})$ $0^+(2^{++})$ $0^-(1^{})$ $0^-(1^{})$ $0^-(1^{})$	-
<i>"</i> (1400)	ndal ive Ha	(I) I	- C (2010)	hle	0+(0++)	A ₀ (1950)		[/2(0*)	-1()		-/-(-)	1 (11020)	//	• (1)	
	pagente no		yon ooninary ia									1	1		
$p \\ n$		$\frac{1}{2^+}$	****	$\Delta(1232)$	3/2	+ ****	Σ^+	1/2	+ ****	Ξ_0^-	$\frac{1}{2^+}$	****	Λ_c^+	$\frac{1}{2^+}$	****
N	(1440)	$\frac{1}{2^+}$ $\frac{1}{2^+}$	****	$\Delta(1600)$ $\Delta(1620)$	3/2	- ****	Σ^{0}	$\frac{1}{2}$	+ ****	$\Xi(1530)$	$\frac{1/2^+}{3/2^+}$	****	$A_c(2595)^+$	$\frac{1}{2^{-}}$	***
N	(1520)	$\frac{1}{2}$ -3/2 ⁻	****	$\Delta(1700)$	3/2	****	$\Sigma(1385)$	3/2	+ ****	$\Xi(1620)$	0/2	•	$A_c(2025)$ $A_c(2765)^+$ or	3/2	
N	(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{-1}$	+ *	$\Sigma(1580)$	3/2	- *	$\Xi(1690)$		***	$\Sigma_{c}(2765) = 0$		
N((1650)	$1/2^{-}$	****	$\Delta(1900)$	$1/2^{-1}$	***	$\Sigma(1620)$	1/2	•	$\Xi(1820)$	$3/2^{-}$	***	$A_{a}(2860)^{+}$	$3/2^+$	***
N((1675)	$5/2^{-}$	****	$\Delta(1905)$	$5/2^{-1}$	+ ****	$\Sigma(1660)$	1/2	+ ***	$\Xi(1950)$	- 2	***	$A_{c}(2880)^{+}$	$5/2^{+}$	***
	(1680)	$\frac{5}{2^+}$	***	$\Delta(1910)$	$1/2^{-2}$	- ***	$\Sigma(1670)$ $\Sigma(1750)$	3/2	- ***	$\Xi(2030)$	<u>5</u>		$\Lambda_{c}(2940)^{+}$	$3/2^{-}$	***
	(1700)	$\frac{3}{2}$ $\frac{1}{2^+}$	****	$\Delta(1920)$ $\Lambda(1930)$	5/2	***	$\Sigma(1750)$ $\Sigma(1775)$	1/2	****	$\Xi(2120)$		•	$\Sigma_c(2455)$	$1/2^{+}$	****
N	(1720)	$\frac{1}{3}/2^+$	****	$\Delta(1940)$	3/2-	- **	$\Sigma(1780)$	3/2	+ •	$\Xi(2250)$ $\Xi(2270)$		**	$\Sigma_c(2520)$	$3/2^+$	***
N	(1860)	$5/2^+$	**	$\Delta(1950)$	$7/2^{-1}$	+ ****	was $\Sigma(1730)$))		$\Xi(2500)$			$\Sigma_c(2800)$	1 /0+	***
N	(1875)	$3/2^{-}$	***	$\Delta(2000)$	$5/2^{-1}$	+ **	$\Sigma(1880)$	1/2	+ **	L(1000)			Ξ_c^+	$\frac{1}{2^+}$	****
wo	<u>as N(2080)</u>			$\Delta(2150)$	$1/2^{-1}$	- •	$\Sigma(1900)$	1/2	**	Ω^{-}	$3/2^+$	****	Ξ_c^{\prime}	$\frac{1}{2}$	***
N((1880)	$1/2^+$	****	$\Delta(2200)$	7/2	- ***	$\Sigma(1910)$	3/2	***	$\Omega(2012)^-$?-	***		$\frac{1}{2}$	***
11((1895)	1/2		$\Delta(2300)$	9/2		$\underline{\text{was}}\Sigma(1940$) E /0:	+ ****	$arOmega(2250)^-$		***	Ξ_c (2645)	$\frac{1}{2}$	***
	(1900)	$3/2^+$	****	$\Delta(2300)$ $\Lambda(2300)$	5/2	+ +	$\Sigma(1915)$ $\Sigma(1940)$	3/2	+ •	$arOmega(2380)^-$		**	$\Xi_c(2790)$	$1/2^{-}$	***
N	(1990)	$7/2^+$	**	$\Delta(2300)$ $\Delta(2400)$	9/2-		$\Sigma(2010)$	3/2	- •	$\Omega(2470)^-$		**	$\Xi_{c}(2815)$	$3/2^{-}$	***
N	(2000)	$5/2^{+}$	**	$\Delta(2420)$	11/2	2+ ****	was Siamal	2000)					$\Xi_c(2923)$		**
wo	as N(1900)			$\Delta(2750)$	13/2	2- **	$\overline{\Sigma(2030)}$	7/2	+ ****				$\Xi_c(2930)$		**
N((2040)	$3/2^+$	*	$\Delta(2950)$	15/2	2+ **	$\Sigma(2070)$	5/2	+ •				$\Xi_c(2970)$	$1/2^{+}$	***
N((2060)	$5/2^{-}$					$\Sigma(2080)$	3/2	+ •				$\frac{\text{was}}{\Xi_c(2980)}$		***
	$\frac{1}{(2100)}$	1/9+	***	Λ (1200)	1/2	- **	$\Sigma(2100)$	7/2	- *				$\Xi_c(3035)$ $\Xi_c(3080)$		***
N	(2120)	$\frac{1}{2}$	***	A(1380) A(1405)	1/2	- ****	$\Sigma(2110)$	1/2					$\Xi_{c}(3123)$		*
N	(2190)	7/2-	****	A(1500)	1/2	****	$\frac{wus}{\nabla(2220)}$	2/9	+ •				Ω^0	$1/2^+$	***

Neutrinos in the SM (finally!)

• Neutrinos only couple to Z and W:

$$-\frac{g}{2\cos\theta_{\mathsf{W}}}\,\bar{\nu_{\mathsf{L}}}\gamma^{\mu}\nu_{\mathsf{L}}\,\mathsf{Z}_{\mu} - \left(\frac{g}{\sqrt{2}}\,\bar{\nu_{\mathsf{L}}}\gamma^{\mu}\mathsf{e}_{\mathsf{L}}\,\mathsf{W}_{\mu}^{+} + \mathsf{h.c.}\right)$$

- Flavor universal, couplings are not small.
- Confirmed via Z and W decays @ LEP.
- But, since Z & W are very heavy and unstable, we rarely deal with processes with them in initial/final state.

Requires a ridiculous $E_{\nu} \sim 6 \times 10^{6} \text{ GeV}!$ (Glashow resonance).

Fermi interactions

• Neutrinos only couple to Z and W:

$$-\frac{g}{2\cos\theta_{\mathsf{W}}}\,\bar{\nu_{\mathsf{L}}}\gamma^{\mu}\nu_{\mathsf{L}}\,\mathsf{Z}_{\mu}-\left(\frac{g}{\sqrt{2}}\,\bar{\nu_{\mathsf{L}}}\gamma^{\mu}\mathsf{e}_{\mathsf{L}}\,\mathsf{W}_{\mu}^{+}+\mathsf{h.c.}\right)$$

• More important: off-shell Z & W:

• At low energies, we can *integrate out* Z & W to get simpler Lagrangian. (Solve classical equation of motion for W/Z neglecting kinetic energy.)

Fermi Lagrangian

• Current-current interactions:

$$\underbrace{\left(\frac{g}{\sqrt{2}}\right)^2 \frac{1}{m_W^2} \left(\bar{u}_L \, V \, \gamma^\mu d_L + \bar{\nu}_L \gamma^\mu e_L\right) \left(\bar{d}_L \, V^\dagger \, \gamma_\mu u_L + \bar{e}_L \gamma_\mu \nu_L\right)}_{\equiv 4 \frac{G_F}{\sqrt{2}} = \frac{1}{(v/\sqrt{2})^2}}$$

- Historically this was the starting point, UV completion via W much later.
- Similar for Z interactions; prefactor again

$$\left(\frac{g}{\sqrt{2}\cos\theta_{W}}\right)^{2}\frac{1}{m_{Z}^{2}}=4\frac{G_{F}}{\sqrt{2}}$$

• At low energies, all amplitudes involving v come with factor G_{F} .

$$\mathcal{M} \propto \mathsf{G}_{\mathsf{F}} \qquad \Rightarrow \ \mathsf{\Gamma} \propto \mathsf{G}_{\mathsf{F}}^2 \mathsf{m}_{\mu}^5.$$

Three-body kinematics explains Michel spectrum. Similar for tauon decays.

Neutrino scattering

• Neutrino-electron scattering:

- A bit more careful with kinematics: $\sigma \propto G_F^2 2m_e E_{\nu}$ for $E_{\nu} \gg m_e$, $\sigma \propto G_F^2 4E_{\nu}^2$ for $E_{\nu} \ll m_e$
- Good enough for estimates, O(1) prefactors depend on process.
- By assumption $E_{\nu} \ll m_W$, so cross sections are *tiny*:

$$\sigma \sim 10^{-44} {
m cm}^2 \left({{
m E}_{
u}\over {
m MeV}}
ight)$$

Tiny not because of a coupling, but because of large Z & W mass!

[Formaggio & Zeller: arXiv:1305.7513]

$\frac{1}{2} + 2 + 4$	$2\pi C^{-2} \pi$	
$\frac{1}{10000000000000000000000000000000000$	$3\pi G_{\rm F} \sigma_{12\to 34}$	
$\nu_e + \overline{\nu}_e \longrightarrow \nu_e + \overline{\nu}_e$	S	
$v_e + v_e \longrightarrow v_e + v_e$	$\frac{3}{2} s$	Lesgourges et al,
$\nu_e + \overline{\nu}_e \longrightarrow \nu_{\mu(\tau)} + \overline{\nu}_{\mu(\tau)}$	$\frac{1}{4}S$	Cambridge books,
$\nu_e + \overline{\nu}_{\mu(\tau)} \longrightarrow \nu_e + \overline{\nu}_{\mu(\tau)}$	$\frac{1}{4}S$	See also
$\nu_e + \nu_{\mu(\tau)} \longrightarrow \nu_e + \nu_{\mu(\tau)}$	$\frac{3}{4} s$	arXiv:1305.7513]
$ u_e + \overline{\nu}_e \longrightarrow e^+ + e^- $	$\frac{4}{\sqrt{s}}\sqrt{s-4m_e^2}[(s-m_e^2)(\tilde{g}_L^{l2}+g_R^{l2})+6m_e^2\tilde{g}_L^{l}g_R^{l}]$	
$e^+ + e^- \longrightarrow v_e + \overline{v}_e$	$\frac{\sqrt{s}}{2\sqrt{s-4m_e^2}}[(s-m_e^2)(\tilde{g}_L^{l2}+g_R^{l2})+6m_e^2\tilde{g}_L^{l}g_R^{l}]$	
$ u_e + e^- \longrightarrow \nu_e + e^- $	$(3 s \tilde{g}_L^{l2} + s g_R^{l2} - 3 m_e^2 \tilde{g}_L^l g_R^l)$	
$\overline{\nu}_e + e^- \longrightarrow \overline{\nu}_e + e^-$	$(3 s g_R^{l2} + s \tilde{g}_L^{l2} - 3 m_e^2 \tilde{g}_L^l g_R^l)$	
$\nu_{\mu} + \overline{\nu}_{\mu} \longrightarrow \nu_{\mu} + \overline{\nu}_{\mu}$	S	
$ u_{\mu} + \nu_{\mu} \longrightarrow \nu_{\mu} + \nu_{\mu} $	$\frac{3}{2} s$	
$\nu_{\mu} + \overline{\nu}_{\mu} \longrightarrow \nu_{e(\tau)} + \overline{\nu}_{e(\tau)}$	$\frac{1}{4}S$	
$\nu_{\mu} + \overline{\nu}_{e(\tau)} \longrightarrow \nu_{\mu} + \overline{\nu}_{e(\tau)}$	$\frac{1}{4}S$	
$\nu_{\mu} + \nu_{e(\tau)} \longrightarrow \nu_{\mu} + \nu_{e(\tau)}$	$\frac{3}{4}$ s	
$ u_{\mu} + \overline{ u}_{\mu} \longrightarrow e^+ + e^-$	$\frac{4}{\sqrt{s}}\sqrt{s-4m_e^2}[(s-m_e^2)(g_L^{l2}+g_R^{l2})+6m_e^2g_L^lg_R^l]$	
$e^+ + e^- \longrightarrow u_\mu + \overline{ u}_\mu$	$\frac{\sqrt{s}}{2\sqrt{s-4m_e^2}}[(s-m_e^2)(g_L^{l2}+g_R^{l2})+6m_e^2g_L^lg_R^l]$	
$ u_{\mu} + e^{-} \longrightarrow u_{\mu} + e^{-}$	$(3 s g_L^{l2} + s g_R^{l2} - 3 m_e^2 g_L^l g_R^l)$	
$\overline{ u}_{\mu}+e^{-}\longrightarrow\overline{ u}_{\mu}+e^{-}$	$(3 s g_R^{l2} + s g_L^{l2} - 3 m_e^2 g_L^l g_R^l)$	

Neutrino-quark scattering

• Neutrino-quark scattering:

- Same as for electrons, but difficult to apply: no free quarks.
- But: shoot neutrinos into nuclei with enough energy (~10 GeV) to "see" quarks: Deep Inelastic Scattering

- Important to confirm quark picture.
- At lower energies we need to know how neutrinos couple to hadrons.

Neutrino-meson coupling

• Quarks sit inside mesons:

$$2\sqrt{2}G_{F} \underbrace{\bar{u_{L}} V \gamma^{\mu} d_{L}}_{V_{ud}} \underbrace{\bar{f_{\pi}}}_{\sqrt{2}} \partial^{\mu} \pi^{-}$$

- Constant f that describes QCD binding.
- Find $\mathcal{M} \propto p_{\pi^-}^{\mu} \bar{u}(p_e) \gamma_{\mu} P_L v(p_{\nu}) = m_e \bar{u}(p_e) P_L v(p_{\nu})$

$$\Rightarrow \Gamma(\pi^- \rightarrow e^- \bar{\nu}_e) \propto G_F^2 f_\pi^2 V_{ud}^2 m_e^2 m_\pi$$

so the pion decay into muons dominates by $m_{\mu}^2/m_e^2 \sim 4 \times 10^4!$

- Can also argue lepton mass flip from spin/helicity (homework).
- Replace d by s for kaons, heavier mesons can make τ : D_s or B $\rightarrow \tau \nu$.

Meson decays are good sources of muon and tauon neutrinos.

Neutrino-baryon coupling

- Constants $g_V=1~\&~g_A\simeq 1.3$ that describe QCD binding.
- This was Fermi's & Pauli's starting point to explain beta decays!
- Describes neutron decay and all beta decays of nuclei. Three-body decay gives continuous electron energy spectrum.
- $m_n m_p \simeq 1.3 \,\text{MeV}$ too small to make muons or tauons.
- Small phase space makes beta decays sensitive to neutrino mass.
- (At lower energies neutrinos couple to entire nucleon/nucleus.)

Beta decays are good sources of electron neutrinos.

Neutrino coupling to gravity

- Einstein's gravity couples to everything, including neutrinos.
- Neutrinos bend in gravitational fields, just like photons.
- Still the best pointers possible as they barely see matter, EM fields etc.
- Neutrino production via gravity? Hawking radiation!
 - Black holes have a temperature and emit thermal particles

- Need small black holes, not observed yet.
- (Would also emit v_{R} or any other BSM particle!)

[see Lunardini & Perez-Gonzalez, arXiv:1910.07864]

Extra homework: do these Hawking neutrinos oscillate?

Neutrino force

- SM neutrinos are massless.
- Massless particles give long-range interactions?
- Need two to form boson.
- Potential:

$$V_{ee}(r) = \left(2\sin^2\theta_W + \frac{1}{2}\right)^2 \frac{G_F^2}{4\pi^3} \frac{1}{r^5}$$

- Dominates over gravity's 1/r potential for r < 10⁻⁸ m.
- Neutrino masses change the r dependence.
- Not yet observed experimentally. [see Xu, arXiv:2305.08032]

Fifth, sixth, and seventh force?

Take home messages

- Standard Model is a mathematically consistent quantum field theory with ~18 free parameters, all measured now.
- Neutrino interactions well understood, only difficulties come from QCD: neutrino cross sections on hadrons...
- Standard Model very successful, but wrong:
 - Neutrino masses
 - Dark matter
 - (Finetuning: strong CP, baryon asymmetry, inflation)
 - Quantum gravity?

Need more experimental data to build Standard Model II

Backup

Aside 1: Chiral fermions

- Notation confusing at times...
- First off: what is spin?
 - Behavior under rotations, i.e. SO(3) representation?
 - Only works for integer spins, not spin 1/2!
 - Can show that the Poincare symmetry (Lorentz + boost) is isomorphic to Lie algebra SU(2)xSU(2).
 - Spin is SU(2)xSU(2) representation theory:
 - Scalar = (1,1)
 - Vector = (2,2)
 - Spin $\frac{1}{2} = (1,2)$ or (2,1).

Aside 1: Chiral fermions

- Simplest fermion in QFT: Weyl fermion
 - Two-component complex object with Lagrangian

$$\mathcal{L} = i\psi^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\psi - \frac{1}{2}m\psi\psi - \frac{1}{2}m^{*}\psi^{\dagger}\psi^{\dagger}$$

- Mass term only allowed if fermion has no charges!
- (Can also write this as a four-component Majorana spinor.)
- Usually used: Dirac fermion
 - Take two Weyl fermions with opposite U(1) charge:

$$\mathcal{L} = i\chi^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\chi + i\xi^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\xi - m\chi\xi - m\xi^{\dagger}\chi^{\dagger}$$

- Put them in four-component Dirac spinor

$$\Psi \equiv \begin{pmatrix} \chi \\ \xi^{\dagger} \end{pmatrix} \qquad \Rightarrow \qquad \begin{array}{c} \mathcal{L} = i\overline{\Psi}\gamma^{\mu}\partial_{\mu}\Psi - m\overline{\Psi}\Psi \\ \Rightarrow \quad (-i\partial \!\!\!/ + m)\Psi = 0 \end{array}$$

Three-neutrino parametrization

• Three neutrinos: unitary mixing matrix U =

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- $s_{ij} \equiv \sin \theta_{ij}, c_{ij} \equiv \cos \theta_{ij}.$
- CP violation via δ .
- Two mass-squared differences: $\Delta m_{ij}^2 = m_i^2 m_j^2$.

Standard Model of Particle Physics

Masses in the Standard Model

- $SU(2)_L \times U(1)_Y$ gauge symmetry forbids mass terms.
- Masses via spontaneous symmetry breaking \rightarrow U(1)_{\rm EM}.
- Higgs-fermion couplings:

 $\mathcal{L}_{\rm SM} \supset \ y_f \, \overline{f}_L \, H \, f_R + h.c.$

$$\rightarrow \begin{array}{c} \mathsf{y}_{\mathsf{f}} \left\langle \mathsf{H} \right\rangle \overline{\mathsf{f}}_{\mathsf{L}} \, \mathsf{f}_{\mathsf{R}} + \mathsf{h.c.} \\ \mathbf{y}_{\mathsf{f}} = \mathsf{y}_{\mathsf{f}} \times 174 \, \mathsf{GeV} \end{array}$$

For neutrinos: no
$$\nu_{R}$$
 !

The 3 neutrinos $\nu_{e,\mu,\tau}$ in the SM are massless.

