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Evidence of Matter-Antimatter Asymmetry

• CMB anisotropy


• Big Bang Nucleosynthesis

• primordial deuterium abundance      ⟺ 

agree with WMAP 

• 4He & 7Li  ⟺  discrepancies


• WMAP + Deuterium Abundance
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Fig. 1.1. The power spectrum anisotropies defined in Eq. 1.2 and 1.3 as a function of
the multiple moment, l. Figure taken from Ref. [2].

(For a review, see, Ref. [8]. See also Scott Dodelson’s lectures.) Agreement
between theory and observation is obtained for a certain range of parameter,
ηB, which is the ratio of the baryon number density, nB, to photon density,
nγ ,

ηBBN

B =
nB

nγ
= (2.6 − 6.2) × 10−10 . (1.1)

The Cosmic Microwave Background (CMB) is not a perfectly isotropic ra-
diation bath. These small temperature anisotropies are usually analyzed by
decomposing the signal into spherical harmonics, in terms of the spherical
polar angles θ and φ on the sky, as

∆T

T
=

∑

l,m

almYlm(θ, φ) , (1.2)

where alm are the expansion coefficients. The CMB power spectrum is
defined by

Cl =
〈
|alm|2

〉
, (1.3)

and it is conventional to plot the quantity l(l + 1)Cl against l. The CMB
measurements indicate that the temperature of the Universe at present is
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Tnow ∼ 3oK. Due to the Bose-Einstein statistics, the number density of the
photon, nγ , scales as T 3. Together, these give a photon number density at
present to be roughly 400/cm3. It is more difficult to count the baryon num-
ber density, because only some fraction of the baryons form stars and other
luminous objects. There are two indirect probes that point to the same
baryon density. The measurement of CMB anisotropies probe the acous-
tic oscillations of the baryon/photon fluid, which happened around photon
last scattering. Fig. 1.1 illustrates how the amount of anisotropies depends
on nB/nγ . The baryon number density, nB ∼ 1/m3, is obtained from the
anisotropic in CMB, which indicates the baryon density ΩB to be 0.044.
Another indirect probe is the Big Bang Nucleosynthesis (BBN), whose pre-
dictions depend on nB/nγ through the processes shown in Fig. 1.2. It is
measured independently from the primordial nucleosynthesis of the light
elements. The value for nB/nγ deduced from primordial Deuterium abun-
dance agrees with that obtained by WMAP [9]. For 4He and 7Li, there are
nevertheless discrepancies which may be due to the under-estimated errors.
Combining WMAP measurement and the Deuterium abundance gives,

nB

nγ
≡ ηB = (6.1 ± 0.3)× 10−10 . (1.4)

Fig. 1.2. Main reactions that determine the primordial abundances of the light elements.
Figure taken from Ref. [2].
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Three Sakharov Conditions

• Baryon number can be generated dynamically, if 
• violation of baryon number

• violation of Charge (C) and Charge Parity (CP)

• departure from thermal equilibrium

3

Matter-Antimatter Asymmetry
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Scientists have discovered that neutrinos have
tiny masses, in contradiction to the theoretical
model that describes neutrino interactions.
Credit: symmetry magazine

The Big Bang produced large amounts of matter
and antimatter (top). When matter and
antimatter annihilated, some tiny asymmetry in
the early universe produced our universe, made
entirely of matter (bottom). Did neutrinos cause
the asymmetry? 
Credit: Hitoshi Murayama
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Why neutrinos?
Particle physics has been very successful in creating the Standard Model, a
theoretical framework that describes many particle physics phenomena. However,
major discoveries such as the evidence for dark matter and the observation of
neutrino mass have shown that the Standard Model is incomplete. These findings
strongly suggest that new physics discoveries beyond the Standard Model await us.

Neutrinos could provide the path to unveiling these hidden physics phenomena. In
particular, physicists hope that neutrinos will shed light on these questions:

Why is the universe as we know it made of matter, with no antimatter present?
What is the origin of this matter-antimatter asymmetry, also known as CP
violation?
Are neutrinos connected to the matter-antimatter asymmetry, and if so, how?
If neutrinos exhibit CP violation, is it related to the CP violation observed in
quark interactions?
Are neutrinos their own antiparticles?
What role did neutrinos play in the evolution of the universe?

Physicists have discovered three types of neutrinos so far: electron neutrinos, muon
neutrinos and tau neutrinos. Although neutrinos are among the most abundant
particles in the universe, they rarely interact with other matter. Hence, they are often
referred to as ghost particles.

"For every electron, for every proton, for every neutron, there are about a billion neutrinos... every second there are 100 trillion neutrinos
from the sun passing through each person," says Fermilab theorist Boris Kayser. "It's the neutrinos and photons, particles that make up light
beams, that are by far the most abundant particles in the universe."

Kayser further explains that a recent theory has developed, which is that the neutrinos may have something very important to do with how
the universe came to be dominated by matter and have no antimatter. "Life is possible only because there is no antimatter around. When
matter and antimatter meet, they annihilate each other."

By generating huge numbers of neutrinos using high-intensity accelerators and by building large detectors that increase the chance of
neutrino observation, physicists can study these mysterious particles and learn more about their role in the universe. The proposed Long-
Baseline Neutrino Experiment will give physicists the chance to push the door wide open to search for physics beyond the Standard Model
and allow them to make exciting discoveries at the Intensity Frontier.

Further reading:
For an excellent introduction to the neutrino physics opportunities presented by the
proposed Deep Underground Science and Engineering Laboratory (DUSEL, no
longer a funded entity), read this chapter in the report Deep Science, published by
the National Science Foundation.

Details on the scientific questions surrounding neutrinos and their properties and
interactions are given in this summary by Boris Kayser and Stephen Parke, members
of the Fermilab theory group.
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Early Universe Universe Now

neutrinos may play an important role in generating 
the matter-antimatter asymmetry  



Group Work

In the Standard Model, 
what are the accidental 

symmetries?



Baryon Number Asymmetry beyond SM

• Within the SM: 

‣ CP violation in quark sector not sufficient to explain the observed matter-

antimatter asymmetry of the Universe

‣ accidental symmetries Le, Lμ, Lτ, total L

‣ massless neutrinos, no cLFV


• neutrino oscillation ⇒ non-zero neutrino masses 

• physics beyond the Standard Model

• new CP phases in the neutrino sector


• neutrino masses open up a new possibility for baryogenesis


5

Leptogenesis
Fukugita, Yanagida, 1986
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Plans
• Theoretical Foundation of Baryogenesis:


• Sakharav’s Three Conditions


• Mechanisms for Baryogenesis & Their Problems 


• Sources of CP violation 


• Standard Leptogenesis (“Majorana” Leptogenesis)


• Dirac Leptogenesis


• Gravitino Problem


• Non-standard Scenarios


• Resonant Leptogenesis


• Soft Leptogenesis


• Non-thermal Leptogenesis


• Connection between leptogenesis & low energy CP violation 
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Three Sakharov Conditions (1)
Baryon Number Violation 

• necessary for baryon symmetric Universe (B=0) → 
Universe with B ≠ 0


• GUT theories: 


• quarks and leptons in same representations → B-violation 
naturally through interactions with gauge or scalar fields


• SM: 


• B & L accidental symmetries


• preserved at tree level




Three Sakharov Conditions

• Standard Model:


•  accidental symmetries


• Classically:  conserved


• At quantum level: non-vanishing ABJ triangular anomaly through 
interactions with EW gauge fields

B & L

B & L

Gauge anomaly

From Wikipedia, the free encyclopedia

In theoretical physics, a gauge anomaly is an example of an anomaly: it is an effect of quantum mechanics—

usually a one-loop diagram—that invalidates the gauge symmetry of a quantum field theory; i.e. of a gauge

theory.

Anomalies in gauge symmetries lead to an inconsistency, since a gauge symmetry is required in order to

cancel unphysical degrees of freedom with a negative norm (such as a photon polarized in the time direction).

Therefore all gauge anomalies must cancel out. This indeed happens in the Standard Model.

The term gauge anomaly is usually used for vector gauge anomalies. Another type of gauge anomaly is the

gravitational anomaly, because reparametrization is a gauge symmetry in gravitation.

Calculation of the anomaly

In vector gauge anomalies (in gauge symmetries whose gauge boson is a vector), the anomaly is a chiral

anomaly, and can be calculated exactly at one loop level, via a Feynman diagram with a chiral fermion

running in the loop (a polygon) with n external gauge bosons attached to the loop where n = 1 + D / 2 where

D is the spacetime dimension. Anomalies occur only in even spacetime dimensions. For example, the

anomalies in the usual 4 spacetime dimensions arise from triangle Feynman diagrams.

Let us look at the (semi)effective action we get after integrating over the chiral fermions. If there is a gauge

anomaly, the resulting action will not be gauge invariant. If we denote by !" the operator corresponding to an

infinitesimal gauge transformation by ", then the Frobenius consistency condition requires that

for any functional , including the (semi)effective action S where [,] is the Lie bracket. As !"S is linear in ",

we can write

where #(4) is d-form as a functional of the nonintegrated fields and is linear in ". Let us make the further

assumption (which turns out to be valid in all the cases of interest) that this functional is local (i.e. #(d)(x) only

depends upon the values of the fields and their derivatives at x) and that it can be expressed as the exterior

product of p-forms. If the spacetime Md is closed (i.e. without boundary) and oriented, then it is the boundary

of some d+1 dimensional oriented manifold Md+1. If we then arbitrarily extend the fields (including ") as

defined on Md to Md+1 with the only condition being they match on the boundaries and the expression #(d),

being the exterior product of p-forms, can be extended and defined in the interior, then

Make a donation to Wikipedia and give the gift of knowledge!
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Table 1.1. Standard model fermions and their B and L

charges.

qL =

„

u

d

«

L

uc
L dc

L !L =

„

ν

e

«

L

ec
L

B 1/3 -1/3 -1/3 0 0
L 0 0 0 1 -1

quantum level, and they are given by

∂µJµ
B = ∂µJµ

L =
Nf

32π2

(
g2W p

µνW̃ pµν − g′2BµνB̃µν
)

, (1.8)

where Wµν and Bµν are the SU(2)L and U(1)Y field strengths,

W p
µν = ∂µW p

ν − ∂νW p
µ (1.9)

Bµν = ∂µBν − ∂νBµ , (1.10)

respectively, with corresponding gauge coupling constants being g and g′,
and Nf is the number of fermion generations. As ∂µ(JB

µ −JL
µ ) = 0, (B−L)

is conserved. However, (B+L) is violated with the divergence of the current
given by,

∂µ(JB
µ + JL

µ ) = 2NF ∂µKµ , (1.11)

where

Kµ = −
g2

32π2
2εµνρσW p

ν (∂ρW
p
σ +

g

3
εpqrW q

ρ W r
σ ) (1.12)

+
g′2

32π2
εµνρσBνBρσ .

This violation is due to the vacum structure of non-abelian gauge theories.
Change in B and L numbers are related to change in topological charges,

B(tf ) − B(ti) =

∫ tf

ti

dt

∫
d3x ∂µJB

µ (1.13)

= Nf [Ncs(tf ) − Ncs(ti)] ,

where the topological charge of the gauge field (i.e. the Chern-Simons
number) Ncs is given by,

Ncs(t) =
g3

96π2

∫
d3xεijkεIJKW IiW JjWKk . (1.14)

There are therefore infinitely many degenerate ground states with
∆Ncs = ±1, ±2, ....., separated by a potential barrier, as depicted by



Group Work

What are the broken symmetries?

Are there any unbroken symmetries?
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Make a donation to Wikipedia and give the gift of knowledge!
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Three Sakharov Conditions (1)
• Classically: B & L conserved


• At quantum level, non-vanishing ABJ triangular anomaly 
through interactions with EW gauge fields 


⇒  (B+L) violated, (B-L) preserved


• vacuum structure of non-abelian gauge theories:


• changes in B & L ↔ changes in topological charges 
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anomaly, the resulting action will not be gauge invariant. If we denote by !" the operator corresponding to an

infinitesimal gauge transformation by ", then the Frobenius consistency condition requires that

for any functional , including the (semi)effective action S where [,] is the Lie bracket. As !"S is linear in ",

we can write

where #(4) is d-form as a functional of the nonintegrated fields and is linear in ". Let us make the further

assumption (which turns out to be valid in all the cases of interest) that this functional is local (i.e. #(d)(x) only

depends upon the values of the fields and their derivatives at x) and that it can be expressed as the exterior

product of p-forms. If the spacetime Md is closed (i.e. without boundary) and oriented, then it is the boundary

of some d+1 dimensional oriented manifold Md+1. If we then arbitrarily extend the fields (including ") as

defined on Md to Md+1 with the only condition being they match on the boundaries and the expression #(d),

being the exterior product of p-forms, can be extended and defined in the interior, then
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Fig. 1.3. The energy dependence of the gauge configurations A as a function of the
Chern-Simons number, Ncs[A]. Sphalerons correspond to the saddle points, i.e. maxima
of the potential.

Fig. 1.3. In semi-classical approximation, the probability of tunneling be-
tween neighboring vacua is determined by the instanton configurations. In
SM, as there are three generations of fermions, ∆B = ∆L = Nf∆Ncs =
±3n, with n being an positive integer. In other words, the vacuum to vac-
uum transition changes ∆B and ∆L by multiples of 3 units. As a result,
the SU(2) instantons lead to the following effective operator at the lowest
order,

OB+L =
∏

i=1,2,3

(qLiqLiqLi!Li) , (1.15)

which gives 12 fermion interactions, such as,

u + d + c → d + 2s + 2b + t + νe + νµ + ντ . (1.16)

At zero temperature, the transition rate is given by, Γ ∼ e−Sint =
e−4π/α = O(10−165) [11]. The resulting transition rate is exponentially
suppressed and thus it is negligible. In thermal bath, however, things can
be quite different. It was pointed out by Kuzmin, Rubakov and Shaposh-
nikov [15] that, in thermal bath, the transitions between different gauge
vacua can be made not by tunneling but through thermal fluctuations over
the barrier. When temperatures are larger than the height of the barrier,
the suppression due to the Boltzmann factor disappear completely, and thus
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the (B +L) violating processes can occur at a significant rate and they can
be in equilibrium in the expanding Universe. The transition rate at finite
temperature in the electroweak theory is determined by the sphaleron con-
figurations [16], which are static configurations that correspond to unstable
solutions to the equations of motion. In other words, the sphaleron config-
urations are saddle points of the field energy of the gauge-Higgs system, as
depicted in Fig. 1.3. They possess Chern-Simons number equal to 1/2 and
have energy

Esp(T ) !
8π

g
〈H(T )〉 , (1.17)

which is proportional to the Higgs vacuum expectation value (vev), 〈H(T )〉,
at finite temperature T . Below the electroweak phase transition temper-
ature, T < TEW , (i.e. in the Higgs phase), the transition rate per unit
volume is [17]

ΓB+L

V
= k

M7
W

(αT )3
e−βEph(T ) ∼ e

−MW
αkT , (1.18)

where MW is the mass of the W gauge boson and k is the Boltzmann
constant. The transition rate is thus still very suppressed. This result can
be extrapolated to high temperature symmetric phase. It was found that,
in the symmetric phase, T ≥ TEW , the transition rate is [18]

ΓB+L

V
∼ α5 lnα−1T 4 , (1.19)

where α is the fine-structure constant. Thus for T > TEW , baryon number
violating processes can be unsuppressed and profuse.

1.1.2.2. C and CP Violation

To illustrate the point that both C and CP violation are necessary in order
to have baryogenesis, consider the case [19] in which superheavy X boson
have baryon number violating interactions as summarized in Table 1.2. The
baryon numbers produced by the decays of X and X are,

BX = α

(
2

3

)
+ (1 − α)

(
−

1

3

)
= α −

1

3
, (1.20)

BX = α

(
−

2

3

)
+ (1 − α)

(
1

3

)
= −

(
α −

1

3

)
, (1.21)

respectively. The net baryon number produced by the decays of the X , X
pair is then,

ε ≡ BX + BX = (α − α) . (1.22)
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At zero temperature, the transition rate is given by, Γ ∼ e−Sint =
e−4π/α = O(10−165) [11]. The resulting transition rate is exponentially
suppressed and thus it is negligible. In thermal bath, however, things can
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unsuppressed

Kuzmin, Rubakov, Shaposhnikov

scale for non-perturbative fluctuations is the magnetic screening length ∼ 1/(g2T ), but

the corresponding time scale turns out to be 1/(g4T ln g−1), which is larger for small

coupling [20, 21]. As a consequence one obtains for the sphaleron rate in the symmetric

phase

ΓB+L/V ∼ α5 ln α−1T 4. (15)

It turns out that the dynamics of low-frequency gauge fields can be described by

a remarkably simple effective theory, derived by Bödeker [21]. The color magnetic and

electric fields satisfy the equation of motion

"D × "B = σ "E − "ζ . (16)

Here "ζ is Gaussian noise, a random vector field with variance

〈ζi(x)ζj(x
′)〉 = 2σδijδ

4(x − x′) . (17)

These equations define a stochastic three-dimensional gauge theory. The parameter σ is

the ‘color conductivity’, σ = m2
D/(3γ), where mD ∼ gT is the Debye screening mass and

γ ∼ g2T ln(1/g) is the hard gauge boson damping rate. To leading-log accuracy one has

1/σ ∼ ln g−1. A next-to-leading order analysis yields for the sphaleron rate [22]

ΓB+L

V
= (10.8 ± 0.7)

(
gT

mD

)2

α5T 4

[

ln

(
mD

γ

)

+ 3.041 +

(
1

ln (1/g)

)]

. (18)

The overall coefficient has been determined by a numerical lattice simulation [23]. From

Eq. (18) one easily obtains the temperature range where sphaleron processes are in

thermal equilibrium:

TEW ∼ 100 GeV < T < Tsph ∼ 1012 GeV . (19)

The effective theory describing topological fluctuations of the gauge field in the high-

temperature phase is valid for small coupling, g & 1. Yet for TEW < T < Tsph ∼ 1012 GeV

one has g = O(1). This implies that the electric screening lenth 1/(gT ) and the magnetic

screening length 1/(g2T ) are not well separated and that nonperturbative corrections to

the sphaleron rate, Eq. (18), may be large. This will modify the temperature range given

in Eq. (19), but one expects that the qualitative picture of fluctuations in baryon and

lepton number in the high-temperature phase of the Standard Model will not be affected.

2.4 Electroweak Baryogenesis and its Experimental Con-

straints

An important ingredient in the theory of Baryogenesis is related to the nature of the elec-

troweak transition from the high-temperature symmetric phase to the low-temperature

9



Group Work

What is the net Baryon number produced due 
to X,  decay?
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number is non-zero?

X

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 9

Table 1.2. Baryon number violating
decays of the superheavy X boson in
the toy model.

process branching fraction ∆B

X → qq α 2/3
X → q" 1 − α -1/3
X → qq α -2/3
X → q" 1 − α 1/3

If C or CP is conserved, α = α, it then leads to vanishing total baryon
number, ε = 0.

To be more concrete, consider a toy model [19] which consists of four
fermions, f1,...4, and two heavy scalar fields, X and Y . The interactions
among these fields are described by the following Lagrangian,

L = g1Xf †
2f1 + g2Xf †

4f3 + g3Y f †
1f3 + g4Y f †

2f4 + h.c. , (1.23)

where g1,..,4 are the coupling constants. The Lagrangian L leads to the
following decay processes,

X → f1 + f2, f3 + f4 , (1.24)

Y → f3 + f1, f4 + f2 , (1.25)

and the tree level diagrams of these decay processes are shown in Fig. 1.4.
At the tree level, the decay rate of X → f1 + f2 is,

Γ(X → f1 + f2) = |g1|2IX , (1.26)

where IX is the phase space factor. For the conjugate process X → f1 +f2,
the decay rate is,

Γ(X → f1 + f2) = |g∗1 |2IX . (1.27)

As the phase space factors IX and IX are equal, no asymmetry can be
generated at the tree level.

At the one-loop level, there are additional diagrams, as shown in Fig. 1.5,
that have to be taken into account. Including these one-loop contributions,
the decay rates for X → f1 + f2 and X → f1 + f2 become,

Γ(X → f1 + f2) = g1g
∗
2g3g

∗
4IXY + c.c. , (1.28)

Γ(X → f1 + f2) = g∗1g2g
∗
3g4IXY + c.c. , (1.29)

where c.c. stands for complex conjugation. Now IXY includes both the
phase space factors as well as kinematic factors arising from integrating
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where α is the fine-structure constant. Thus for T > TEW , baryon number
violating processes can be unsuppressed and profuse.

1.1.2.2. C and CP Violation

To illustrate the point that both C and CP violation are necessary in order
to have baryogenesis, consider the case [19] in which superheavy X boson
have baryon number violating interactions as summarized in Table 1.2. The
baryon numbers produced by the decays of X and X are,
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respectively. The net baryon number produced by the decays of the X , X
pair is then,

ε ≡ BX + BX = (α − α) . (1.22)

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

8 M.-C. Chen

the (B +L) violating processes can occur at a significant rate and they can
be in equilibrium in the expanding Universe. The transition rate at finite
temperature in the electroweak theory is determined by the sphaleron con-
figurations [16], which are static configurations that correspond to unstable
solutions to the equations of motion. In other words, the sphaleron config-
urations are saddle points of the field energy of the gauge-Higgs system, as
depicted in Fig. 1.3. They possess Chern-Simons number equal to 1/2 and
have energy

Esp(T ) !
8π

g
〈H(T )〉 , (1.17)

which is proportional to the Higgs vacuum expectation value (vev), 〈H(T )〉,
at finite temperature T . Below the electroweak phase transition temper-
ature, T < TEW , (i.e. in the Higgs phase), the transition rate per unit
volume is [17]

ΓB+L

V
= k

M7
W

(αT )3
e−βEph(T ) ∼ e

−MW
αkT , (1.18)

where MW is the mass of the W gauge boson and k is the Boltzmann
constant. The transition rate is thus still very suppressed. This result can
be extrapolated to high temperature symmetric phase. It was found that,
in the symmetric phase, T ≥ TEW , the transition rate is [18]

ΓB+L

V
∼ α5 lnα−1T 4 , (1.19)

where α is the fine-structure constant. Thus for T > TEW , baryon number
violating processes can be unsuppressed and profuse.

1.1.2.2. C and CP Violation

To illustrate the point that both C and CP violation are necessary in order
to have baryogenesis, consider the case [19] in which superheavy X boson
have baryon number violating interactions as summarized in Table 1.2. The
baryon numbers produced by the decays of X and X are,

BX = α

(
2

3

)
+ (1 − α)

(
−

1

3

)
= α −

1

3
, (1.20)

BX = α

(
−

2

3

)
+ (1 − α)

(
1

3

)
= −

(
α −

1

3

)
, (1.21)

respectively. The net baryon number produced by the decays of the X , X
pair is then,

ε ≡ BX + BX = (α − α) . (1.22)

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 9

Table 1.2. Baryon number violating
decays of the superheavy X boson in
the toy model.

process branching fraction ∆B

X → qq α 2/3
X → q" 1 − α -1/3
X → qq α -2/3
X → q" 1 − α 1/3

If C or CP is conserved, α = α, it then leads to vanishing total baryon
number, ε = 0.

To be more concrete, consider a toy model [19] which consists of four
fermions, f1,...4, and two heavy scalar fields, X and Y . The interactions
among these fields are described by the following Lagrangian,

L = g1Xf †
2f1 + g2Xf †

4f3 + g3Y f †
1f3 + g4Y f †

2f4 + h.c. , (1.23)

where g1,..,4 are the coupling constants. The Lagrangian L leads to the
following decay processes,

X → f1 + f2, f3 + f4 , (1.24)

Y → f3 + f1, f4 + f2 , (1.25)

and the tree level diagrams of these decay processes are shown in Fig. 1.4.
At the tree level, the decay rate of X → f1 + f2 is,

Γ(X → f1 + f2) = |g1|2IX , (1.26)

where IX is the phase space factor. For the conjugate process X → f1 +f2,
the decay rate is,

Γ(X → f1 + f2) = |g∗1 |2IX . (1.27)

As the phase space factors IX and IX are equal, no asymmetry can be
generated at the tree level.

At the one-loop level, there are additional diagrams, as shown in Fig. 1.5,
that have to be taken into account. Including these one-loop contributions,
the decay rates for X → f1 + f2 and X → f1 + f2 become,

Γ(X → f1 + f2) = g1g
∗
2g3g

∗
4IXY + c.c. , (1.28)

Γ(X → f1 + f2) = g∗1g2g
∗
3g4IXY + c.c. , (1.29)

where c.c. stands for complex conjugation. Now IXY includes both the
phase space factors as well as kinematic factors arising from integrating
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IXY: phase space + kinematics
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over the internal loop momentum due to the exchange of J in I decay. If
fermions f1,...4 are allowed to propagate on-shell, then the factor IXY is
complex. Therefore,

Γ(X → f1 + f2) − Γ(X → f1 + f2) = 4Im(IXY )Im(g∗1g2g
∗
3g4) . (1.30)

Similarly, for the decay mode, X → f3 + f4, we have,

Γ(X → f3 + f4) − Γ(X → f3 + f4) = −4Im(IXY )Im(g∗1g2g
∗
3g4) . (1.31)

Note that, in addition to the one-loop diagrams shown in Fig. 1.5, there are
also diagrams that involve the same boson as the decaying one. However,
contributions to the asymmetry from these diagrams vanish as the inter-
ference term in this case is proportional to Im(gig∗i gig∗i ) = 0. The total
baryon number asymmetry due to X decays is thus given by,

εX =
(B1 − B2)∆Γ(X → f1 + f2) + (B4 − B3)∆Γ(X → f3 + f4)

ΓX
,

(1.32)
where

∆Γ(X → f1 + f2) = Γ(X → f1 + f2) − Γ(X → f1 + f2) , (1.33)

∆Γ(X → f3 + f4) = Γ(X → f3 + f4) − Γ(X → f3 + f4) . (1.34)

X
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g1
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f3

f4

g2

(a) (b)

Y

f3

f1

g3
Y

f4

f2

g4

(c) (d)

Fig. 1.4. Tree level diagrams for the decays of the heavy scalar fields, X and Y .
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Similar expression can be derived for the Y decays. The total asymmetries
due to the decays of the superheavy bosons, X and Y, are then given,
respectively, by

εX =
4

ΓX
Im(IXY )Im(g∗1g2g

∗
3g4)[(B4 − B3) − (B2 − B1)] , (1.35)

εY =
4

ΓY
Im(I ′XY )Im(g∗1g2g

∗
3g4)[(B2 − B4) − (B1 − B3)] . (1.36)

By inspecting Eq. 1.35 and 1.36, it is clear that the following three
conditions must be satisfied to have a non-zero total asymmetry, ε = εX +
εY :

• The presence of the two baryon number violating bosons, each of which
has to have mass greater than the sum of the masses of the fermions in
the internal loop;

• The coupling constants have to be complex. The C and CP violation
then arise from the interference between the tree level and one-loop
diagrams. In general, the asymmetry generated is proportional to ε ∼

X

f1

f2

g2

f3

f4

g3
∗

g4

Y
X

f3

f4

g1

f1

f2

g3

g4
∗

Y

(a) (b)

Y

f3

f1

g4

f4

f2

g2

g1
∗

X
Y

f4

f2

g3

f3

f1

g2
∗

g1

X

(c) (d)

Fig. 1.5. One loop diagrams for the decays of the heavy scalar fields, X and Y , that
contribute to the asymmetry.
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has to have mass greater than the sum of the masses of the fermions in
the internal loop;

• The coupling constants have to be complex. The C and CP violation
then arise from the interference between the tree level and one-loop
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over the internal loop momentum due to the exchange of J in I decay. If
fermions f1,...4 are allowed to propagate on-shell, then the factor IXY is
complex. Therefore,

Γ(X → f1 + f2) − Γ(X → f1 + f2) = 4Im(IXY )Im(g∗1g2g
∗
3g4) . (1.30)

Similarly, for the decay mode, X → f3 + f4, we have,

Γ(X → f3 + f4) − Γ(X → f3 + f4) = −4Im(IXY )Im(g∗1g2g
∗
3g4) . (1.31)

Note that, in addition to the one-loop diagrams shown in Fig. 1.5, there are
also diagrams that involve the same boson as the decaying one. However,
contributions to the asymmetry from these diagrams vanish as the inter-
ference term in this case is proportional to Im(gig∗i gig∗i ) = 0. The total
baryon number asymmetry due to X decays is thus given by,

εX =
(B1 − B2)∆Γ(X → f1 + f2) + (B4 − B3)∆Γ(X → f3 + f4)

ΓX
,

(1.32)
where

∆Γ(X → f1 + f2) = Γ(X → f1 + f2) − Γ(X → f1 + f2) , (1.33)

∆Γ(X → f3 + f4) = Γ(X → f3 + f4) − Γ(X → f3 + f4) . (1.34)
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Note that, in addition to the one-loop diagrams shown in Fig. 1.5, there are
also diagrams that involve the same boson as the decaying one. However,
contributions to the asymmetry from these diagrams vanish as the inter-
ference term in this case is proportional to Im(gig∗i gig∗i ) = 0. The total
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Similar expression can be derived for the Y decays. The total asymmetries
due to the decays of the superheavy bosons, X and Y, are then given,
respectively, by

εX =
4

ΓX
Im(IXY )Im(g∗1g2g

∗
3g4)[(B4 − B3) − (B2 − B1)] , (1.35)

εY =
4

ΓY
Im(I ′XY )Im(g∗1g2g

∗
3g4)[(B2 − B4) − (B1 − B3)] . (1.36)

By inspecting Eq. 1.35 and 1.36, it is clear that the following three
conditions must be satisfied to have a non-zero total asymmetry, ε = εX +
εY :

• The presence of the two baryon number violating bosons, each of which
has to have mass greater than the sum of the masses of the fermions in
the internal loop;

• The coupling constants have to be complex. The C and CP violation
then arise from the interference between the tree level and one-loop
diagrams. In general, the asymmetry generated is proportional to ε ∼
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Fig. 1.5. One loop diagrams for the decays of the heavy scalar fields, X and Y , that
contribute to the asymmetry.



Group Work

Is it necessary that the total 

asymmetry  is non-zero?


If not, what are the conditions that 
must be satisfied in order to have non-

vanishing total asymmetry?

ϵ = ϵX + ϵY



Mu-Chun Chen, UC Irvine                                                                                                                                                        Baryogenesis through Leptogenesis                          

Three Sakharov Conditions (2)

• total asymmetry


• non-zero total asymmetry ε = εX + εY


• two B-violating bosons with masses > sum of loop 
fermion masses


• complex coupling constants:  CP violation from 
interference between tree and 1-loop diagrams 


• non-degenerate X and Y masses 


February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

10 M.-C. Chen

over the internal loop momentum due to the exchange of J in I decay. If
fermions f1,...4 are allowed to propagate on-shell, then the factor IXY is
complex. Therefore,

Γ(X → f1 + f2) − Γ(X → f1 + f2) = 4Im(IXY )Im(g∗1g2g
∗
3g4) . (1.30)

Similarly, for the decay mode, X → f3 + f4, we have,

Γ(X → f3 + f4) − Γ(X → f3 + f4) = −4Im(IXY )Im(g∗1g2g
∗
3g4) . (1.31)

Note that, in addition to the one-loop diagrams shown in Fig. 1.5, there are
also diagrams that involve the same boson as the decaying one. However,
contributions to the asymmetry from these diagrams vanish as the inter-
ference term in this case is proportional to Im(gig∗i gig∗i ) = 0. The total
baryon number asymmetry due to X decays is thus given by,
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Similar expression can be derived for the Y decays. The total asymmetries
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respectively, by
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εY :

• The presence of the two baryon number violating bosons, each of which
has to have mass greater than the sum of the masses of the fermions in
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αn, with n being the number of loops in the lowest order diagram that
give non-zero asymmetry and α ∼ g2/4π ;

• The heavy particles X and Y must have non-degenerate masses. Oth-
erwise, εX = −εY , which leads to vanishing total asymmetry, ε.

1.1.2.3. Departure from Thermal Equilibrium

The baryon number B is odd under the C and CP transformations. Using
this property of B together with the requirement that the Hamiltonian, H ,
commutes with CPT , the third condition can be seen by calculating the
average of B in equilibrium at temperature T = 1/β,

< B >T = Tr[e−βHB] = Tr[(CPT )(CPT )−1e−βHB)] (1.37)

= Tr[e−βH(CPT )−1B(CPT )] = −Tr[e−βHB] .

In equilibrium, the average < B >T thus vanishes, and there is no genera-
tion of net baryon number. Different mechanisms for baryogenesis differ in
the way the departure from thermal equilibrium is realized. There are three
possible ways to achieve departure from thermal equilibrium that have been
utilized in baryogenesis mechanisms:

• Out-of-equilibrium decay of heavy particles: GUT Baryogenesis, Lep-
togenesis;

• EW phase transition: EW Baryogenesis;
• Dynamics of topological defects.

In leptogenesis, the departure from thermal equilibrium is achieved
through the out-of-equilibrium decays of heavy particles in an expanding
Universe. If the decay rate ΓX of some superheavy particles X with mass
MX at the time when they become non-relativistic (i.e. T ∼ MX) is much
smaller than the expansion rate of the Universe, the X particles cannot
decay on the time scale of the expansion. The X particles will then remain
their initial thermal abundance, nX = nX ∼ nγ ∼ T 3, for T ! MX . In
other words, at some temperature T > MX , the superheavy particles X
are so weakly interacting that they cannot catch up with the expansion of
the Universe. Hence they decouple from the thermal bath while still being
relativistic. At the time of the decoupling, nX ∼ nX ∼ T 3. Therefore, they
populate the Universe at T # MX with abundance much larger than their
abundance in equilibrium. Recall that in equilibrium,

nX = nX # nγ for T " MX , (1.38)

nX = nX # (MXT )3/2e−MX/T $ nγ for T ! MX . (1.39)
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Universe. If the decay rate ΓX of some superheavy particles X with mass
MX at the time when they become non-relativistic (i.e. T ∼ MX) is much
smaller than the expansion rate of the Universe, the X particles cannot
decay on the time scale of the expansion. The X particles will then remain
their initial thermal abundance, nX = nX ∼ nγ ∼ T 3, for T ! MX . In
other words, at some temperature T > MX , the superheavy particles X
are so weakly interacting that they cannot catch up with the expansion of
the Universe. Hence they decouple from the thermal bath while still being
relativistic. At the time of the decoupling, nX ∼ nX ∼ T 3. Therefore, they
populate the Universe at T # MX with abundance much larger than their
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In equilibrium, the average < B >T thus vanishes, and there is no genera-
tion of net baryon number. Different mechanisms for baryogenesis differ in
the way the departure from thermal equilibrium is realized. There are three
possible ways to achieve departure from thermal equilibrium that have been
utilized in baryogenesis mechanisms:

• Out-of-equilibrium decay of heavy particles: GUT Baryogenesis, Lep-
togenesis;

• EW phase transition: EW Baryogenesis;
• Dynamics of topological defects.

In leptogenesis, the departure from thermal equilibrium is achieved
through the out-of-equilibrium decays of heavy particles in an expanding
Universe. If the decay rate ΓX of some superheavy particles X with mass
MX at the time when they become non-relativistic (i.e. T ∼ MX) is much
smaller than the expansion rate of the Universe, the X particles cannot
decay on the time scale of the expansion. The X particles will then remain
their initial thermal abundance, nX = nX ∼ nγ ∼ T 3, for T ! MX . In
other words, at some temperature T > MX , the superheavy particles X
are so weakly interacting that they cannot catch up with the expansion of
the Universe. Hence they decouple from the thermal bath while still being
relativistic. At the time of the decoupling, nX ∼ nX ∼ T 3. Therefore, they
populate the Universe at T # MX with abundance much larger than their
abundance in equilibrium. Recall that in equilibrium,

nX = nX # nγ for T " MX , (1.38)

nX = nX # (MXT )3/2e−MX/T $ nγ for T ! MX . (1.39)
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• Dynamics of topological defects.
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Universe. If the decay rate ΓX of some superheavy particles X with mass
MX at the time when they become non-relativistic (i.e. T ∼ MX) is much
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are so weakly interacting that they cannot catch up with the expansion of
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Three Sakharov Conditions (3)

• Over abundance at T <  MX 

⇒ departure from thermal equilibrium

⇒ final non-vanishing B-asymmetry
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This over-abundance at temperature below MX , as shown in Fig. 1.6, is
the departure from thermal equilibrium needed to produce a final non-
vanishing baryon asymmetry, when the heavy states, X , undergo B and
CP violating decays. The scale of rates of these decay processes involving
X and X relative to the expansion rate of the Universe is determined by
MX ,

Γ

H
∝

1

MX
. (1.40)

The out-of-equilibrium condition, Γ < H , thus requires very heavy states:
for gauge bosons, MX ! (1015−16) GeV; for scalars, MX ! (1010−16) GeV,
assuming these heavy particles decay through renormalizable operators.
Precise computation of the abundance is carried out by solving the Boltz-
mann equations (more details in Sec. 1.2.1.2).

Fig. 1.6. The distribution of the X particles in thermal equilibrium (blue curve) follows
Eq. 1.38 and 1.39. When departure from the thermal equilibrium occurs, the distribution
of the X particles remains the same as the thermal distribution (red dashed curve).
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To have Γ < H  
⇒ heavy particle

decay thru renormalizable operators 
⇒
  Gauge boson:  Mx ≥ 10(15-16) GeV
  Scalar fields:     Mx ≥ 10(10-16) GeV

Precise computation
 ⇒ Boltzmann equations
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Relating ∆B to ∆L
• weakly couple plasma: chemical potential


• SM: Nf generations of fermions + 1 Higgs 


• (5Nf + 1) chemical potential μi 


• number density of non-interacting, massless fermions


• thermal equilibrium → relations among μi 

• sphaleron process OB+L :


• QCD instanton processes,                          :


• hypercharge charge: 


⇥ departure from thermal equilibrium
�
H

< 1 (39)

⇤ over abundance of X and X

precise computation⇤ need to solve Boltzmann equations (more details in Lecture II)

1.2.4 Relating Baryon and Lepton asymmetries

One more ingredient that is needed for leptogenesis is to relate lepton number asymmetry
to the baryon number asymmetry. In weakly coupled plasma, one can assign a chemical
potential µ to each of the quark, lepton and Higgs fields. In the SM with one Higgs doublet
and Nf generations of fermions, there are 5Nf + 1 chemical potentials, and the number
density of a particular fermion i is given by,

ni � ni =
1
6
gT 3

�
�µi +O((�µi)3), fermions
2�µi +O((�µi)3), bosons .

(40)

Thermal equilibrium of the following processes give rise to relations among the chemical
potentials. The relevant processes are the following.

1. The sphaleron process generated by the operator OB+L described in ..... give rise to
the following relation: ⇤

i

(3µqi + µ⇧i) = 0 . (41)

2. SU(3) QCD instanton processes lead to interactions between LH and RH quarks.
These interactions are described by operator,

⇥
i(qLiqLiu

c
Ri

dc
Ri

). When in equilib-
rium, they lead to, ⇤

i

(2µqi � µui � µdi) = 0 . (42)

3. At all temperatures, total hypercharge of the plasma has to vanish. This gives,
⇤

i

(µqi + 2µui � µdi � µ⇧i � µei +
2

Nf
µH) = 0 . (43)

4. By requiring Yukawa and gauge interactions all in equilibrium, one obtains the fol-
lowing constraints,

µqi � µH � µdj = 0 , (44)
µqi + µH � µuj = 0 , (45)
µ⇧i � µH � µej = 0 . (46)
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1.1.3. Relating Baryon and Lepton Asymmetries

One more ingredient that is needed for leptogenesis is to relate lepton num-
ber asymmetry to the baryon number asymmetry, at the high temperature,
symmetric phase of the SM [1]. In a weakly coupled plasma with temper-
ature T and volume V , a chemical potential µi can be assigned to each of
the quark, lepton and Higgs fields, i. There are therefore 5Nf + 1 chem-
ical potentials in the SM with one Higgs doublet and Nf generations of
fermions. The corresponding partition function is given by,

Z(µ, T, V ) = Tr[e−β(H−
P

i µiQi)] (1.41)

where β = 1/T , H is the Hamiltonian and Qi is the charge operator for
the corresponding field. The asymmetry in particle and antiparticle num-
ber densities is given by the derivative of the thermal-dynamical potential,
Ω(µ, T ), as

ni − ni = −
∂Ω(µ, T )

∂µi
, (1.42)

where Ω(µ, T ) is defined as,

Ω(µ, T ) = −
T

V
lnZ(µ, T, V ) . (1.43)

For a non-interacting gas of massless particles, assuming βµi " 1,

ni − ni =
1

6
gT 3

{
βµi + O((βµi)3), fermions
2βµi + O((βµi)3), bosons .

(1.44)

In the high temperature plasma, quarks, leptons and Higgs interact via
the guage and Yukawa couplings. In addition, there are non-perturbative
sphaleron processes. All these processes give rise to constraints among
various chemical potentials in thermal equilibrium. These include [1]:

(1) The effective 12-fermion interactions OB+L induced by the sphalerons
give rise to the following relation,

∑

i

(3µqi + µ"i) = 0 . (1.45)

(2) The SU(3) QCD instanton processes lead to interactions between LH
and RH quarks. These interactions are described by the operator,∏

i(qLiqLiu
c
Ri

dc
Ri

). When in equilibrium, they lead to,
∑

i

(2µqi − µui − µdi) = 0 . (1.46)
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Relating ∆B to ∆L
• Yukawa coupling and gauge interactions:


• T=100 - 1012 GeV:  gauge interactions in equilibrium


• Yukawa interactions: more restricted range of temperatures  → 
flavor effects


• B and L in terms of chemical potentials: 


• equilibrium among generations:  


⇥ departure from thermal equilibrium
�
H

< 1 (39)

⇤ over abundance of X and X

precise computation⇤ need to solve Boltzmann equations (more details in Lecture II)
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(3) Total hypercharge of the plasma has to vanish at all temperatures. This
gives,

∑

i

(µqi + 2µui − µdi − µ!i − µei +
2

Nf
µH) = 0 . (1.47)

(4) The Yukawa interactions yield the following relations among chemical
potential of the LH and RH fermions,

µqi − µH − µdj = 0 , (1.48)

µqi + µH − µuj = 0 , (1.49)

µ!i − µH − µej = 0 . (1.50)

From Eq. (1.44), the baryon number density nB = 1
6gBT 2 and lepton num-

ber density nL = 1
6gLiT 2, where Li is the individual lepton flavor number

with i = (e, µ, τ), can be expanded in terms of the chemical potentials.
Hence

B =
∑

i

(2µqi + µui + µdi) (1.51)

L =
∑

i

Li, Li = 2µ!i + µei . (1.52)

Consider the case where all Yukawa interactions are in equilibrium. The
asymmetry (Li−B/Nf ) is then preserved. If we further assume equilibrium
among different generations, µ!i ≡ µ! and µqi ≡ µq, together with the
sphaleron and hypercharge constraints, all the chemical potentials can then
be expressed in terms of µ!,

µe =
2Nf + 3

6Nf + 3
µ!, µd = −

6Nf + 1

6Nf + 3
µ!, µu =

2Nf − 1

6Nf + 3
µ! (1.53)

µq = −
1

3
µ!, µH =

4Nf

6Nf + 3
µ! .

The corresponding B and L asymmetries are

B = −
4

3
Nfµ! , (1.54)

L =
14N2

f + 9Nf

6Nf + 3
µ! . (1.55)

Thus B, L and B − L are related by:

B = cs(B − L), L = (cs − 1)(B − L) , (1.56)
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Relating ∆B to ∆L
• Corresponding B & L asymmetries:


• Relation between B and L:


• where   


• For model with NH Higgses


•
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where

cs =
8Nf + 4

22Nf + 13
. (1.57)

For models with NH Higgses, the parameter cs is given by,

cs =
8Nf + 4NH

22Nf + 13NH
. (1.58)

For T = 100 GeV ∼ 1012 GeV, which is of interest of baryogenesis,
gauge interactions are in equilibrium. Nervertheless, the Yukawa interac-
tions are in equilibrium only in a more restricted temperature range. But
these effects are generally small, and thus will be neglected in these lec-
tures. These effects have been investigated recently; they will be discussed
in Sec. 1.5.

1.1.4. Mechanisms for Baryogenesis and Their Problems

There have been many mechanisms for baryogenesis proposed. Each has
attractive and problematic aspects, which we discuss below.

1.1.4.1. GUT Baryongenesis

The GUT baryogenesis was the first implementation of Sakharov’s B-
number generation idea. The B-number violation is an unavoidable con-
sequence in grand unified models, as quarks and leptons are unified in the
same representation of a single group. Furthermore, sufficient amount of
CP violation can be incorporated naturally in GUT models, as there ex-
ist many possible complex phases, in addition to those that are present in
the SM. The relevant time scales of the decays of heavy gauge bosons or
scalars are slow, compared to the expansion rate of the Universe at early
epoch of the cosmic evolution. The decays of these heavy particles are thus
inherently out-of-equilibrium.

Even though GUT models naturally encompass all three Sakharov’s con-
ditions, there are also challenges these models face. First of all, to generate
sufficient baryon number asymmetry requires high reheating temperature.
This in turn leads to dangerous production of relic particles, such as grav-
itinos (see Sec. 1.2.3). As the relevant physics scale MGUT ∼ 1016 GeV is
far above the electroweak scale, it is also very hard to test GUT models ex-
perimentally using colliders. The electroweak theory ensures that there are
copious B-violating processes between the GUT scale and the electroweak
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Mechanisms for Baryongenesis
• GUT Baryogenesis


• single particle physics interaction at high T


• B-violation natural


• quarks & leptons in same representation


• superheavy gauge boson mediating B-changing 
processes


• C & CP violation: naturally built in


• Out-of-equilibrium


• GUT effects at very early times


• cosmic expansion much faster (than gauge interactions)


• decay inherently out-of-equilibrium Γ < H


1.3 Mechanisms for Baryogenesis and their problems

1.3.1 GUT baryongenesis

A single particle physics interaction at high energy (T):

G⇤ H ⇤ .....⇤ SU(3)c � SU(2)L � U(1)Y ⇤ U(1)EM (57)

Examples: SU(5), SO(10), ... (see Kaladi Babu’s lectures)

B-violation natural:

• quarks and leptons in same representations

• super heavy gauge bosons mediate B-changing processes

C and CP violation: naturally built into the theory

equilibrium:

• GUTs e⇥ective at very early times

• cosmic expansion was much faster then (faster than the interactions of gauge bosons)

• decays are inherently out-of-equilibrium � < H

Problems:

• requires high reheating temperature after inflation. can lead to dangerous production
of relics – gravitino and moduli problems

• GUT predicts topological remnants (monopoles)

• extremely hard to test experimentally – can’t probe the GUT scale using colliders

• EW theory violates baryon number and can erase pre-existing asymmetry

1.3.2 EW baryogenesis

departure from thermal equilibrium provided by strong 1st order PT

advantages:

• can be probed in collider experiments

problems: allowed parameter space very small

• require more CPV than provided in SM (may be found in SUSY)

10
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Mechanisms for Baryogenesis

• GUT Baryogenesis


• problems:


• require high reheating temperature after inflation → 
dangerous production of relics -- gravitino problem 


• extremely hard to test GUT models experimentally at 
colliders


• EW theory violates baryon number and can erase  
pre-existing asymmetry, unless GUT mechanism 
generates excess in (B-L) → SO(10) attractive
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Mechanisms for Baryogenesis

• EW Baryogenesis


• departure from thermal equilibrium provided by strong 
1st order phase transition


• can be tested at collider experiments


• problems:


• require more CP violation than provided in SM (may 
be found in SUSY)


• need strong enough 1st order phase transition


• MSSM: strong bound on Higgs mass < 120 GeV


• stringent constraints on SUSY parameter space
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Sources of CP Violation: SM
• SM: CP is not exact symmetry in weak interactions (Kaon & 

B-meson systems)


• charged current interactions in weak basis


• rotate to mass basis
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scale. These sphelaron processes violate B +L, but conserve B−L. There-
fore, unless a GUT mechanism generates an excess of B − L, any baryon
asymmetry produced will be equilibrated to zero by the sphaleron effects.
As U(1)B−L is a gauged subgroup of SO(10), GUT models based on SO(10)
are especially attractive for baryogenesis.

1.1.4.2. EW Baryogenesis

In electroweak baryogenesis, the departure from thermal equilibrium is pro-
vided by strong first order phase transition. The nice feature of this mech-
anism is that it can be probed in collider experiments. On the other hand,
the allowed parameter space is very small. It requires more CP violation
than what is provided in the SM. Even though there are additional sources
of CP violation in MSSM, the requirement of strong first order phase tran-
sition translates into a stringent bound on the Higgs mass, mH ! 120 GeV.
To obtain a Higgs mass of this order, the stop mass needs to be smaller
than, or of the order of, the top quark mass, which implies fine-tuning in
the model parameters.

1.1.4.3. Affleck-Dine Baryogensis

The Affleck-Dine baryogenesis [20] involves cosmological evolution of scalar
fields which carry B charges. It is most naturally implemented in SUSY
theories. Nevertheless, this mechanism faces the same challenges as in GUT
baryogenesis and in EW baryogenesis.

1.1.5. Sources of CP Violation

In the SM, C is maximally broken, since only LH electron couples to the
SU(2)L gauge fields. Furthermore, CP is not an exact symmetry in weak
interaction, as observed in the Kaon and B-meson systems. The charged
current in the weak interaction basis is given by,

LW =
g√
2
ULγµDLWµ + h.c. , (1.59)

where UL = (u, c, t)L and DL = (d, s, b)L. Quark mass matrices can be
diagonalized by bi-unitary transformations,

diag(mu, mc, mt) = V u
L MuV u

R , (1.60)

diag(md, ms, md) = V d
LMdV d

R . (1.61)
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Thus the charged current interaction in the mass eigenstates reads,

LW =
g√
2
U

′
LUCKMγµD′

LWµ + h.c. , (1.62)

where U ′
L ≡ V u

L UL and D′
L ≡ V d

L DL are the mass eigenstates, and UCKM ≡
V u

L (V d
L )† is the CKM matrix. For three families of fermions, the unitary

matrix K can be parameterized by three angles and six phases. Out of
these six phases, five of them can be reabsorbed by redefining the wave
functions of the quarks. There is hence only one physical phase in the CKM
matrix. This is the only source of CP violation in the SM. It turns out that
this particular source is not strong enough to accommodate the observed
matter-antimatter asymmetry. The relevant effects can be parameterized
by [21],

B #
α4

wT 3

s
δCP # 10−8δCP , (1.63)

where δCP is the suppression factor due to CP violation in the SM. Since
CP violation vanishes when any two of the quarks with equal charge have
degenerate masses, a naive estimate gives the effects of CP violation of the
size

ACP = (m2
t − m2

c)(m
2
c − m2

u)(m2
u − m2

t ) (1.64)

·(m2
b − m2

s)(m
2
s − m2

d)(m
2
d − m2

b) · J .

Here the proportionality constant J is the usual Jarlskog invariant, which
is a parameterization independent measure of CP violation in the quark
sector. Together with the fact that ACP is of mass (thus temperature)
dimension 12, this leads to the following value for δCP , which is a dimen-
sionless quantity,

δCP #
ACP

T 12
C

# 10−20 , (1.65)

and TC is the temperature of the electroweak phase transition. The baryon
number asymmetry due to the phase in the CKM matrix is therefore of
the order of B ∼ 10−28, which is too small to account for the observed
B ∼ 10−10.

In MSSM, there are new sources of CP violation due to the presence of
the soft SUSY breaking sector. The superpotential of the MSSM is given
by,

W = µĤ1Ĥ2 + huĤ2Q̂ûc + hdĤ1Q̂d̂c + heĤ1L̂êc . (1.66)

The soft SUSY breaking sector has the following parameters:
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number asymmetry due to the phase in the CKM matrix is therefore of
the order of B ∼ 10−28, which is too small to account for the observed
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• tri-linear couplings: ΓuH2Q̃c̃c + ΓdH1Q̃d̃c + ΓeH1L̃ẽc + h.c., where
Γ(u,d,e) ≡ A(u,d,e) · h(u,d,e);

• bi-linear coupling in the Higgs sector: µBH1H2;
• gaugino masses: Mi for i = 1, 2, 3 (one for each gauge group);
• soft scalar masses: m̃f .

In the constrained MSSM (CMSSM) model with mSUGRA boundary con-
ditions at the GUT scale, a universal value is assumed for the tri-linear
coupling constants, A(u,d,e) = A. Similarly, the gaugino masses and scalar
masses are universal, Mi = M , and m̃f = m̃. Two phases may be removed
by redefining the phase of Ĥ2 such that the phase of µ is opposite to the
phase of B. As a result, the product µB is real. Furthermore, the phase of
M can be removed by R-symmetry transformation. This then modifies the
tri-linear couplings by an additional factor of e−φM , while other coupling
constants are invariant under the R-symmetry transformation. There are
thus two physical phases remain,

φA = Arg(AM), φµ = −Arg(B) . (1.67)

These phases are relevant in soft leptogenesis, which is discussed in
Sec. 1.3.2.

If the neutrinos are massive, the leptonic charged current interaction in
the mass eigenstates of the leptons is given by,

LW =
g√
2
ν′

LU †
MNSγµ$′LWµ + h.c. , (1.68)

where UMNS = (V ν
L )†V e

L . (For a review on physics of the massive neutrinos,
see, e.g. Ref. [22] and [23]. See also Rabi Mohapatra’s lectures.) The
matrices V ν

L and V e
L diagonalize the effective neutrino mass matrix and

the charged lepton mass matrix, respectively. If neutrinos are Majorana
particles, which is the case if small neutrino mass is explained by the seesaw
mechanism [24], the Majorana condition then forbids the phase redefinition
of νR. Unlike in the CKM matrix, in this case only three of the six complex
phases can be absorbed, and there are thus two additional physical phases
in the lepton sector if neutrinos are Majorana fermions. And due to this
reason, CP violation can occur in the lepton sector with only two families.
(Recall that in the quark sector, CP violation can occur only when the
number of famalies is at least three). The MNS matrix can be parameterized
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Γ(u,d,e) ≡ A(u,d,e) · h(u,d,e);

• bi-linear coupling in the Higgs sector: µBH1H2;
• gaugino masses: Mi for i = 1, 2, 3 (one for each gauge group);
• soft scalar masses: m̃f .

In the constrained MSSM (CMSSM) model with mSUGRA boundary con-
ditions at the GUT scale, a universal value is assumed for the tri-linear
coupling constants, A(u,d,e) = A. Similarly, the gaugino masses and scalar
masses are universal, Mi = M , and m̃f = m̃. Two phases may be removed
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