Baryogenesis through Leptogenesis

Mu-Chun Chen, University of California at Irvine

Evidence of Matter-Antimatter Asymmetry

CMB anisotropy

$$\frac{\Delta T}{T} = \sum_{l,m} a_{lm} Y_{lm}(\theta, \phi) \qquad C_l = \langle |a_{lm}|^2 \rangle$$

- Big Bang Nucleosynthesis
 - primordial deuterium abundance agree with WMAP
 - ⁴He & ⁷Li ⇔ discrepancies

WMAP + Deuterium Abundance

$$\frac{n_B}{n_\gamma} \equiv \eta_B = (6.1 \pm 0.3) \times 10^{-10}$$

Early Universe

Universe Now [Picture credit: H. Murayama]

- Baryon number can be generated dynamically, if
 - violation of baryon number
 - violation of Charge (C) and Charge Parity (CP)
 - departure from thermal equilibrium

Group Work

In the Standard Model, what are the accidental symmetries?

Baryon Number Asymmetry beyond SM

- Within the SM:
- CP violation in quark sector not sufficient to explain the observed matterantimatter asymmetry of the Universe
- accidental symmetries L_e, L_μ, L_τ, total L
- massless neutrinos, no cLFV
- neutrino oscillation ⇒ non-zero neutrino masses
 - physics beyond the Standard Model
 - new CP phases in the neutrino sector
- neutrino masses open up a new possibility for baryogenesis
 Fukugita, Yanagida, 1986

Leptogenesis

Plans

- Theoretical Foundation of Baryogenesis:
 - Sakharav's Three Conditions
 - Mechanisms for Baryogenesis & Their Problems
 - Sources of CP violation
- Standard Leptogenesis ("Majorana" Leptogenesis)
- Dirac Leptogenesis
- Gravitino Problem
- Non-standard Scenarios
 - Resonant Leptogenesis
 - Soft Leptogenesis
 - Non-thermal Leptogenesis
- Connection between leptogenesis & low energy CP violation

References

- A. Riotto, hep-ph/9901362
- M. Trodden, hep-ph/0411301
- W. Büchmuller, hep-ph/0502169
- "TASI 2006 Lectures on Leptogenesis," M.-C. Chen, hepph/0703087

Baryon Number Violation

- necessary for baryon symmetric Universe (B=0) → Universe with B ≠ 0
- GUT theories:
 - quarks and leptons in same representations → B-violation naturally through interactions with gauge or scalar fields
- SM:
 - B & L accidental symmetries
 - preserved at tree level

- · Standard Model:
 - \cdot $B \ \& \ L$ accidental symmetries
 - · Classically: $B \ \& \ L$ conserved
 - At quantum level: non-vanishing ABJ triangular anomaly through interactions with EW gauge fields

Group Work

$$\partial_{\mu}J_{B}^{\mu} = \partial_{\mu}J_{L}^{\mu} = \frac{N_{f}}{32\pi^{2}} \left(g^{2}W_{\mu\nu}^{p}\widetilde{W}^{p\mu\nu} - g^{2}B_{\mu\nu}\widetilde{B}^{\mu\nu} \right)$$

What are the broken symmetries? Are there any unbroken symmetries?

- Classically: B & L conserved
- At quantum level, non-vanishing ABJ triangular anomaly through interactions with EW gauge fields

$$\partial_{\mu}J_{B}^{\mu} = \partial_{\mu}J_{L}^{\mu} = \frac{N_{f}}{32\pi^{2}} \left(g^{2}W_{\mu\nu}^{p}\widetilde{W}^{p\mu\nu} - g^{2}B_{\mu\nu}\widetilde{B}^{\mu\nu} \right)$$

⇒ (B+L) violated, (B-L) preserved

$$\Delta B = \Delta L = N_f \Delta N_{cs} = \pm 3n.$$

$$\mathcal{O}_{B+L} = \prod_{i=1,2,3} (q_{L_i} q_{L_i} q_{L_i} \ell_{L_i})$$

12 fermion Processes, e.g.

$$\overline{u} + \overline{d} + \overline{c} \rightarrow d + 2s + 2b + t + \nu_e + \nu_\mu + \nu_\tau$$

• T=0: transition rate negligible

Kuzmin, Rubakov, Shaposhnikov

$$\Gamma \sim e^{-S_{int}} = e^{-4\pi/\alpha} = \mathcal{O}(10^{-165})$$

- In thermal bath: transition by thermal fluctuations
 - at T > height of barrier: no Boltzmann suppression

• T < T_{ew}:
$$\frac{\Gamma_{B+L}}{V} = k \frac{M_W^7}{(\alpha T)^3} e^{-\beta E_{ph}(T)} \sim e^{\frac{-M_W}{\alpha k T}}$$
 $E_{sp}(T) \simeq \frac{8\pi}{g} \langle H(T) \rangle$

• T > T_{ew}:
$$\frac{\Gamma_{B+L}}{V} \sim \alpha^5 \ln \alpha^{-1} T^4$$

⇒ B-violating process unsuppressed

Sphelaron processes in thermal equilibrium

$$T_{EW} \sim 100 \text{ GeV} < T < T_{sph} \sim 10^{12} \text{ GeV}$$

Group Work

process	branching fraction	ΔB
$\begin{array}{c} X \to qq \\ X \to \overline{q}\overline{\ell} \\ \overline{X} \to \overline{q}q \\ \overline{X} \to q\ell \end{array}$	$\begin{array}{c} \alpha \\ 1 - \alpha \\ \overline{\alpha} \\ 1 - \overline{\alpha} \end{array}$	2/3 $-1/3$ $-2/3$ $1/3$

What is the net Baryon number produced due to X, \overline{X} decay?

What is the condition such that the net Baryon number is non-zero?

C and **CP** Violations

- superheavy X boson decay
 - Baryon number produced

$$B_X = \alpha \left(\frac{2}{3}\right) + (1 - \alpha)\left(-\frac{1}{3}\right) = \alpha - \frac{1}{3},$$

$$B_{\overline{X}} = \overline{\alpha}\left(-\frac{2}{3}\right) + (1 - \overline{\alpha})\left(\frac{1}{3}\right) = -\left(\overline{\alpha} - \frac{1}{3}\right),$$

process	branching fraction	ΔB
$\begin{array}{c} X \to qq \\ X \to \overline{q}\ell \\ \overline{X} \to \overline{q}q \\ \overline{X} \to q\ell \end{array}$	$\begin{array}{c} \alpha \\ 1 - \alpha \\ \overline{\alpha} \\ 1 - \overline{\alpha} \end{array}$	2/3 -1/3 -2/3 1/3

- net Baryon number $\epsilon \equiv B_X + B_{\overline{X}} = (\alpha \overline{\alpha})$
- if CP is conserved: $\alpha = \overline{\alpha}, \quad \epsilon = 0.$
- Toy Model: two heavy scalar fields: X, Y; 4 fermions fi

$$\mathcal{L} = g_1 X f_2^{\dagger} f_1 + g_2 X f_4^{\dagger} f_3 + g_3 Y f_1^{\dagger} f_3 + g_4 Y f_2^{\dagger} f_4 + h.c.$$

• possible decays $X o \overline{f}_1 + f_2, \ \overline{f}_3 + f_4, \ Y o \overline{f}_3 + f_1, \ \overline{f}_4 + f_2,$

at tree level:

$$\Gamma(X \to \overline{f}_1 + f_2) = |g_1|^2 I_X$$

$$\Gamma(\overline{X} \to f_1 + \overline{f}_2) = |g_1^*|^2 I_{\overline{X}}$$

phase space factor I_X and $I_{\overline{X}}$ equal \Rightarrow no asymmetry

at one-loop

$$\Gamma(X \to \overline{f}_1 + f_2) = g_1 g_2^* g_3 g_4^* I_{XY} + c.c.$$
 I_{XY}: phase space + kinematics

$$\Gamma(\overline{X} \to f_1 + \overline{f}_2) = g_1^* g_2 g_3^* g_4 I_{XY} + c.c.$$

$$\Gamma(X \to \overline{f}_1 + f_2) - \Gamma(\overline{X} \to f_1 + \overline{f}_2) = 4Im(I_{XY})Im(g_1^*g_2g_3^*g_4)$$

$$\Gamma(X \to \overline{f}_3 + f_4) - \Gamma(\overline{X} \to f_3 + \overline{f}_4) = -4Im(I_{XY})Im(g_1^*g_2g_3^*g_4)$$

total asymmetry

$$\epsilon_{X} = \frac{(B_{1} - B_{2})\Delta\Gamma(X \to \overline{f}_{1} + f_{2}) + (B_{4} - B_{3})\Delta\Gamma(X \to \overline{f}_{3} + f_{4})}{\Gamma_{X}}$$

$$\epsilon_{X} = \frac{4}{\Gamma_{X}} Im(I_{XY}) Im(g_{1}^{*}g_{2}g_{3}^{*}g_{4}) [(B_{4} - B_{3}) - (B_{2} - B_{1})]$$

$$\epsilon_{Y} = \frac{4}{\Gamma_{X}} Im(I'_{XY}) Im(g_{1}^{*}g_{2}g_{3}^{*}g_{4}) [(B_{2} - B_{4}) - (B_{1} - B_{3})]$$

Group Work

Is it necessary that the total asymmetry $\epsilon = \epsilon_X + \epsilon_Y$ is non-zero?

If not, what are the conditions that must be satisfied in order to have non-vanishing total asymmetry?

total asymmetry

$$\epsilon_{X} = \frac{(B_{1} - B_{2})\Delta\Gamma(X \to \overline{f}_{1} + f_{2}) + (B_{4} - B_{3})\Delta\Gamma(X \to \overline{f}_{3} + f_{4})}{\Gamma_{X}}$$

$$\epsilon_{X} = \frac{4}{\Gamma_{X}} Im(I_{XY}) Im(g_{1}^{*}g_{2}g_{3}^{*}g_{4}) [(B_{4} - B_{3}) - (B_{2} - B_{1})]$$

$$\epsilon_{Y} = \frac{4}{\Gamma_{Y}} Im(I'_{XY}) Im(g_{1}^{*}g_{2}g_{3}^{*}g_{4}) [(B_{2} - B_{4}) - (B_{1} - B_{3})]$$

- non-zero total asymmetry $\varepsilon = \varepsilon_X + \varepsilon_Y$
 - two B-violating bosons with masses > sum of loop fermion masses
 - complex coupling constants: CP violation from interference between tree and 1-loop diagrams
 - non-degenerate X and Y masses

Departure from Thermal Equilibrium

- B: odd under C and CP
- - \Rightarrow average T = 0

- Possible ways to achieve departure from thermal equilibrium
 - out-of-equilibrium decay of heavy particles:
 - GUT baryogenesis, leptogenesis
 - EW phase transition: EW baryogenesis

Departure from Thermal Equilibrium

- B: odd under C and CP
- - \Rightarrow average T = 0

- Possible ways to achieve departure from thermal equilibrium
 - out-of-equilibrium decay of heavy particles:
 - GUT baryogenesis, leptogenesis
 - EW phase transition: EW baryogenesis

- Out-of-equilibrium decay of heavy particles in expanding universe
- superheavy particle X: decay rate Γ_X , Mass M_X
- at T ~ M_X: become non-relativistic
 - if $\Gamma_X < H$:
 - X cannot decay on the time scale of the expansion
 - remains initial thermal abundance $n_X = n_{\overline{X}} \sim n_{\gamma} \sim T^3$, for $T \lesssim M_X$
- at T > M_X: interact so weakly, cannot catch up expansion
 - decouple from thermal bath while relativistic
 - populate at T ~ M_X with abundance >> than in equilibrium
- recall: in equilibrium

$$n_X = n_{\overline{X}} \simeq n_{\gamma}$$
 for $T \gtrsim M_X$,
 $n_X = n_{\overline{X}} \simeq (M_X T)^{3/2} e^{-M_X/T} \ll n_{\gamma}$ for $T \lesssim M_X$

- Over abundance at T < M_X
 - ⇒ departure from thermal equilibrium
 - ⇒ final non-vanishing B-asymmetry

$$rac{\Gamma}{H} \propto rac{1}{M_X}$$
 To have $\Gamma <$ H \Rightarrow heavy particle

decay thru renormalizable operators

⇒

Gauge boson: $Mx \ge 10^{(15-16)}$ GeV Scalar fields: $Mx \ge 10^{(10-16)}$ GeV

Precise computation

⇒ Boltzmann equations

Relating ΔB to ΔL

- weakly couple plasma: chemical potential
- SM: N_f generations of fermions + 1 Higgs
 - (5N_f + 1) chemical potential μ_i
 - number density of non-interacting, massless fermions

$$n_i - \overline{n}_i = \frac{1}{6}gT^3 \begin{cases} \beta\mu_i + \mathcal{O}((\beta\mu_i)^3), & \text{fermions} \\ 2\beta\mu_i + \mathcal{O}((\beta\mu_i)^3), & \text{bosons}. \end{cases}$$

- thermal equilibrium → relations among μ_i

 - sphaleron process O_{B+L} : $\sum_i (3\mu_{q_i} + \mu_{\ell_i}) = 0$ QCD instanton processes, $\prod_i (q_{L_i} q_{L_i} u_{R_i}^c d_{R_i}^c)$: $\sum_i (2\mu_{q_i} \mu_{u_i} \mu_{d_i}) = 0$
 - hypercharge charge: $\sum_{i} (\mu_{q_i} + 2\mu_{u_i} - \mu_{d_i} - \mu_{\ell_i} - \mu_{e_i} + \frac{2}{N_f} \mu_H) = 0$

Relating ΔB to ΔL

Yukawa coupling and gauge interactions:

$$\mu_{q_i} - \mu_H - \mu_{d_j} = 0$$

$$\mu_{q_i} + \mu_H - \mu_{u_j} = 0$$

$$\mu_{\ell_i} - \mu_H - \mu_{e_i} = 0$$

- T=100 10¹² GeV: gauge interactions in equilibrium
- Yukawa interactions: more restricted range of temperatures → flavor effects
- B and L in terms of chemical potentials:

$$n_B = \frac{1}{6}gBT^2$$
 $n_L = \frac{1}{6}gL_iT^2$ $E = \sum_i (2\mu_{q_i} + \mu_{u_i} + \mu_{d_i})$ $E = \sum_i L_i, \quad L_i = 2\mu_{\ell_i} + \mu_{e_i}$

equilibrium among generations:

$$\mu_e = \frac{2N_f + 3}{6N_f + 3}\mu_\ell, \quad \mu_d = -\frac{6N_f + 1}{6N_f + 3}\mu_\ell, \quad \mu_u = \frac{2N_f - 1}{6N_f + 3}\mu_\ell \qquad \mu_q = -\frac{1}{3}\mu_\ell, \quad \mu_H = \frac{4N_f}{6N_f + 3}\mu_\ell$$

Relating ΔB to ΔL

Corresponding B & L asymmetries:

$$B = -\frac{4}{3}N_f\mu_\ell \qquad L = \frac{14N_f^2 + 9N_f}{6N_f + 3}\mu_\ell$$

Relation between B and L:

$$B = c_s(B - L),$$
 $L = (c_s - 1)(B - L)$

- where $c_s = \frac{8N_f + 4}{22N_f + 13}$
- For model with N_H Higgses

$$c_s = \frac{8N_f + 4N_H}{22N_f + 13N_H}$$

Mechanisms for Baryongenesis

- GUT Baryogenesis
 - single particle physics interaction at high T

$$G \to H \to \dots \to SU(3)_c \times SU(2)_L \times U(1)_Y \to U(1)_{EM}$$

- B-violation natural
 - quarks & leptons in same representation
 - superheavy gauge boson mediating B-changing processes
- C & CP violation: naturally built in
- Out-of-equilibrium
 - GUT effects at very early times
 - cosmic expansion much faster (than gauge interactions)
 - decay inherently out-of-equilibrium Γ < H

Mechanisms for Baryogenesis

- GUT Baryogenesis
 - problems:
 - require high reheating temperature after inflation → dangerous production of relics -- gravitino problem
 - extremely hard to test GUT models experimentally at colliders
 - EW theory violates baryon number and can erase pre-existing asymmetry, unless GUT mechanism generates excess in (B-L) → SO(10) attractive

Mechanisms for Baryogenesis

- EW Baryogenesis
 - departure from thermal equilibrium provided by strong
 1st order phase transition
 - can be tested at collider experiments
 - problems:
 - require more CP violation than provided in SM (may be found in SUSY)
 - need strong enough 1st order phase transition
 - MSSM: strong bound on Higgs mass < 120 GeV
 - stringent constraints on SUSY parameter space

Sources of CP Violation: SM

- SM: CP is not exact symmetry in weak interactions (Kaon & B-meson systems)
- charged current interactions in weak basis

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \overline{U}_L \gamma^{\mu} D_L W_{\mu} + h.c.$$
 where $U_L = (u, c, t)_L$ and $D_L = (d, s, b)_L$

rotate to mass basis

$$\operatorname{diag}(m_u, m_c, m_t) = V_L^u M^u V_R^u \qquad U_L' \equiv V_L^u U_L \text{ and } D_L' \equiv V_L^d D_L$$
$$\operatorname{diag}(m_d, m_s, m_d) = V_L^d M^d V_R^d \qquad U_{CKM} \equiv V_L^u (V_L^d)^{\dagger}$$
$$U_{CKM} \equiv V_L^u (V_L^d)^{\dagger}$$

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \overline{U}_L' U_{CKM} \gamma^{\mu} D_L' W_{\mu} + h.c.$$

Sources of CP Violation: SM

- CKM: 3 families, unitary matrix
 - 3 angles
 - (6-5) = 1 phase
- CP phase in CKM matrix:

$$B \simeq \frac{\alpha_w^4 T^3}{s} \delta_{CP} \simeq 10^{-8} \delta_{CP} \qquad \delta_{CP} \simeq \frac{A_{CP}}{T_C^{12}} \simeq 10^{-20}$$

effects of CP violation suppressed by small quark mixing

$$A_{CP} = (m_t^2 - m_c^2)(m_c^2 - m_u^2)(m_u^2 - m_t^2) (m_b^2 - m_s^2)(m_s^2 - m_d^2)(m_d^2 - m_b^2) \cdot J$$

$$\longrightarrow B \sim 10^{-28}$$

too small to account for the observed value

$$B \sim 10^{-10}$$

Sources of CP Violation: MSSM

- soft SUSY breaking terms → new sources of CPV
- superpotential of MSSM

$$W = \mu \hat{H}_1 \hat{H}_2 + h^u \hat{H}_2 \hat{Q} \hat{u}^c + h^d \hat{H}_1 \hat{Q} \hat{d}^c + h^e \hat{H}_1 \hat{L} \hat{e}^c$$

- parameters in soft SUSY breaking sector
 - tri-linear couplings:

$$\Gamma^u H_2 \widetilde{Q} \widetilde{c}^c + \Gamma^d H_1 \widetilde{Q} \widetilde{d}^c + \Gamma^e H_1 \widetilde{L} \widetilde{e}^c + h.c.$$

$$\Gamma^{(u,d,e)} \equiv A^{(u,d,e)} \cdot h^{(u,d,e)}$$

- bi-linear coupling in Higgs sector: μBH_1H_2
- gaugino masses: M_i for i = 1, 2, 3
- soft scalar masses: \widetilde{m}_f
- cMSSM w/ mSUGRA → 2 physical phases → soft leptogenesis $\phi_A = \operatorname{Arg}(AM), \quad \phi_\mu = -\operatorname{Arg}(B)$

$$\varphi_A = \operatorname{Alg}(AM), \quad \varphi_\mu = -\operatorname{Alg}(D)$$