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CP Violation in Neutrino Oscillation

• With leptonic Dirac CP phase δ ≠ 0  ➜  
leptonic CP violation


• Predict different transition probabilities for 
neutrinos and antineutrinos


• One of the major scientific goals at 
current and planned neutrino experiments 
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Connection to Low Energy Observables
• Lagrangian at high energy (in the presence of RH neutrinos)

in fij and Mij diagonal basis →   
 hij general complex matrix:  
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as a CKM-like matrix and a diagonal phase matrix,

UMNS =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





·




1

eiα21/2

eiα31/2



 . (1.69)

The Dirac phase δ affects neutrino oscillation (see Boris Kayser’s lectures),

P (να → νβ) = δαβ − 4
∑

i>j

Re(UαiUβjU
∗
αjU

∗
βi) sin2

(
∆m2

ij
L

4E

)
(1.70)

+2
∑

i>j

J lep

CP sin2

(
∆m2

ij
L

4E

)

where the parameterization invariant CP violation measure, the leptonic
Jarlskog invariant J lep

CP
, is given by,

J lep

CP
= −

Im(H12H23H31)

∆m2
21∆m2

32∆m2
31

, H ≡ (M eff
ν )(M eff

ν )† . (1.71)

The two Majorana phases, α21 and α31, affect neutrino double decay (see
Petr Vogel’s lectures). Their dependence in the neutrinoless double beta
decay matrix element is,

|〈mee〉|2 = m2
1 |Ue1|4 + m2

2 |Ue2|4 + m2
3 |Ue3|4 (1.72)

+2m1m2 |Ue1|2 |Ue2|2 cosα21

+2m1m3 |Ue1|2 |Ue3|2 cosα31

+2m2m3 |Ue2|2 |Ue3|2 cos(α31 − α21) .

The Lagrangian at high energy that describe the lepton sector of the
SM in the presence of the right-handed neurinos, νRi , is given by,

L = $Liiγ
µ∂µ$Li + eRi iγ

µ∂µeRi + NRiiγ
µ∂µNRi (1.73)

+fijeRi$LjH
† + hijNRi$Lj H −

1

2
MijNRiNRj + h.c. .

Without loose of generality, in the basis where fij and Mij are diagonal, the
Yukawa matrix hij is in general a complex matrix. For 3 families, h has nine
phases. Out of these nine phases, three can be absorbed into wave functions
of $Li . Therefore, there are six physical phases remain. Furthermore, a real
hij can be diagonalized by a bi-unitary transformation, which is defined

April 6, 2007 19:27 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

20 M.-C. Chen

as a CKM-like matrix and a diagonal phase matrix,

UMNS =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





·




1

eiα21/2

eiα31/2



 . (1.69)

The Dirac phase δ affects neutrino oscillation (see Boris Kayser’s lectures),

P (να → νβ) = δαβ − 4
∑

i>j

Re(UαiUβjU
∗
αjU

∗
βi) sin2

(
∆m2

ij
L

4E

)
(1.70)

+2
∑

i>j

J lep

CP sin2

(
∆m2

ij
L

4E

)

where the parameterization invariant CP violation measure, the leptonic
Jarlskog invariant J lep

CP
, is given by,

J lep

CP
= −

Im(H12H23H31)

∆m2
21∆m2

32∆m2
31

, H ≡ (M eff
ν )(M eff

ν )† . (1.71)

The two Majorana phases, α21 and α31, affect neutrino double decay (see
Petr Vogel’s lectures). Their dependence in the neutrinoless double beta
decay matrix element is,

|〈mee〉|2 = m2
1 |Ue1|4 + m2

2 |Ue2|4 + m2
3 |Ue3|4 (1.72)

+2m1m2 |Ue1|2 |Ue2|2 cosα21

+2m1m3 |Ue1|2 |Ue3|2 cosα31

+2m2m3 |Ue2|2 |Ue3|2 cos(α31 − α21) .

The Lagrangian at high energy that describe the lepton sector of the
SM in the presence of the right-handed neurinos, νRi , is given by,

L = $Liiγ
µ∂µ$Li + eRi iγ

µ∂µeRi + NRiiγ
µ∂µNRi (1.73)

+fijeRi$LjH
† + hijNRi$Lj H −

1

2
MijNRiNRj + h.c. .

Without loose of generality, in the basis where fij and Mij are diagonal, the
Yukawa matrix hij is in general a complex matrix. For 3 families, h has nine
phases. Out of these nine phases, three can be absorbed into wave functions
of $Li . Therefore, there are six physical phases remain. Furthermore, a real
hij can be diagonalized by a bi-unitary transformation, which is defined



Group Work

How many mixing angles and CP phases 
does  have at high energy?hij



Connection to Low Energy Observables
• Lagrangian at high energy (in the presence of RH neutrinos)

in fij and Mij diagonal basis →   
 hij general complex matrix:  

• Low energy effective Lagrangian (after integrating out RH neutrinos)

in fij diagonal basis →
      hij symmetric complex matrix:  
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in terms of six mixing angles. After integrating out the heavy Majorana
neutrinos, the effective Lagrangian that describes the neutrino sector below
the seesaw scale is,

Leff = !Liiγ
µ∂µ!Li + eRiiγ

µ∂µeRi + fiieRi!LiH
† (1.74)

+
1

2

∑

k

hT
ikhkj!Li!Lj

H2

Mk
+ h.c. .

This leads to an effective neutrino Majorana mass matrix whose parameters
can be measured at the oscillation experiments. As Majorana mass matrix
is symmetric, for three families, it has six independent complex elements
and thus six complex phases. Out of these six phases, three of them can
be absorbed into the wave functions of the charged leptons. Hence at low
energy, there are only three physical phases and three mixing angles in
the lepton sector. Going from high energy to low energy, the numbers of
mixing angles and phases are thus reduced by half. Due to the presence
of the additional mixing angles and complex phases in the heavy neutrino
sector, it is generally not possible to connect leptogenesis with low energy
CP violation. However, in some specific models, such connection can be
established. This will be discussed in more details in Sec. 1.4.

1.2. Standard Leptogenesis

1.2.1. Standard Leptogenesis (Majorana Neutrinos)

As mentioned in the previous section, baryon number violation arises nat-
urally in many grand unified theories. In the GUT baryogenesis, the asym-
metry is generated through the decays of heavy gauge bosons (denoted by
“V” in the following) or leptoquarks (denoted by “S” in the following),
which are particles that carry both B and L numbers. In GUTs based on
SU(5), the heavy gauge bosons or heavy leptoquarks have the following
B-non-conserving decays,

V → !Luc
R, B = −1/3, B − L = 2/3 (1.75)

V → qLdc
R, B = 2/3, B − L = 2/3 (1.76)

S → !LqL, B = −1/3, B − L = 2/3 (1.77)

S → qLqL, B = 2/3, B − L = 2/3 . (1.78)

Since (B − L) is conserved, i.e. the heavy particles V and S both carry
(B−L) charges 2/3, no (B−L) can be generated dynamically. In addition,
due to the sphaleron processes, 〈B〉 = 〈B − L〉 = 0. In SO(10), (B − L)
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9-3 = 6 mixing angles
9-3 = 6 physical phases{



Group Work

How many mixing angles and CP phases 
does  have at low energy?hij



Connection to Low Energy Observables

• Lagrangian at high energy (in the presence of RH neutrinos)

in fij and Mij diagonal basis →   
 hij general complex matrix:  

• Low energy effective Lagrangian (after integrating out RH neutrinos)

in fij diagonal basis →
      hij symmetric complex matrix:  

• high energy → low energy: 
numbers of mixing angles and CP phases reduced by half 
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neutrinos, the effective Lagrangian that describes the neutrino sector below
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This leads to an effective neutrino Majorana mass matrix whose parameters
can be measured at the oscillation experiments. As Majorana mass matrix
is symmetric, for three families, it has six independent complex elements
and thus six complex phases. Out of these six phases, three of them can
be absorbed into the wave functions of the charged leptons. Hence at low
energy, there are only three physical phases and three mixing angles in
the lepton sector. Going from high energy to low energy, the numbers of
mixing angles and phases are thus reduced by half. Due to the presence
of the additional mixing angles and complex phases in the heavy neutrino
sector, it is generally not possible to connect leptogenesis with low energy
CP violation. However, in some specific models, such connection can be
established. This will be discussed in more details in Sec. 1.4.

1.2. Standard Leptogenesis

1.2.1. Standard Leptogenesis (Majorana Neutrinos)

As mentioned in the previous section, baryon number violation arises nat-
urally in many grand unified theories. In the GUT baryogenesis, the asym-
metry is generated through the decays of heavy gauge bosons (denoted by
“V” in the following) or leptoquarks (denoted by “S” in the following),
which are particles that carry both B and L numbers. In GUTs based on
SU(5), the heavy gauge bosons or heavy leptoquarks have the following
B-non-conserving decays,

V → !Luc
R, B = −1/3, B − L = 2/3 (1.75)

V → qLdc
R, B = 2/3, B − L = 2/3 (1.76)

S → !LqL, B = −1/3, B − L = 2/3 (1.77)

S → qLqL, B = 2/3, B − L = 2/3 . (1.78)

Since (B − L) is conserved, i.e. the heavy particles V and S both carry
(B−L) charges 2/3, no (B−L) can be generated dynamically. In addition,
due to the sphaleron processes, 〈B〉 = 〈B − L〉 = 0. In SO(10), (B − L)
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B-non-conserving decays,

V → !Luc
R, B = −1/3, B − L = 2/3 (1.75)

V → qLdc
R, B = 2/3, B − L = 2/3 (1.76)

S → !LqL, B = −1/3, B − L = 2/3 (1.77)

S → qLqL, B = 2/3, B − L = 2/3 . (1.78)

Since (B − L) is conserved, i.e. the heavy particles V and S both carry
(B−L) charges 2/3, no (B−L) can be generated dynamically. In addition,
due to the sphaleron processes, 〈B〉 = 〈B − L〉 = 0. In SO(10), (B − L)
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is spontaneously broken, as it is a gauged subgroup of SO(10). Heavy
particles X with MX < MB−L can then generate a (B − L) asymmetry
through their decays. Nevertheless, for MX ∼ MGUT ∼ 1015 GeV, the
CP asymmetry is highly suppressed. Furthermore, one also has to worry
about the large reheating temperature TRH ∼ MGUT after the inflation,
the realization of thermal equilibrium, and in supersymmetric case, the
gravitino problem. These difficulties in GUT baryogenesis had led to a lot
of interests in EW baryogenesis, which also has its own disadvantages as
discussed in Sec. 1.1.4.

The recent advent of the evidence of neutrino masses from various neu-
trino oscillation experiments opens up a new possibility of generating the
asymmetry through the decay of the heavy neutrinos [25]. A particular
attractive framework in which small neutrino masses can naturally arise is
GUT based on SO(10) (for a review, see, i.e. Ref. [22]). SO(10) GUT
models accommodate the existence of RH neutrinos,

ψ(16) = (qL, uc
R, ec

R, dc
R, "L, νc

R) , (1.79)

which is unified along with the fifteen known fermions of each family into
a single 16-dimensional spinor representation. For hierarchical fermion
masses, one easily has

MN # MB−L ∼ MGUT , (1.80)

where N = νR +νc
R is a Majorana fermion. The decays of the right-handed

neutrino,

N → "H, N → "H , (1.81)

where H is the SU(2) Higgs doublet, can lead to a lepton number asymme-
try. After the sphaleron processes, the lepton number asymmetry is then
converted into a baryon number asymmetry.

The most general Lagrangian involving charged leptons and neutrinos
is given by,

LY = fijeRi"Lj H
† + hijνRi"LjH −

1

2
(MR)ijν

c
Ri

νRj + h.c. . (1.82)

As the RH neutrinos are singlets under the SM gauge group, Majorana
masses for the RH neutrinos are allowed by the gauge invariance. Upon
the electroweak symmetry breaking, the SM Higgs doublet gets a VEV,
〈H〉 = v, and the charged leptons and the neutrino Dirac masses, which
are much smaller than the RH neutrino Majorana masses, are generated,

m! = fv, mD = hv # MR . (1.83)
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The neutrino sector is therefore described by a 2 × 2 seesaw matrix as,
(

0 mD

mT
D MR

)
. (1.84)

Diagonalizing this 2 × 2 seesaw matrix, the light and heavy neutrino mass
eigenstates are obtained as,

ν " V T
ν νL + V ∗

ν νc
L, N " νR + νc

R (1.85)

with corresponding masses

mν " −V T
ν mT

D
1

MR
mDVν , mN " MR . (1.86)

Here the unitary matrix Vν is the diagonalization matrix of the neutrino
Dirac matrix.

At temperature T < MR, RH neutrinos can generate a lepton number
asymmetry by means of out-of-equilibrium decays. The sphaleron processes
then convert ∆L into ∆B.

1.2.1.1. The Asymmetry

At the tree level, the i-th RH neutrino decays into the Higgs doublet and
the charged lepton doublet of α flavor, Ni → H + #α, where α = (e, µ, τ).
The total width of this decay is,

ΓDi =
∑

α

[
Γ(Ni → H + #α) + Γ(Ni → H + #α)

]
(1.87)

=
1

8π
(hh†)iiMi .

Suppose that the lepton number violating interactions of the lightest right-
handed neutrino, N1, wash out any lepton number asymmetry generated in
the decay of N2,3 at temperatures T % M1. (For effects due to the decays
of N2,3, see Ref. [26].) In this case with N1 decay dominating, the final
asymmetry only depends on the dynamics of N1. The out-of-equilibrium
condition requires that the total width for N1 decay, ΓD1 , to be smaller
compared to the expansion rate of the Universe at temperature T = M1,

ΓD1 < H

∣∣∣∣
T=M1

. (1.88)

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
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Luty, 1992; Covi, Roulet, Vissani, 1996; Flanz et al, 
1996; Plumacher, 1997; Pilaftsis, 1997;

Buchmuller, Plumacher, 1998; 
Buchmuller, Di Bari, Plumacher, 2004
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Fig. 1.7. Diagrams in SM model with RH neutrinos that contribute to the lepton num-
ber asymmetry through the decay of the RH neutrinos. The asymmetry is generated
due to the interference of the tree-level diagram (a) and the one-loop vertex correction
(b) and self-energy (c) diagrams.

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), after carrying out the loop integration,

f(x) =
⌃

x

⇧
1� (1 + x) ln

⇤
1 + x

x

⌅⌃
. (1.85)

Diagram (c) is the one-loop self-energy. For |Mi �M1| ⇤ |�i � �1|, the
self-energy diagram gives the term

g(x) =
⌃

x

1� x
, (1.86)

in Eq. 1.84. For hierarchical RH neutrino masses, M1 ⇥ M2, M3, the
asymmetry is then given by,

�1 ⇧ �
3
8⇥

1
(h⇥h†

⇥)11

⌦

i=2,3

Im
⌥

(h⇥h†
⇥)21i

�
M1

Mi
. (1.87)

∆L

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

24 M.-C. Chen

Nk

li

H
∗

Nk

ll

H

Nj

H
∗

li

Nk

ll

H

Nj

H
∗

li

(a) (b) (c)
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to the interference of the tree-level diagram (a) and the one-loop vertex correction (b)
and self-energy (c) diagrams.

is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,

f(x) =
√

x

[
1 − (1 + x) ln

(
1 + x

x

)]
. (1.90)

Diagram (c) is the one-loop self-energy. For |Mi − M1| % |Γi − Γ1|, the
self-energy diagram gives the term

g(x) =

√
x

1 − x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 & M2, M3, the
asymmetry is then given by,
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow

Leptonic CP violation ⇒ ∆L ∝ 

Leptogenesis

• RH heavy neutrino decay:
• quantum interference of tree-level & one-loop diagrams ⇒ primordial lepton number 

asymmetry  
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow
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Standard Leptogenesis- Asymmetry

• Tree-level:

• total decay width

• ∆L from N2,3 decays at T >> M1: wash out by L-violating 
interactions of N1 ⇒ N1 decay dominate

• out-of-equilibrium condition

• heavy neutrinos not able to follow equilibrium particle 
distribution @ T < M1

• N1 decay → ∆L
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The neutrino sector is therefore described by a 2 × 2 seesaw matrix as,
(

0 mD

mT
D MR

)
. (1.84)

Diagonalizing this 2 × 2 seesaw matrix, the light and heavy neutrino mass
eigenstates are obtained as,

ν " V T
ν νL + V ∗

ν νc
L, N " νR + νc

R (1.85)

with corresponding masses

mν " −V T
ν mT

D
1

MR
mDVν , mN " MR . (1.86)

Here the unitary matrix Vν is the diagonalization matrix of the neutrino
Dirac matrix.

At temperature T < MR, RH neutrinos can generate a lepton number
asymmetry by means of out-of-equilibrium decays. The sphaleron processes
then convert ∆L into ∆B.

1.2.1.1. The Asymmetry

At the tree level, the i-th RH neutrino decays into the Higgs doublet and
the charged lepton doublet of α flavor, Ni → H + #α, where α = (e, µ, τ).
The total width of this decay is,

ΓDi =
∑

α

[
Γ(Ni → H + #α) + Γ(Ni → H + #α)

]
(1.87)

=
1

8π
(hh†)iiMi .

Suppose that the lepton number violating interactions of the lightest right-
handed neutrino, N1, wash out any lepton number asymmetry generated in
the decay of N2,3 at temperatures T % M1. (For effects due to the decays
of N2,3, see Ref. [26].) In this case with N1 decay dominating, the final
asymmetry only depends on the dynamics of N1. The out-of-equilibrium
condition requires that the total width for N1 decay, ΓD1 , to be smaller
compared to the expansion rate of the Universe at temperature T = M1,

ΓD1 < H

∣∣∣∣
T=M1

. (1.88)

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
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Standard Leptogenesis- Asymmetry

• CP Asymmetry from interference of tree and 1-loop 
diagrams

• Total Asymmetry 
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Fig. 1.7. Diagrams in SM with RH neutrinos that contribute to the lepton number
asymmetry through the decays of the RH neutrinos. The asymmetry is generated due
to the interference of the tree-level diagram (a) and the one-loop vertex correction (b)
and self-energy (c) diagrams.

is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,

ε1 =

∑
α

[
Γ(N1 → "αH) − Γ(N1 → "α H)

]
∑

α

[
Γ(N1 → "αH) + Γ(N1 → "α H)

] (1.89)
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,

f(x) =
√

x

[
1 − (1 + x) ln

(
1 + x

x

)]
. (1.90)

Diagram (c) is the one-loop self-energy. For |Mi − M1| % |Γi − Γ1|, the
self-energy diagram gives the term

g(x) =

√
x

1 − x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 & M2, M3, the
asymmetry is then given by,

ε1 # −
3

8π

1

(hνh†
ν)11

∑

i=2,3

Im

{
(hνh†

ν)21i

}
M1

Mi
. (1.92)

Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow
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Standard Leptogenesis- Asymmetry

• vertex corrections

• wave function renormalization
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow
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Diagram (c) is the one-loop self-energy. For |Mi − M1| % |Γi − Γ1|, the
self-energy diagram gives the term

g(x) =

√
x

1 − x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 & M2, M3, the
asymmetry is then given by,

ε1 # −
3

8π

1

(hνh†
ν)11

∑

i=2,3

Im

{
(hνh†

ν)21i

}
M1

Mi
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow
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Fig. 1.7. Diagrams in SM with RH neutrinos that contribute to the lepton number
asymmetry through the decays of the RH neutrinos. The asymmetry is generated due
to the interference of the tree-level diagram (a) and the one-loop vertex correction (b)
and self-energy (c) diagrams.
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228.75)
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M1 to be much lower while still generating sufficient amount of the lepton
number asymmetry. This will be discussed in Sec. 1.3.1.

To prevent the generated asymmetry given in Eq. 1.89 from being
washed out by the inverse decay and scattering processes, the decay of the
RH neutrinos has to be out-of-equilibrium. In other words, the condition

r ≡
Γ1

H |T=M1

=
Mpl

(1.7)(32π)
√

g∗

(hνh†
ν)11

M1
< 1 , (1.93)

has to be satisfied. This leads to the following constraint on the effective
light neutrino mass

m̃1 ≡ (hνh†
ν)11

v2

M1
# 4

√
g∗

v2

Mpl

ΓD1

H

∣∣∣∣
T=M1

< 10−3 eV , (1.94)

where g∗ is the number of relativistic degrees of freedom. For SM, g∗ #
106.75, while for MSSM, g∗ # 228.75. The wash-out effect is parameterized
by the coefficient κ, and the final amount of lepton asymmetry is given by,

YL ≡
nL − nL

s
= κ

ε1
g∗

, (1.95)

where κ parameterizes the amount of wash-out due to the inverse decays
and scattering processes. The amount of wash-out depends on the size of
the parameter r:

(1) If r % 1 for decay temperature TD ! MX , the inverse decay and 2-2
scattering are impotent. In this case, the inverse decay width is given
by,

ΓID

H
∼

(
MX

T

)3/2

e−MX/T · r , (1.96)

while the width for the scattering processes is,

ΓS

H
∼ α

(
T

MX

)5

· r . (1.97)

Thus the inverse decays and scattering processes can be safely ig-
nored, and the asymmetry ∆B produced by decays is not destroyed
by the asymmetry −∆B produced in inverse decays and scatterings.
At T # TD, the number density of the heavy particles X has thermal
distribution, nX # nX # nγ . Thus the net baryon neumber density
produced by out-of-equilibrium decays is

nL = ε1 · nX # ε1 · nγ . (1.98)
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More generally, if large domains of matter and antimatter exist, then annihilations would
take place at the interfaces between them. If the typical size of such a domain was small
enough, then the energy released by these annihilations would result in a diffuse γ-ray
background and a distortion of the cosmic microwave radiation, neither of which is observed.
A careful numerical analysis of this problem [5] demonstrates that the universe must consist
entirely of either matter or antimatter on all scales up to the Hubble size. It therefore seems
that the universe is fundamentally matter-antimatter asymmetric.

While the above considerations put an experimental upper bound on the amount of an-
timatter in the universe, strict quantitative estimates of the relative abundances of baryonic
matter and antimatter may also be obtained from the standard cosmology. The baryon
number density does not remain constant during the evolution of the universe, instead scal-
ing like a−3, where a is the cosmological scale factor [6]. It is therefore convenient to define
the baryon asymmetry of the universe in terms of the quantity

η ≡
nB

nγ
, (1.1)

where nB = nb − nb̄ is the difference between the number of baryons and antibaryons per
unit volume and nγ = 2 ζ(3)

π2 T 3 is the photon number density at temperature T . Primordial
nucleosynthesis (for a review see [7]) is one of the most powerful predictions of the standard
cosmological model. The theory allows accurate predictions of the cosmological abundances
of all the light elements, H, 3He, 4He, D, B and 7Li, while requiring only the single input
parameter η which has been constant since nucleosynthesis. The range of η consistent with
the deuterium and 3He primordial abundances is [6]

4(3) × 10−10 <∼ η <∼ 7(10) × 10−10, (1.2)

where the most conservative bounds are in parentheses. Alternatively we may write the
range as

0.015(0.011) <∼ ΩB h2 <∼ 0.026(0.038) , (1.3)

where ΩB is the proportion of the critical energy density in baryons, and 0.5 <∼ h <∼ 0.9
parametrizes the present value of the Hubble parameter via h = H0/(100 Km Mpc−1 sec−1).

To see that the standard cosmological model cannot explain the observed value of η,
suppose that initially we start with η = 0. We can compute the final number density of
nucleons b that are left over after annihilations have frozen out. At temperatures T <∼ 1
GeV the equilibrium abundance of nucleons and antinucleons is [6]

nb

nγ
%

nb̄

nγ
%

(
mp

T

)3/2

e−
mp
T . (1.4)

When the universe cools off, the number of nucleons and antinucleons decreases as long
as the annihilation rate Γann % nb〈σAv〉 is larger than the expansion rate of the universe

H % 1.66 g1/2
∗

T 2

mp
. The thermally averaged annihilation cross section 〈σAv〉 is of the order of

m2
π, so at T % 20 MeV, Γann % H , and annihilations freeze out, nucleons and antinucleons

being so rare that they cannot annihilate any longer. Therefore, from (1.4) we obtain

2
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• final B asymmetry
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Fig. 1.8. Decay and inverse decay processes in the thermal bath.

(2) For r ! 1, the abundance of X and X follows the equilibrium values,
and there is no departure from thermal equilibrium. As a result, no
lepton number may evolve, and the net lepton asymmetry vanishes,

n! − n!

dt
+ 3H(n! − n!) = ∆γeq = 0 . (1.99)

In general, for 1 < r < 10, there could still be sizable asymmetry. The
wash out effects due to inverse decay and lepton number violating scattering
processes together with the time evolution of the system is then accounted
for by the factor κ, which is obtained by solving the Bolzmann equations
for the system (see next section). An approximation is given by [19],

106 ! r : κ = (0.1r)1/2e−
4
3 (0.1)1/4

(< 10−7) (1.100)

10 ! r ! 106 : κ = 0.3
r(ln r)0.8 (10−2 ∼ 10−7) (1.101)

0 ! r ! 10 : κ = 1
2
√

r2+9
(10−1 ∼ 10−2) . (1.102)

The EW sphaleron effects then convert YL into YB,

YB ≡
nB − nB

s
= cYB−L =

c

c − 1
YL , (1.103)

where c is the conversion factor derived in Sec. 1.1.3.

1.2.1.2. Boltzmann Equations

As the decays of RH neutrinos are out-of-equilibrium processes, they are
generally treated by Boltzmann equations. Main processes in the thermal
bath that are relevant for leptogenesis include,

(1) decay of N (Fig. 1.8 (a)):

N → # + H, N → # + H (1.104)
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where

cs =
8Nf + 4

22Nf + 13
. (1.57)

For models with NH Higgses, the parameter cs is given by,

cs =
8Nf + 4NH

22Nf + 13NH
. (1.58)

For T = 100 GeV ∼ 1012 GeV, which is of interest of baryogenesis,
gauge interactions are in equilibrium. Nervertheless, the Yukawa interac-
tions are in equilibrium only in a more restricted temperature range. But
these effects are generally small, and thus will be neglected in these lec-
tures. These effects have been investigated recently; they will be discussed
in Sec. 1.5.

1.1.4. Mechanisms for Baryogenesis and Their Problems

There have been many mechanisms for baryogenesis proposed. Each has
attractive and problematic aspects, which we discuss below.

1.1.4.1. GUT Baryongenesis

The GUT baryogenesis was the first implementation of Sakharov’s B-
number generation idea. The B-number violation is an unavoidable con-
sequence in grand unified models, as quarks and leptons are unified in the
same representation of a single group. Furthermore, sufficient amount of
CP violation can be incorporated naturally in GUT models, as there ex-
ist many possible complex phases, in addition to those that are present in
the SM. The relevant time scales of the decays of heavy gauge bosons or
scalars are slow, compared to the expansion rate of the Universe at early
epoch of the cosmic evolution. The decays of these heavy particles are thus
inherently out-of-equilibrium.

Even though GUT models naturally encompass all three Sakharov’s con-
ditions, there are also challenges these models face. First of all, to generate
sufficient baryon number asymmetry requires high reheating temperature.
This in turn leads to dangerous production of relic particles, such as grav-
itinos (see Sec. 1.2.3). As the relevant physics scale MGUT ∼ 1016 GeV is
far above the electroweak scale, it is also very hard to test GUT models ex-
perimentally using colliders. The electroweak theory ensures that there are
copious B-violating processes between the GUT scale and the electroweak
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The neutrino sector is therefore described by a 2 × 2 seesaw matrix as,
(

0 mD

mT
D MR

)
. (1.84)

Diagonalizing this 2 × 2 seesaw matrix, the light and heavy neutrino mass
eigenstates are obtained as,

ν " V T
ν νL + V ∗

ν νc
L, N " νR + νc

R (1.85)

with corresponding masses

mν " −V T
ν mT

D
1

MR
mDVν , mN " MR . (1.86)

Here the unitary matrix Vν is the diagonalization matrix of the neutrino
Dirac matrix.

At temperature T < MR, RH neutrinos can generate a lepton number
asymmetry by means of out-of-equilibrium decays. The sphaleron processes
then convert ∆L into ∆B.

1.2.1.1. The Asymmetry

At the tree level, the i-th RH neutrino decays into the Higgs doublet and
the charged lepton doublet of α flavor, Ni → H + #α, where α = (e, µ, τ).
The total width of this decay is,

ΓDi =
∑

α

[
Γ(Ni → H + #α) + Γ(Ni → H + #α)

]
(1.87)

=
1

8π
(hh†)iiMi .

Suppose that the lepton number violating interactions of the lightest right-
handed neutrino, N1, wash out any lepton number asymmetry generated in
the decay of N2,3 at temperatures T % M1. (For effects due to the decays
of N2,3, see Ref. [26].) In this case with N1 decay dominating, the final
asymmetry only depends on the dynamics of N1. The out-of-equilibrium
condition requires that the total width for N1 decay, ΓD1 , to be smaller
compared to the expansion rate of the Universe at temperature T = M1,

ΓD1 < H

∣∣∣∣
T=M1

. (1.88)

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
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Fig. 1.8. Decay and inverse decay processes in the thermal bath.

(2) For r ! 1, the abundance of X and X follows the equilibrium values,
and there is no departure from thermal equilibrium. As a result, no
lepton number may evolve, and the net lepton asymmetry vanishes,
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dt
+ 3H(n! − n!) = ∆γeq = 0 . (1.99)

In general, for 1 < r < 10, there could still be sizable asymmetry. The
wash out effects due to inverse decay and lepton number violating scattering
processes together with the time evolution of the system is then accounted
for by the factor κ, which is obtained by solving the Bolzmann equations
for the system (see next section). An approximation is given by [19],
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c − 1
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where c is the conversion factor derived in Sec. 1.1.3.

1.2.1.2. Boltzmann Equations

As the decays of RH neutrinos are out-of-equilibrium processes, they are
generally treated by Boltzmann equations. Main processes in the thermal
bath that are relevant for leptogenesis include,

(1) decay of N (Fig. 1.8 (a)):

N → # + H, N → # + H (1.104)
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As the decays of RH neutrinos are out-of-equilibrium processes, they are
generally treated by Boltzmann equations. Main processes in the thermal
bath that are relevant for leptogenesis include,

(1) decay of N (Fig. 1.8 (a)):

N → # + H, N → # + H (1.104)

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 27

N

l

H

t

q

N

t

H

l

q

(a) (b)

Fig. 1.9. The ∆L = 1 scattering processes in the thermal bath.

l

H

Ni

l

H

l

H

Ni

H

l

(a) (b) (c)

Fig. 1.10. The ∆L = 2 scattering processes in the thermal bath.

(2) inverse decay of N (Fig. 1.8 (b)):

! + H → N, ! + H → N (1.105)

(3) 2-2 scattering: These include the following ∆L = 1 scattering processes
(Fig. 1.9),

[s-channel] : N1 ! ↔ t q , N1 ! ↔ t q (1.106)

[t-channel] : N1t ↔ ! q , N1 t ↔ ! q (1.107)

and ∆L = 2 scattering processes (Fig. 1.10),

!H ↔ ! H , !! ↔ H H, ! ! ↔ H H . (1.108)

Basically, at temperatures T ! M1, these ∆L = 1 and ∆L = 2 processes
have to be strong enough to keep N1 in equilibrium. Yet at temperature
T " M1, these processes have to be weak enough to allow N1 to generate
an asymmetry.
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Standard Leptogenesis - Washout

• 2-2 scattering

• ∆L = 1

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 27

N

l

H

t

q

N

t

H

l

q

(a) (b)

Fig. 1.9. The ∆L = 1 scattering processes in the thermal bath.

l

H

Ni

l

H

l

H

Ni

H

l

(a) (b) (c)

Fig. 1.10. The ∆L = 2 scattering processes in the thermal bath.

(2) inverse decay of N (Fig. 1.8 (b)):

! + H → N, ! + H → N (1.105)

(3) 2-2 scattering: These include the following ∆L = 1 scattering processes
(Fig. 1.9),

[s-channel] : N1 ! ↔ t q , N1 ! ↔ t q (1.106)

[t-channel] : N1t ↔ ! q , N1 t ↔ ! q (1.107)

and ∆L = 2 scattering processes (Fig. 1.10),

!H ↔ ! H , !! ↔ H H, ! ! ↔ H H . (1.108)

Basically, at temperatures T ! M1, these ∆L = 1 and ∆L = 2 processes
have to be strong enough to keep N1 in equilibrium. Yet at temperature
T " M1, these processes have to be weak enough to allow N1 to generate
an asymmetry.

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 27

N

l

H

t

q

N

t

H

l

q

(a) (b)

Fig. 1.9. The ∆L = 1 scattering processes in the thermal bath.

l

H

Ni

l

H

l

H

Ni

H

l

(a) (b) (c)

Fig. 1.10. The ∆L = 2 scattering processes in the thermal bath.

(2) inverse decay of N (Fig. 1.8 (b)):

! + H → N, ! + H → N (1.105)

(3) 2-2 scattering: These include the following ∆L = 1 scattering processes
(Fig. 1.9),

[s-channel] : N1 ! ↔ t q , N1 ! ↔ t q (1.106)

[t-channel] : N1t ↔ ! q , N1 t ↔ ! q (1.107)

and ∆L = 2 scattering processes (Fig. 1.10),

!H ↔ ! H , !! ↔ H H, ! ! ↔ H H . (1.108)

Basically, at temperatures T ! M1, these ∆L = 1 and ∆L = 2 processes
have to be strong enough to keep N1 in equilibrium. Yet at temperature
T " M1, these processes have to be weak enough to allow N1 to generate
an asymmetry.

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 27

N

l

H

t

q

N

t

H

l

q

(a) (b)

Fig. 1.9. The ∆L = 1 scattering processes in the thermal bath.

l

H

Ni

l

H

l

H

Ni

H

l

(a) (b) (c)

Fig. 1.10. The ∆L = 2 scattering processes in the thermal bath.

(2) inverse decay of N (Fig. 1.8 (b)):

! + H → N, ! + H → N (1.105)

(3) 2-2 scattering: These include the following ∆L = 1 scattering processes
(Fig. 1.9),

[s-channel] : N1 ! ↔ t q , N1 ! ↔ t q (1.106)

[t-channel] : N1t ↔ ! q , N1 t ↔ ! q (1.107)

and ∆L = 2 scattering processes (Fig. 1.10),

!H ↔ ! H , !! ↔ H H, ! ! ↔ H H . (1.108)

Basically, at temperatures T ! M1, these ∆L = 1 and ∆L = 2 processes
have to be strong enough to keep N1 in equilibrium. Yet at temperature
T " M1, these processes have to be weak enough to allow N1 to generate
an asymmetry.

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 27

N

l

H

t

q

N

t

H

l

q

(a) (b)

Fig. 1.9. The ∆L = 1 scattering processes in the thermal bath.

l

H

Ni

l

H

l

H

Ni

H

l

(a) (b) (c)

Fig. 1.10. The ∆L = 2 scattering processes in the thermal bath.

(2) inverse decay of N (Fig. 1.8 (b)):

! + H → N, ! + H → N (1.105)

(3) 2-2 scattering: These include the following ∆L = 1 scattering processes
(Fig. 1.9),

[s-channel] : N1 ! ↔ t q , N1 ! ↔ t q (1.106)

[t-channel] : N1t ↔ ! q , N1 t ↔ ! q (1.107)

and ∆L = 2 scattering processes (Fig. 1.10),

!H ↔ ! H , !! ↔ H H, ! ! ↔ H H . (1.108)

Basically, at temperatures T ! M1, these ∆L = 1 and ∆L = 2 processes
have to be strong enough to keep N1 in equilibrium. Yet at temperature
T " M1, these processes have to be weak enough to allow N1 to generate
an asymmetry.



Mu-Chun Chen, UC Irvine                                                                                                                                                        Baryogenesis through Leptogenesis                          

Standard Leptogenesis - Washout

• 2-2 scattering

• ∆L = 2

• T > M1: strong enough to keep N1 in equilibrium

• T < M1: weak enough to allow asymmetry 
generation
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Standard Leptogenesis - Washout

• Boltzmann equations → evolution of N1 density and (B-
L) number density

• D:  decay and inverse decays

• S:   ∆L = 1 scatterings

• W:  inverse decays + ∆L = 1, 2 scatterings
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The Boltzmann equations that govern the evolutions of the RH neutrino
number density and B − L number density are given by [27],

dNN1

dz
= −(D + S)(NN1 − Neq

N1
) (1.109)

dNB−L

dz
= −ε1D(NN1 − Neq

N1
) − WNB−L , (1.110)

where

(D, S, W ) ≡
(ΓD, ΓS , ΓW )

Hz
, z =

M1

T
. (1.111)

Here ΓD includes both decay and inverse decay, ΓS includes ∆L = 1
scattering processes and ΓW includes inverse decay and ∆L = 1, ∆L = 2
scattering processes. The N1 abundance is affected by the decay, inverse
decay and the ∆L = 1 scattering processes. It is manifest in Eq. 1.110
that the N1 decay is the source for (B − L), while the inverse decay and
the ∆L = 1, 2 scattering processes wash out the asymmetry. The generic
behavior of the solutions to the Boltzmann equations is shown in Fig. 1.11.

Fig. 1.11. Generic behavior of the solutions to Boltzmann equations. Here the functions
NN1

(red solid curve) and NB−L (green solid curve) are solutions to Eq. 1.109 and 1.110.
The function (NN1

)eq (blue dotted curve) is the equilibrium particle distribution.
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Standard Leptogenesis - Washout

• strongly hierarchical RH neutrino masses, M1 << M2:

• Davidson-Ibarra bound

• exp constraint

• lower bound on M1: 

⇒  lower bound on reheating temperature 
(gravitino problem)

• equivalently,
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1.2.1.3. Bounds on Neutrino Masses

In the case with strongly hierarchical right-handed neutrino masses, when
the asymmetry ε1 due to the decay of the lightest right-handed neutrino,
N1, contribute dominantly to the total asymmetry, leptogenesis becomes
very predictive [1, 4, 27], provided that N1 decays at temperature T ! 1012

GeV. In particular, various bounds on the neutrino masses can be obtained.
For strongly hierarchyical masses, M1/M2 ! 1, there is an upper bound

on ε1 [29], called the “Davidson-Ibarra” bound,

|ε1| ≤
3

16π

M1(m3 − m2)

v2
≡ εDI

1 , (1.112)

which is obtained by expanding ε1 to leading order in M1/M2. Becuase
|m3 − m2| ≤

√
∆m2

32 ∼ 0.05 eV, a lower bound on M1 then follows,

M1 ≥ 2 × 109 GeV . (1.113)

This bound in turn implies a lower bound on the reheating temperature,
TRH , and is in conflict with the upper bound from gravitino over production
constraints if supersymmetry is incorporated. We will come back to this
in Sec. 1.2.3. One should note that, in the presence of degenerate light
neutrinos, the leading terms in an expansion of ε1 in M1/M2 and M1/M3

vanish. However, the next to leading order terms do not vanish and in this
case one has [30],

|ε1| " Max

(
εDI ,

M3
3

M1M2
2

)
. (1.114)

By requiring that there is no substantial washout effects, bounds on
light neutrino masses can be derived. To have significant amount of baryon
asymmetry, the effective mass m̃1 defined in Eq. 1.94 cannot be too large.
Generally m̃1 " 0.1 − 0.2 is required. As the mass of the lightest active
neutrino m1 " m̃1, an upper bound on m1 thus ensues. By further requir-
ing the ∆L = 2 washout effects be consistent with successful leptogenesis
impose a bound on,

√
(m2

1 + m2
2 + m2

3) " (0.1 − 0.2) eV , (1.115)

which is of the same order as the bound on m̃1. From these bounds, the
absolute mass scale of neutrino masses is thus known up to a factor of
∼ 3 to be in the range, 0.05 " m3 " 0.15 eV [4], if the observed baryonic
asymmetry indeed originates from leptogenesis through the decay of N1.
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Dirac Leptogenesis

• Leptogenesis possible when neutrinos are Dirac particles

• small Dirac mass through suppressed Yukawa coupling

• Characteristics of Sphaleron effects:

• only left-handed fields couple to sphalerons

• sphalerons change (B+L) but not (B-L)

• sphaleron effects in equilibrium for T > Tew

• If L stored in RH fermions can survive below EW phase 
transition, net lepton number can be generated even with L=0 
initially

• for SM quarks and leptons: rapid left-right equilibration through 
large Yukawa

Dick, Lindner, Ratz, Wright, 2000; 
Murayama, Pierce, 2002; ...

no net asymmetry 
if B = L = 0 initially
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Dirac Leptogenesis
• LR equilibration for neutrinos:

• neutrino Yukawa coupling 

• rate for conversion

• for LR conversion not to be in equilibrium 

• Thus LR equilibration occur at much later time
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1.2.2. Dirac Leptogenesis

In the standard leptogenesis discussed in the previous section, neutrinos
acquire their masses through the seesaw mechanism. The decays of the
heavy right-handed neutrinos produce a non-zero lepton number asymme-
try, ∆L != 0. The electroweak sphaleron effects then convert ∆L partially
into ∆B. This standard scenario relies crucially on the violation of lepton
number, which is due to the presence of the heavy Majorana masses for the
right-handed neutrinos.

It was pointed out [31] that leptogenesis can be implemented even in the
case when neutrinos are Dirac fermions which acquire small masses through
highly suppressed Yukawa couplings without violating lepton number. The
realization of this depends critically on the following three characteristics
of the sphaleron effects: (i) only the left-handed particles couple to the
sphalerons; (ii) the sphalerons change (B + L) but not (B − L); (iii) the
sphaleron effects are in equilibrium for T ! TEW .

As the sphelarons couple only to the left-handed fermions, one may
speculate that as long as the lepton number stored in the right-handed
fermions can survive below the electroweak phase transition, a net lepton
number may be generated even with L = 0 initially. The Yukawa couplings
of the SM quarks and leptons to the Higgs boson lead to rapid left-right
equilibration so that as the sphaleron effects deplete the left-handed (B+L),
the right-handed (B + L) is converted to fill the void and therefore it is
also depleted. So with B = L = 0 initially, no baryon asymmetry can
be generated for the SM quarks and leptons. For the neutrinos, on the
other hand, the left-right equilibration can occur at a much longer time
scale compared to the electroweak epoch when the sphaleron washout is in
effect. The left-right conversion for the neutrinos involves the Dirac Yukawa
couplings, λ"LHνR, where λ is the Yukawa coupling constant, and the rate
for these conversion processes scales as,

ΓLR ∼ λ2T . (1.116)

For the left-right conversion not to be in equilibrium at temperatures above
some critical temperature Teq, requires that

ΓLR " H , for T > Teq , (1.117)

where the Hubble constant scales as,

H ∼
T 2

MPl

. (1.118)
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Fig. 1.12. With sufficiently small Yukawa couplings, the left-right equilibration occurs
at a much later time, well below the electroweak phase transition temperature. It is
therefore possible to generate a non-zero baryon number even if B = L = 0 initially. For
the SM particles, as shown in the insert for comparison, the left-right equilibration takes
place completely before or during the sphaleron processes. Thus no net baryon number
can be generated if B − L = 0 initially. Figure taken from Ref [31].

Hence the left-right equilibration can occur at a much later time, T !

Teq ! TEW , provided,

λ2 !
Teq

MPl

!
TEW

MPl

. (1.119)

With MPl ∼ 1019 GeV and TEW ∼ 102 GeV, this condition then translates
into

λ < 10−(8∼9) . (1.120)

Thus for neutrino Dirac masses mD < 10 keV, which is consistent with all
experimental observations, the left-right equilibration does not occur until
the temperature of the Universe drops to much below the temperature of
the electroweak phase transition, and the lepton number stored in the right-
handed neutrinos can then survive the wash-out due to the sphalerons [31].

Once we accept this, the Dirac leptogenesis then works as follows. Sup-
pose that some processes initially produce a negative lepton number (∆LL),
which is stored in the left-handed neutrinos, and a positive lepton number
(∆LR), which is stored in the right-handed neutrinos. Because sphalerons
only couple to the left-handed particles, part of the negative lepton number
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Dirac Leptogenesis

• Leptogenesis possible even when neutrinos 
are Dirac particles (no ∆L = 2 violation)


• Characteristics of Sphaleron effects:

• only left-handed fields couple to 

sphalerons

• sphalerons change (B+L) but not (B-L)

• sphaleron effects in equilibrium                

for T > Tew
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K. Dick, M. Lindner, M. Ratz, D. Wright, 2000; 
H. Murayama, A. Pierce, 2002
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late time LR equilibration of 
neutrinos making Dirac 

leptogenesis possible with 
primordial ∆L = 0
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